
Available online at www.sciencedirect.com

Computers & Operations Research 31 (2004) 499–513
www.elsevier.com/locate/dsw

Finding the $rst K shortest paths in a time-window network

Yen-Liang Chena ;∗, Hsu-Hao Yangb

aDepartment of Information Management, National Central University, Chung-Li, Taiwan 320, Republic of China
bDepartment of Industrial Engineering and Management, National Chinyi Institute of Technology, Taiping,

Taiwan 411, Republic of China

Received 1 June 2002; received in revised form 1 October 2002

Abstract

The time-constrained shortest path problem is an important generalization of the classical shortest path
problem and has attracted much research interest in recent years. We consider a time-window network, where
every node in the network has a list of pre-speci$ed windows and departure from a node may take place only
in these window periods. The objective of this paper is to $nd the $rst K shortest paths in a time-window
network. An algorithm of time complexity of O(Kr|V |3) is developed to $nd the $rst K shortest paths, where
|V | is the numbers of nodes in the network and r represents the maximum number of windows associated
with a node.

Scope and purpose

Time window has been a common form of time constraint considered in the literature. Basically, a time
window is a time period, de$ned by the earliest and latest times, when a node is available for traveling
through. There are many practical situations where time windows can be used to describe the time constraints
associated with the nodes and arcs on a network. For example, a time window in a transportation network may
be the time period that a service or transition facility is available for the traveler to pass through. Although
there are many researches on the transportation problem in time-window networks, no previous researches
study how to $nd the $rst K shortest paths in a time-window network; hence, this paper studies this extended
problem. The extension has many potential applications in practice. For example, there may be some complex
constraints associated with the nodes and/or arcs of the network, which are di7cult to incorporate into the
model formulation. A solution strategy is to temporarily ignore these constraints and obtain a list of paths in
nondecreasing order in terms of their total times. The optimal solution can be found by identifying the $rst
path in the list that satis$es the constraints. Another use of the result is a quick selection of an alternative
path when encountering temporary disconnection of the active shortest path.
? 2003 Elsevier Ltd. All rights reserved.

Keywords: Network; Time-window constraint; Shortest path; Simple path

∗ Corresponding author. Tel: +886-3-4267266; fax: +886-3-4254604.
E-mail address: ylchen@mgt.ncu.edu.tw (Y.-L. Chen).

0305-0548/04/$ - see front matter ? 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/S0305-0548(02)00230-7

mailto:ylchen@mgt.ncu.edu.tw

500 Y.-L. Chen, H.-H. Yang /Computers & Operations Research 31 (2004) 499–513

1. Introduction

The classical shortest path problem is concerned with $nding the path with the minimum time,
distance, or cost from a source node to a destination through a connected network. It is an important
problem because of its numerous applications and generalizations in transportations [1], communi-
cations [2], and many other areas. Several excellent reviews on the shortest path problem have been
presented [3–5].

The time-constrained shortest path problem (TCSPP) is an important generalization of the shortest
path problem and has attracted much research interest over the past years. The basic notion is to
consider when a node, under time constraints, in the network can be visited. The time window has
been a common form of time constraints considered in the TCSPP, which requires that a node can
be visited only in a speci$ed time interval [6–9]. Restated, a time window de$nes the earliest time
and the latest time that the node is available. In principle, two types of time windows are available.
The $rst is the hard time window, where, if one or more time-window constraints are not satis$ed,
then the solution becomes infeasible [7–9]. The second is the soft time window, where a cost penalty
is incurred if the node’s arrival is outside its time window [6].

This paper is interested in $nding the $rst K shortest paths in a time-window network. Many
potential applications in practice justify the extension. For example, it is not unusual that some
extra constraints may have been present that pose great challenges to model the problem. One
common solution strategy would be to temporarily ignore these constraints and rank a list of paths
in nondecreasing order in terms of the total time, distance or cost. It then leaves the decision-maker
to determine the optimal solution by identifying the $rst path in the list that satis$es the extra
constraints.

Finding the $rst K shortest paths can be classi$ed into two main categories. In the $rst category,
only simple paths, i.e., paths without repeated nodes, are allowed. In the other one, looping paths,
i.e., paths with repeated nodes and arcs, can be considered as solutions. Regardless of the nature
of the network under consideration, the problem of $nding simple paths appears to be harder than
that of $nding looping paths. Yen’s algorithm [10] is a well known algorithm for $nding the $rst K
simple paths in a general network with |V | nodes, which requires time O(K |V |3). If the network is
undirected, Katoh et al. [11] improved the time bound associated with Yen’s algorithm to O(K(|A|+
|V | log |V |)), where |A| is the number of arcs. As for $nding the $rst K looping paths, Fox [12]
developed an algorithm with time complexity of O(|V |2 + K |V | log |V |). Recently, Eppstein [13]
used an implicit representation of paths to signi$cantly improve the time bound further to O(|A| +
|V | log |V | + K |V |).

