
Shortest paths in tra�c-light networks

Yen-Liang Chen a,*, Hsu-Hao Yang b

a Department of Information Management, National Central University, Chung-Li 32054, Taiwan, ROC
b Department of Industrial Engineering and Management, National Chinyi Institute of Technology, Taiping 411, Taiwan,

ROC

Received 12 August 1998; accepted 22 April 1999

Abstract

The time-constrained shortest path problem (TCSPP) is an important generalization of the shortest path
problem (SPP) and has attracted widespread research interest in recent years. This paper presents a novel
time constraint, called tra�c-light constraint, to simulate the operations of tra�c-light control encountered
in intersections of roads. Basically, the constraint consists of a repeated sequence of time windows. In each
window, only the cars in speci®ed routes are allowed to pass through the intersection. In a practical sense,
this means that a car needs to wait if the light for its direction is red and can go if it is green. For this kind of
network, a shortest path algorithm of time complexity O(r ´ n3) is developed, where n denotes the number
of nodes in the network and r the number of di�erent windows in a node. In addition, we also prove that
the time complexity of this algorithm is optimal. Ó 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Shortest path; Tra�c light; Time window; Road network

1. Introduction

The shortest path problem (SPP) concentrates on ®nding the path with minimum distance,
time, or cost from an origin to a destination through a connected network. It is a classical and
important problem in the area of combinatorial optimization because of its numerous applica-
tions and generalizations in communications and transportation networks. Several excellent re-
views on the SPP have been published, including Bodin et al. (1982), Deo and Pang (1984), and
Golden and Magnanti (1977).

The time-constrained shortest path problem (TCSPP) is an important generalization of the SPP
and has attracted much research interest over the past years. The basic notion is to consider when

Transportation Research Part B 34 (2000) 241±253
www.elsevier.com/locate/trb

* Corresponding author. Tel.: +886 3 4267266; fax: +886 3 425604.

E-mail address: ylchen@im.mgt.ncu.edu.tw (Y.L. Chen).

0191-2615/00/$ - see front matter Ó 2000 Elsevier Science Ltd. All rights reserved.

PII: S0191-2615(99)00023-5

a node, under time constraints, in the network can be visited. The time window has been a
common form of time constraints considered in the TCSPP, which requires that a node can be
visited only in a speci®ed time interval (e.g. Balakrishnan, 1993; Bramel and Simchilevi, 1996;
Kolen et al., 1987; Russell, 1995). Restated, a time window de®nes the earliest time and the latest
time that the node is available. In principle, two types of time windows are available. The ®rst is
the hard time window, where, if one or more time-window constraints are not satis®ed, then the
solution becomes infeasible (e.g. Bramel and Simchilevi, 1996; Kolen et al., 1987; Russell, 1995).
The second is the soft time window, where a cost penalty is incurred if the node's arrival is outside
its time window. The penalty can be assumed to be a linear function of the amount of violation
(Balakrishnan, 1993). When the hard time window is considered, a common objective is to ®nd
the least-cost path from the source node s to the destination node d such that all intermediate
nodes are visited within their respective time windows. When considering the soft time window,
minimization of total cost is also a common objective. However, the intermediate nodes may be
visited outside their corresponding time windows and the penalty associated with the time window
violation is an additional cost component in the total cost.

This paper is interested in ®nding the shortest paths in a modern city that has tra�c-light
controls in a number of intersections of roads. Let a network N � �V ;A; t; s; d� denote a city,
where the node set V corresponds to the intersections and the arc set A the roads in the city, t�u; v�
the time from node u to node v, s the source node and d the destination node. Then, our goal is to
®nd a shortest path from node s to node d in N, where some nodes are constrained to the tra�c-
light controls. An immediate problem encountered is how to model the tra�c-light control.
Traditional soft time window appears to be a promising alternative because it designates at what
time period we can pass through the node and otherwise. However, two properties cannot be
completely described by the traditional soft time window in light controls. The ®rst one is that the
light control in an intersection usually contains a repeated sequence of time windows with des-
ignated durations. As a result, it is imperative that the soft time window should be extended from
a single window to a repeated sequence of multiple windows. The second property is that the
traditional soft time window allows one to pass through the node if its arrival falls into the range
of time windows. In practical light control, however, each window may allow only some route
passages. Consider an example in Fig. 1(a) that depicts an intersection of two roads. Assume the
intersection has a light control consisting of a repeated sequence of four di�erent windows. In the
®rst window, only the routes indicated in Fig. 1(b) are allowed. In the second window, some other
routes indicated in Fig. 1(c) are eligible to pass. The third and fourth windows in essence resemble
the ®rst and second ones but slightly di�er in directions: the former is between north and south,
while the latter is between east and west.

From the above discussions, we assume that V � V1 [V2 and fs; dg 2 V1, where V1 denotes the
node set without window constraints and V2 represents the node set with window constraints. For
each node u 2 V2, it is associated with a window-list WL�u� � �wsu;wu;1;wu;2 . . . ;wu;r�, where wsu is
the starting time of the ®rst window and wu;i the ith time window of node u for i � 1; . . . ; r.
Notably, since these windows form a repeated sequence, by assuming wu;0 � wu;r, we have the
relationship that wu;�k�r��i � wu;i for any nonnegative integers k and i, where i6 r. For each
window wu;i of node u, we use du;i to describe how long this window lasts. Besides, we also as-
sociate a set of node-triplets NTu;i with each window wu;i. A node-triplet hx; u; yi in NTu;i implies
that the ith window of node u allows one to visit node y through node x. In other words, NTu;i

242 Y.-L. Chen, H.-H. Yang / Transportation Research Part B 34 (2000) 241±253

denotes the set of allowable routes in the ith time window of node u. As an illustration, consider
Fig. 2 which is the network representation of Fig. 1(a). To node I, we attach four time windows
wI;1; wI;2; wI ;3 and wI ;4. In so doing, window wI ;1 has a set of node-triplets

NTI;1 � fhN ; I;W i; hN ; I;Ei; hS; I;W i; hS; I ;Ei; hW ; I; Si; hE; I;Nig:
In a similar way,

NTI;2 � fhN ; I;W i; hN ; I; Si; hS; I;Ni; hS; I;Ei; hW ; I; Si; hE; I;Nig;
NTI;3 � fhW ; I; Si; hW ; I;Ni; hE; I; Si; hE; I ;Ni; hS; I ;Ei; hN ; I;W ig;

and

NTI;4 � fhW ; I; Si; hW ; I;Ei; hE; I;W i; hE; I ;Ni; hS; I ;Ei; hN ; I;W ig:
By this example, we assume that ``right turn on red'' is allowed. Note that the node-triplet set NTI;1

contains all the routes in Fig. 1(b), and NTI;2 all the routes in Fig. 1(c).
The tra�c-light network has a greater expressive power to model the modern city with light

controls since we can represent its tra�c-light constraints in a more appropriate way. The ra-
tionale is as follows. For an intersection with entering and leaving lanes, the light control contains

Fig. 1. (a) A sample intersection of roads. (b) The light control in the ®rst window. (c) The light control in the second

window.

Y.-L. Chen, H.-H. Yang / Transportation Research Part B 34 (2000) 241±253 243

a repeated sequence of windows, where each window allows only some routes and prohibits
others. Let each allowable route be decomposed into an entering arc, say �x; u�, and a leaving arc
�u; y�. Then, all allowable routes �