Because of the time-window constraint, the paths enumerated in this paper are diJerent from the
conventional paths appeared in a network without time-window constraints. Let us consider a path
route (s;A;D; d) shown in Fig. 1, where the number on an arc is the travel time and there are
several windows associated with the nodes. Traditionally, we view this route as a single path with
total time 10, because we will arrive and leave node A at time 4, arrive node D at time 8, and
$nally arrive node d at time 10. In other words, the traditional researches assume that a traveler
will leave a node once he is allowed to leave. For simplicity, we may call this as “no-extra-waiting”
condition.

In practice, taking an extra wait on a node is not uncommon; hence, this paper will give up
the traditional “no-extra-waiting” condition. Instead, we assume that once arriving a node we may

Y.-L. Chen, H.-H. Yang /Computers & Operations Research 31 (2004) 499–513 501

s A D d

4 3 2

(2,4)

(5,10)

(2,6)

(8,18)

(22,24)

Fig. 1. A path route in a time-window network.

choose to stay on a node for a while rather than leave immediately. Speci$cally, when arriving a
node, if the arrival time is not within a window, we have to wait for the next window. But if the
arrival time is within a window, we have two choices: (1) leave right away, or (2) wait. In case that
we choose to wait, we will wait until the next window and then make a wait-or-leave decision again.
Repeatedly doing this way, we will $nally leave in a window after bypassing a certain number of
windows.

Let us use the path route (s;A;D; d) shown in Fig. 1 for illustration. There are many possible
paths associated with this path route because of diJerent waiting times on each node. Let xt represent
that the departure time of node x in the path is t. Then, we have two possible paths in this case:

(s0;A4;D8; d10) and (s0;A5;D8; d10):

Apparently, they are diJerent paths but with the same route. Therefore, the $rst K paths enumerated
by our approach are by no means the same as those generated by the traditional approach, because
path route and path represent diJerent concepts in our approach. As a result, the objective of this
paper is to $nd the $rst K shortest paths with waiting times in the network. The paper is organized
as follows. In the next section, we $rst de$ne the problem and then develop some auxiliary functions
that will be used in the algorithm that follows. In Section 3, we propose the algorithm for $nding
the $rst K shortest paths in a time-window network and also analyze its time complexity. Finally,
we give the conclusion and directions for future research in Section 4.

2. Problem de�nition and auxiliary functions

We begin with de$ning the problem in Section 2.1. In Section 2.2, we give some supporting
functions that are used to develop the algorithms in Section 3.

2.1. Problem de5nition

Let N = (V; A;WL; t; s; d) denote a time-window network, where V is the node set, A is the arc
set without multiple arcs and self-loops, t(u; v) is the travel time of arc (u; v)∈A and s and d are
the source and destination of the path. For each node u∈V , it is associated with a window-list
WL(u) = (wu;1; wu;2; : : : ; wu;r), where wu; i is the ith time window of node u for i = 1 to r. Each
window wu; i is associated with a starting time su; i and an ending time eu; i, where su; i ¡ eu; i ¡ su; i+1

for any i¿ 1. When arriving a node, if the arrival time is not in a window period, we must wait.

502 Y.-L. Chen, H.-H. Yang /Computers & Operations Research 31 (2004) 499–513

Otherwise, we can leave right away or wait. In case of waiting, we need to wait until the next
window is coming; then, we have to make a wait-or-leave decision once again. Repeatedly doing
this way, we may skip a number of windows before we $nally leave a node.

In this paper, “path route” and “path” have diJerent meanings. The former is just a listing of the
nodes along the route, whereas the latter is a listing of the nodes as well as their departure times.
In other words, a path route can be mapped to many corresponding paths. Let us call the arrival
time to the destination node the total time of a path. Then, the goal of this paper is to enumerate
the $rst K simple paths from the source to the destination in nondecreasing order in terms of their
total times.

2.2. Some auxiliary functions

Since a path route may correspond to many diJerent paths by including diJerent waiting times,
the $rst function we must have is, if we are given a path route P and a given total time T , how
many paths can be mapped to this particular path route P and total time T . Let us use a simple
example to explain what this function is for. For example, assume that our goal is to generate the
$rst 30 paths. Then, we may $rst generate the $rst path P1 with total time T1, and assume that,
by applying this function, we $nd that there are 15 paths that can be generated from P1 and T1.
So, we $rst output the $rst 15 paths with the same route but diJerent waiting times. After that, we
then generate the 16th path in the network. Let P16 be this path and T16 be its total time. Suppose
this time we $nd that there are 19 paths corresponding to P16 and T16. Since this is a little more
than what we require, we only need to output 15 of them as the solution. This way, we successfully
generate the $rst 30 paths in the network.

Here, we will present how to $nd paths corresponding to path route P and total time T . Since
a number of diJerent paths may arise from the inclusion of waiting, the core of our approach is
to construct a graph, named related-graph, that answers two questions: (1) how many of paths
corresponding to P have a total time T , and (2) who these paths are. In this section, we design the
function related-pno(P; T) to answer the $rst question, and related-paths(P; T) the second question.
In addition, the related-graph serves to compute P’s next total time (denoted next) later than T .

Before going into the details, we use an example to explain the ideas. Let us consider the path P
shown in Fig. 1, and assume that T = 10. Our objective is to construct the related-graph shown in
Fig. 2a so that we can $nd all paths corresponding to P with the same total time but diJerent waiting
times. The rationale behind this transformation is that every path from s to d in the constructed graph
maps to a unique path coming from P and T , and vice versa.

For each node u along the path route P, there are two cases that we will leave node u for the
next node. First is at the beginning time of a window of node u that is no later than T . Second
is at the very moment that we arrive node u from its preceding node and then we decide to leave
right away. Let the numbers inside the boxes denote the beginning times of those windows no later
than T . Then, we will generate nodes A2 and A5 for node A and nodes D2 and D8 for node D.
Besides, we also create node s0 for node s and node d10 for node d because they are the source and
destination, respectively. To identify the possible moments that we can leave a node because of the
second case, we process nodes s;A;D; d sequentially. After leaving from node s, we arrive at node
A at time 4. Since time 4 is in window (2; 4) of node A, it is a possible leaving moment and we
add A4 into the graph without box. After that, we $nd that the possible times leaving node A are

Y.-L. Chen, H.-H. Yang /Computers & Operations Research 31 (2004) 499–513 503

0

5

2

8 10

4
5

2

0

5

2

8

24

4
5

2

22

13

16

(a)

(b)

Fig. 2. (a) The related-graph constructed from path P = (s;A;D; d) and T = 10. (b) The related-graph constructed for a
modi$ed case.

2, 4 and 5. Among all of them, only leaving from node A at time 2 will enter a window (2; 6) of
node D, so we add D5 into node D without box. In all the other leaving times, we will be forced
to wait until the next window has come. Treated this way, all the nodes in the constructed graph
are shown either by numbers within boxes or otherwise. Finally, note that, if we decide to wait on
a node, we will wait until the beginning time of the next window and then make a decision again.
To describe this relationship in the constructed graph, we create an arc from a number, either with

504 Y.-L. Chen, H.-H. Yang /Computers & Operations Research 31 (2004) 499–513

box or otherwise, to the smallest larger number with box. That is why we create arcs (A2;A5) and
(A4;A5) for node A. By the same reason, we create arcs (D2;D8) and (D5;D8) for node D.

In the constructed graph, there are two kinds of arcs. For example, arcs (A2;A5) and (A4;A5)
represent waiting occurs on the same node. In contrast, arc (A2;D5) means that the earliest time to
leave from node D is at time 5 if coming from node A at time 2.

In Fig. 2a, there may exist a number of paths from s0 to d10, path (s0;A4;D8; d10) is but one
of them. Comparing with the other paths, say (s0;A4;A5;D8; d10), we $nd that every path in the
graph has the same path route and the same total time but diJers from any other one in the waiting
time. To $nd all the paths from s0 to d10, the function related-paths(P; T) can be done simply by
a breadth-$rst search or a depth-$rst search. While searching, we also count the number of paths
simultaneously so that the function related-pno(P; T) is solved by hitchhiking. For instance, by
searching the graph in Fig. 2a, we $nd 2 paths, which are (s0;A4;D8; d10) and (s0;A4;A5;D8; d10).

Now, we will describe how to construct the graph. Suppose we have a function window-beginning
(u; T) that can output the beginning times of node u’s windows which start no later than T . Let
P=(s=v0; v1; : : : ; vi; : : : ; vm =d). For each node vi in P, calling the function window-beginning(vi; T)
will produce a list ts(vi)=(ts(vi; 1); ts(vi; 2); : : : ; ts(vi; ni)), where ts(vi; j) is the beginning time of the
jth window and ni is the total number of windows with beginning times no later than T . Without
loss of generality, assume that n0 = 1, ts(s) = (0) and we leave node s at time 0. Leaving from
node vi at time p, we will reach node vi+1 at time p + t(vi; vi+1). Then, there are two cases: (1)
if the arrival time is in a window, we either leave from node vi+1 immediately or wait until a later
window, or (2) if the arrival time is not in a window, we must wait. Either way, let q denote the
earliest time we can leave from node vi+1 for node vi+2. Recall that at time q, we still have the
option to wait or leave.

With the preceding provision, we are ready to construct the related-graph by the algorithm
presented below, where the meanings of nodes and arcs are as follows.

node viq: make a leave-or-wait decision on vi at time q,
arc (vip; v

i+1
q): time q is the earliest time to leave from vi+1 if leaving from vi at time p,

arc (vi+1
p ; vi+1

q): wait at vi+1 from time p to time q,
arc (vm−1

p ; vmT): reach vm at time T if leaving from vm−1 at time p.
We classify all nodes in this graph into two disjoint sets. For node viq, if q is the beginning time

of a window, it will belong to the set V i
1. On the other hand, if q is not the beginning time of a

window, then node viq will be a member of the other set V i
2. Similarly, all arcs are classi$ed into

two disjoint sets, where the arcs in Ai+1
1 denote the waiting occurred on node vi+1 and Ai+1

2 denotes
the traveling from vi to vi+1.

Network Construction Algorithm

1. s′ = s0; d′ = vmT ; A′ = �; V ′ = V 0 = {s0}; and Vm = {vmT }.
2. For every node vi from v0 to node vm−2 in path P do

V i+1
1 = {vi+1

q | q∈ ts(vi+1)}
V i+1

2 = {vi+1
q |∃vip in V i such that p + t(vi; vi+1) = q and q is in a window}

V i+1 =V i+1
1 ∪ V i+1

2

Y.-L. Chen, H.-H. Yang /Computers & Operations Research 31 (2004) 499–513 505

V ′ =V ′ ∪ V i+1

Ai+1
1 = {(vi+1

p ; vi+1
q) | vi+1

p ∈V i+1; vi+1
q is the node with the smallest subscript in

V i+1
1 satisfying p6 q}

Ai+1
2 = {(vip; v

i+1
q) | vip ∈V i; vi+1

q is the node with smallest subscript in V i+1 satisfying

p + t(vi; vi+1)6 q}

A′ =A′ ∪ Ai+1
1 ∪ Ai+1

2

3. Am = {(vm−1
p ; vmT) |p + t(vm−1; vm) = T}.

Lemma 1. The transformation requires time O(|V |2r), where r is the maximum number of windows
in a node and |V | is the number of nodes in network N .

Proof. See Appendix A.

Having constructed the related-graph, the function related-paths(P; T) can be done simply by a
breadth-$rst search or a depth-$rst search. While searching, we also count the number of paths
simultaneously so that the function related-pno(P; T) is solved by hitchhiking. Since the depth-$rst
search or the breadth-$rst search requires a time in a linear function of the network size, the total
time for solving functions related-paths(P; T) and related-pno(P; T) can be done in time O(|V |2r).

Finally, what remains is to $nd the next total time of path P that is later than T , which will be
handled by the function next(P; T). It can be done by the following steps:

1. Find in ts(vm−1) the smallest value larger than T − t(vm−1; vm). Let it be Tm−1.
2. Use Network Construction Algorithm to build the graph for P with time Tm−1 + t(vm−1; vm).
3. Find in Vm−1 the smallest leaving time value larger than T − t(vm−1; vm). Let it be T ′.
4. Return T ′ + t(vm−1; vm) as the solution.

Let us use Fig. 2a for illustration. Step 1 sets Tm−1 as 22, step 2 constructs a graph for P with total
time 22 + 2 = 24, step 3 $nds T ′ as 22 and $nally step 4 returns 22 + 2 = 24 as the next total time.
For comparison, let us add a new window (13; 15) into node A. Then, if we leave node A at time
13, then we will arrive node D at time 16, which is within window (8; 18) of node D. If we use
this modi$ed case to run the above algorithm, the execution will be like this: Step 1 sets Tm−1 as
22, step 2 constructs a graph for P with total time 22 + 2 = 24, step 3 $nds T ′ as 16 and $nally
step 4 returns 16 + 2 = 18 as the next total time. For illustration, we also draw the related-graph for
this modi$ed case in Fig. 2b.

The time complexity of function next(P; T) is O(|V |2r), for the most time-consuming part is in
step 2 that calls Network Construction Algorithm.

506 Y.-L. Chen, H.-H. Yang /Computers & Operations Research 31 (2004) 499–513

3. The framework of the algorithm

Before going into the detailed steps of the algorithm, we briePy describe the framework of
our solution strategy as follows. Throughout the execution of the algorithm, we use a heap data
structures, denoted as Q, to store a set of paths as well as their total times. With the support
of this data structure, we can quickly $nd the path with the smallest total time, add a new path
and delete an existing path. The algorithm iterates the following steps repeatedly until the num-
ber of paths enumerated exceeds K . Suppose the $rst (r − 1) paths have been generated, and our
current job is to enumerate the rth path. To this end, we will select the path with the small-
est total time from Q. Let Pr be the path found and Tr its total time. Suppose there are nr
paths having the same path route as Pr and total time Tr , where nr is obtained by function
related-pno(Pr; Tr). Then, we can output these nr paths as the rth path, the (r + 1)th path; : : : ;
the (r + nr − 1)th path, where these paths are generated by function related-paths(Pr; Tr). After
outputting these paths, we will use the function next(Pr; Tr) to compute the next largest total time
of path Pr . Let it be T . We then store path Pr and its new total time T into the heap data struc-
ture Q. (The reason why we need to do so is because a path route may appear multiple times
in the $rst K paths but with diJerent total times.) In addition, if the path route Pr is enumer-
ated for the $rst time, then we will further partition all the paths into diJerent exclusive sets.
For example, let the route of Pr be (A;B;C;D;E). Then, we partition all the still-yet-to-be-found
paths into four sets: those with su7x path (B;C;D;E) but without arc (A;B), those with su7x
path (C;D;E) but without arc (B;C), those with su7x path (D;E) but without arc (C;D) and $-
nally those without arc (D;E). We then $nd the shortest path for each of these four sets and then
store all these four paths into Q. Repeatedly doing this way, we will $nally obtain all the $rst
K paths.

Now, we formally describe our solution strategy. Let Pc be the set of all the paths from s to
d in N . Initially, we $nd the $rst shortest path P1 = (s = v0; v1; : : : ; vm = d) with a total time T1.
Since there are related-pno(P1; T1) paths corresponding to P1 with the same total time but diJerent
waiting times, the path we are searching next should be diJerent from what have been found unless
we have identi$ed as many as K paths. For this reason, let Pc-related-paths(P1; T1) be the set of
paths containing all the paths in Pc but not those in related-paths(P1; T1). De$ne P(i)

c ; i=1; 2; : : : ; m,
as the subset of the paths in Pc-related-paths(P1; T1) that includes the subpath (vi; vi+1; : : : ; vm = d)
but excludes the arc (vi−1; vi). In this context, we de$ne that for P(i)

c ; (vi; vi+1; : : : ; vm = d) is an
in-subpath and (vi−1; vi) is an out-arc. It is trivial to verify that Pc-related-paths(P1; T1) can be
partitioned into m disjoint path subsets P(1)

c ;P(2)
c ; : : : ;P(m)

c .
Let x = related-pno(P1; T1) + 1, and let Px denote the xth shortest path with a total time

Tx. Suppose Px is in P(r)
c . We then partition P(r)

c -related-paths(Px; Tx) into disjoint subsets in
the same way we partition Pc-related-paths(P1; T1). The subsets obtained from the partition of
P(r)
c -related-paths(Px; Tx), together with P(1)

c ;P(2)
c ; : : : ;P(r−1)

c ; P(r+1)
c ; : : : ; P(m)

c , constitute a partition of
Pc-{related-paths(P1; T1), related-paths(Px; Tx)}. Next, let Py be the shortest path found in the sub-
sets that partition Pc-{related-paths(P1; T1), related-paths(Px; Tx)}, where y= related-pno(Px; Tx) +
related-pno(P1; T1) + 1. Following the same procedure allows us to generate the paths successively
in nondecreasing order.

Recall that all the paths in the path set P(i)
c , for 16 i6m, contain an in-subpath from node

vi to d and exclude an out-arc (vi−1; vi). Suppose Px is in P(r)
c , and let Px be denoted by (s =

Y.-L. Chen, H.-H. Yang /Computers & Operations Research 31 (2004) 499–513 507

u0; u1; : : : ; ur
′
= vr; vr+1; : : : ; vm =d). The path set P(r)

c -related-paths(Px; Tx) can be further partitioned
into r′ disjoint subsets. We de$ne P(r; i)

c as the subset of paths in P(r)
c -related-paths(Px; Tx) with the

in-subpath (ui; ui+1; : : : ; ur
′
=vr) and without the out-arc (ui−1; ui). By including the original in-subpath

and excluding the out-arc of P(r)
c ;P(r; i)

c is the subset of paths with in-subpath (ui; ui+1; : : : ; ur
′

=
vr; vr+1; : : : ; vm =d) and without out-arcs (ui−1; ui) and (vr−1; vr). Repeatedly applying the procedure,
we have the following property.

Property 1. Let P be a path subset in the partition of Pc-{related-paths(P1; T1), related-paths(Px;
Tx); : : :}. Then, all the paths in P contain an in-subpath from a certain node u∗ to d and exclude
an out-arc set.

After dealing with the partition of path subset, our next objective is to $nd the shortest path from
s to d in the path subset that includes a given in-subpath from a certain node u∗ to d and excludes
a given out-arc set. For ease of presentation, let Pin and Aout denote the in-subpath and out-arc set,
respectively, and refer to the path satisfying the constraints Pin and Aout as the constrained path.
The following section discusses how to $nd the shortest constrained path.

3.1. How to 5nd the shortest constrained path

To $nd the path, we construct a network N ′ = (V ′; A′; s′; d′) so that the shortest path P∗ from
s′ = s to d′ = u∗ in N ′ followed by Pin forms a shortest constrained path from s to d in N . The
procedure of constructing N ′ is as follows.

1. All the arcs in Pin are removed from N , because P∗ does not pass through these arcs.
2. All the arcs in Aout are removed from N .
3. Set s′ = s and d′ = u∗.

At this point, we have several observations.

1. Since the constructed network N ′ is a time-window network rather than a conventional net-
work, conventional shortest path algorithm (such as Dijkstra’s) cannot be directly applied to the
constructed network N ′. However, after a small modi$cation Dijsksta’s algorithm [14] can be
used to $nd the shortest path in a time window network. We briePy sketch the modi$ed Dijkstra
Algorithm: (1) two labels, the arrival time and the leaving time, are attached with each node.
(2) In the beginning, all the nodes are in the set S. (3) Each cycle selects and removes the node
with the minimal leaving time label from S. (4) The labels of the nodes adjacent to the selected
node must be updated. For each adjacent node, we $rst determine the arrival time label. Then,
we determine the leaving time label by using the time windows of this node as well as its arrival
time label. (5) The algorithm stops if S becomes empty.

2. It is easy to see that the shortest path P∗ from s′ to d′ in N ′ followed by Pin will form the
shortest constrained path from s to d in N . Based on this observation, we have the following
algorithm to $nd the shortest constrained path from s to d in network N subject to the conditions
Pin and Aout.

508 Y.-L. Chen, H.-H. Yang /Computers & Operations Research 31 (2004) 499–513

(2,4), (5,10)

4

2

3

2

7

5

3

3

5

4

s

D

C

B

A

d

(5, 8), (11, 15), (18, 23)

(2,4), (6, 14), (20, 25) (2, 6), (8, 18), (22, 24)

[4,4]

[5,6] [7,8]

[8,11]

[10,-]

Fig. 3. The original time-window network and the $rst shortest path.

Shortest constrained path algorithm

1. Transform N into N ′.
2. Apply the modi$ed Dijkstra’s algorithm to $nd the shortest path P∗ from s to d′ in N ′.
3. Append Pin to the path P∗ to obtain the shortest constrained path in N subject to the conditions

Pin and Aout.

To illustrate the algorithm, we $rst consider the network shown in Fig. 3, where P1 = (s;A;D; d)
with a total time T1 = 10, and the numbers in the square bracket beside each node are the earliest
arrival time and earliest leaving time. The set of paths Pc-related-paths(P1; T1) can be partitioned
into 3 disjoint path subsets:

P(1)
c : The paths with Pin = (A;D; d) and without Aout = (s;A).

P(2)
c : The paths with Pin = (D; d) and without Aout = (A;D).

P(3)
c : The paths without Aout = (D; d).

Take P(2)
c as an example. After removing the arcs in Aout and Pin, the resulting network is shown

in Fig. 4, where the shortest path is (s;B;D) with the arrival time = 13. Since the earliest time we
can leave from node D is 13, the total time of the shortest constrained path (s;B;D; d) is 15.

Lemma 2. The time complexity of Shortest Constrained Path Algorithm is O(r|V |2), where |V | is
the number of nodes in the network and r is the number of windows in a node.

Proof. See Appendix A.

Y.-L. Chen, H.-H. Yang /Computers & Operations Research 31 (2004) 499–513 509

4

3

2

7

5

3

5

4

s

D

C

B

A

d

d’

(2,4), (5,10) (5,8), (11, 15),(18, 23)

(2,4), (6, 14), (20, 25) (2,6), (8, 18), (22, 24)

[4,4]

[5,6]

[13,-]

Fig. 4. Subset P(2)
c with Aout = {(A;D)} and Pin = (D; d).

3.2. How to 5nd the 5rst k shortest paths

Implementing the solution procedure above may be exposed to the problem that a great deal
of paths and their related constraints are generated after a number of iterations. To manage this
problem, we use the heap structure of Fredman and Tarjan [15], where the times to $nd and remove
the minimum element or to insert a new element are all O(log n) for a heap with n elements. Let
each element in the heap Q represent an enumerated path and each element is associated with its
total time, marking status (marked if it has been outputted before; unmarked otherwise), in-subpath
and out-arc set. All the paths in Q can be classi$ed into two kinds: (1) paths have been output
previously but with smaller total times, and (2) paths have never been output before. While outputting
a path of the $rst kind, since its route must had been partitioned, duplicate path sets with the same
in-subpath and out-arc set will be created if it is partitioned again. To ensure that each element in
the heap Q has diJerent in-subpath and out-arc sets, we mark those of the $rst kind to prevent us
from partitioning again. Partition is done only to a path without the mark. The following algorithm
uses the heap structure to store the set Q for $nding the $rst K shortest paths.

K shortest paths algorithm

1. Use the shortest path algorithm to $nd P1 with the total time T1. Set in-subpath(P1) = � and
out-arc(P1) = �, where � represents an empty path or set. Store the element of P1 into Q.

2. For w = 1 to K , execute the cycle from step 3 to step 13.
3. Select the shortest path P with total time T from Q, and remove P from Q.
4. Output the paths in related-paths(P; T) as the wth; : : : ; (w + related-pno(P; T) − 1)th paths.
5. Set w = w + related-pno(P; T) − 1.
6. Set T ′ = next(P; T) and P′′ = P.
7. Mark P′′ and store the element of P′′ with total time T ′′ into Q.

510 Y.-L. Chen, H.-H. Yang /Computers & Operations Research 31 (2004) 499–513

8. If P has been marked then go to the next cycle.
9. Let P′ be the subpath of P satisfying P = P′ ⊕ in-subpath(P), where ⊕ is the operator for

connecting two subpaths.
10. Let the number of arcs in P′ be m, and P′(i; j) denote the subpath from the ith arc to the jth

arc of P′.
11. Partition the original path set of P into m disjoint path subsets. The in-subpath and out-arc set

of the ith path subset, for 16 i6m, can be obtained by the out-arc set is {P′(i; i)}∪out-arc(P)
the in-subpath is P′(i + 1; m) ⊕ in-subpath(P).

12. For each path subset, $nd the shortest path using the Shortest Constrained Path Algorithm.
13. For each path subset, if there is a shortest path, then we store its elements into Q.

Lemma 3. The time complexity of the K Shortest Paths algorithm is O(Kr|V |3), where r is the
maximum number of windows in a node.

Proof. See Appendix A.

Example 1. Consider the network in Fig. 3. In step 1, we $nd the $rst path P1 = (s;A;D; d) with
T1 = 10. Path P1 with in-subpath(P1) = � and out-arc(P1) = � are stored into the heap. In the $rst
cycle of step 2, where w = 1, the path removed from the heap Q is P1. By calling the function
related-paths(P1; 10), we $nd that there are two paths with the same total time but diJerent waiting
times, i.e., (s0;A4;D8; d10) and (s0;A5;D8; d10). These two paths are output as the $rst two shortest
paths, and w is set from 1 to 2. Once $nished, calling the function next(P1; 10) produces the next
total time of P1 being 24. We then store the marked copy of path (s;A;D; d) and its total time 24
into the heap Q again. Since path P1 is unmarked, we need to partition its path subset into disjoint
path subsets. Because in-subpath(P1) =�, we have P′ = (s;A;D; d) and m= 3. So, we partition the
original path set of P into 3 path subsets as follows.

The $rst subset P(1)
c (Fig. 5) has Aout = {(s; A)} and Pin = (A;D; d).

The second subset P(2)
c (Fig. 4) has Aout = {(A;D)} and Pin = (D; d).

The third subset P(3)
c (Fig. 6) has Aout = {(D; d)} and Pin = �.

For each of these three subsets, we summarize their shortest constrained paths as follows.
There is no path in P(1)

c .
The shortest constrained path in P(2)

c is (s;B;D; d) with time 15.
The shortest constrained path in P(3)

c is (s;B;C; d) with time 12.
Hence, path subsets P(2)

c and P(3)
c and related information are stored into the heap Q.

In the second cycle of step 2, where w = 3, the path P = (s;B;C; d) in P(3)
c is removed from

the heap Q and output as the third shortest path. Calling function related-paths(P; 12) produces no
other paths with the same total time. Further, by calling function next(P; 12), the next total time
of this path is 15. So, we insert marked path (s;B;C; d) with the total time 15 into the heap Q.
Since in-subpath(P) = � and out-arc(P) = (D; d), we have P′ = (s;B;C; d) and P(3)

c can be further
partitioned into three path subsets.

The $rst subset P(3;1)
c has Aout = {(s;B); (D; d)} and Pin = (B;C; d):

The second subset P(3;2)
c has Aout = {(B;C); (D; d)} and Pin = (C; d).

The third subset P(3;3)
c has Aout = {(C; d); (D; d)} and Pin = �.

Y.-L. Chen, H.-H. Yang /Computers & Operations Research 31 (2004) 499–513 511

(2,4), (5,10)

4

3

2

7

5

3

5

s

D

C

B

A

d

(5, 8), (11, 15), (18, 23)

(2,4), (6, 14), (20, 25) (2, 6), (8, 18), (22, 24)

[5,6]

d

Fig. 5. Subset P(1)
c with Aout = {(s; A)} and Pin = (A;D; d).

(2,4), (5,10)

4

3

2

7

5

3

3

5

4

s

D

C

B

A

d

(5, 8), (11, 15), (18, 23)

(2,4), (6, 14), (20, 25) (2, 6), (8, 18), (22, 24)

[4,4]

[5,6] [7,8]

[8,8]

[12,-]

d

Fig. 6. Subset P(3)
c with Aout = {(D; d)} and Pin = �.

Similarly, for each of these three subsets, we $nd their shortest constrained paths as follows.
The shortest constrained path in P(3;1)

c is (s;A;B;C; d) with total time 13.
The shortest constrained path in P(3;2)

c is (s;A;C; d) with total time 13.
There is no path in P(3;3)

c :

512 Y.-L. Chen, H.-H. Yang /Computers & Operations Research 31 (2004) 499–513

Continuously running step 2 of the K Shortest Path Algorithm K times, we will $nd all K
shortest paths.

4. Conclusions

This paper studies $nding the $rst K shortest paths in a time-window network, whose primary
diJerence from the conventional models lies in the inclusion of waiting on a node. Traditionally,
treatment of waiting on a node is either ignored or not a serious concern so that we can identify a
path route uniquely. In the presence of waiting, however, a path route may correspond to a number of
paths with diJerent total times. Therefore, we search for the paths with waiting time consideration in
this paper. The time-window network in this paper not only models the real-life situation but also acts
as a promising platform for investigating the nature of waiting. The major contribution of the paper
is that we have developed an e7cient algorithm, with polynomial time complexity, for $nding the
$rst K shortest paths. No doubt, the e7ciency of the algorithm renders it considerably attractive in
terms of implementation for practical problems. Over the course of developing the algorithm, we use
a related-graph that plays a vital role in searching the graph in a polynomial time. In perspective of
gaining insights into analyzing the waiting of the network and applying the related-graph in broader
contexts, we hope this study will be important steps upon which other future work can be based.

Acknowledgement

The research was supported in part by MOE Program for Promoting Academic Excellence of
Universities under the Grant Number 91-H-FA07-1-4.

Appendix A

Proof of Lemma 1. The provision of ts(vi), i.e., invoking window-beginning(vi; T), for each node vi

takes time O(r). Thus the total time for preprocessing all the nodes in the path is O(mr). For a
simple path, m6 |V |; hence, the time complexity is O(|V |r).

Note that each of the node sets V 1
1 ; V

2
1 ; : : : ; V

m−1
1 contains at most r nodes and V i+1

2 has at most
|V i| nodes. Since V 0 has only one node, V 1 has at most r + 1 nodes and so does V 2

2 . In turn, V 2

has at most 2r + 1 nodes and so does V 3
2 . Repeatedly, node set V i has at most (i × r) + 1 nodes.

Therefore, the total number of nodes in V ′ is at most O(m2r). As for the arc, each node vip has at
most two outgoing arcs, i.e., (vip; v

i+1
q) and (vip; v

i
q). So, the total number of arcs is also bounded from

above by O(m2r). Since a simple path satis$es the relation that m6 |V |, the total time complexity
is thus O(|V |2r).

Proof of Lemma 2. Since every arc and node will be examined and processed at most one time in
transforming the network from N into N ′, the time for step 1 is O(|A| + |V |). Step 2 can be done
in time O(r|V |2) owing to the shortest path algorithm. The time for performing step 3 is negligible.
Therefore, the total time complexity is O(r|V |2):

Y.-L. Chen, H.-H. Yang /Computers & Operations Research 31 (2004) 499–513 513

Proof of Lemma 3. The algorithm executes the functions related-paths(P; T) and next(P; T) at most
K times. By Lemma 1, they can be done in time O(Kr|V |2) and are not the dominant part of the
algorithm. Instead, the most time-consuming part is the partition of the subset of paths containing
the one most recently found into disjoint path subsets. Since the path is simple, there are at most |V |
nodes in the path; hence, there are at most |V | disjoint subsets in each partition. For each disjoint
subset, we $nd the shortest path by using the Shortest Constrained Path Algorithm that requires
O(r|V |2). Hence, the total time for $nding the next path is O(r|V |3). If K paths are enumerated,
the total time becomes O(Kr|V |3).

References

[1] Chen YL, Yang HH. Shortest paths in tra7c-light networks. Transportation Research B 2000;34:241–53.
[2] Chen YL, Chin YH. The quickest path problem. Computers and Operations Research 1990;17:153–61.
[3] Ahuja RK, Magnanti TL, Orlin JB. Networks Pow. Englewood CliJs, NJ: Prentice-Hall, 1993.
[4] Zwick U. Exact and approximate distances in graphs—a survey. Proceedings of the 9th Annual European Symposium

on Algorithms, Aarhus, Denmark, 2001, p. 33–48.
[5] Solomon M, Desrosiers J. Time window constrained routing and scheduling problems: a survey. Transactions of

Science 1988;22:1–13.
[6] Balakrishnan N. Simple heuristics for the vehicle routing problem with soft time windows. JORS 1993;44:279–87.
[7] Bramel J, Simchilevi D. Probabilistic analyses and practical algorithms for the vehicle routing problem with time

windows. Operations Research 1996;44:501–9.
[8] Kolen WJ, Rinnooy Kan AHG, Trienekens HWJM. Vehicle routing with time windows. Operations Research

1987;35:266–73.
[9] Russell RA. Hybrid heuristics for the vehicle-routing problem with time windows. Transactions of Science

1996;29:156–66.
[10] Yen JY. Finding the k shortest loopless paths in a network. Management Science 1971;17:712–16.
[11] Katoh N, Ibaraki T, Mine H. An e7cient algorithm for k shortest simple paths. Networks 1982;12:411–27.
[12] Fox BL. Data structures and computer science techniques in operations research. Operations Research 1978;26:

686–717.
[13] Eppstein D. Finding the k shortest paths. SIAM Journal of Computing 1998;28:652–73.
[14] Dijkstra EW. A note on two problems in connection with graphs. Numerische Mathematik 1959;1:269–71.
[15] Fredman ML, Tarjan RE. Fibonacci heaps and their uses in improved network optimization algorithms. JACM

1987;34:596–615.

Yen-Liang Chen received the B.S. degree in industrial management from National Cheng Kung University, Tainan,
Taiwan and the M.S. degree in industrial engineering from National Tsing Hua University, Hsinchu, Taiwan. He received
his Ph.D. degree in computer science from National Tsing Hua University, Hsinchu, Taiwan. He is currently a professor in
the Department of Information Management, National Central University, Chung-Li, Taiwan. His current research interests
include operations research, data mining and data warehousing.

Hsu-Hao Yang received the B.S. degree in industrial management from National Cheng Kung University, Tainan,
Taiwan and M.S. degree as well as Ph.D. degree in industrial engineering from University of Iowa, USA. He is currently
a professor in the Department of Industrial Engineering and Management, National Chinyi Institute of Technology, Taiping,
Taiwan. His research interests include operations research, logistics and supply chain management.

	Finding the first K shortest paths in a time-window network
	Introduction
	Problem definition and auxiliary functions
	Problem definition
	Some auxiliary functions

	The framework of the algorithm
	How to find the shortest constrained path
	How to find the first k shortest paths

	Conclusions
	Acknowledgements
	Appendix A
	References

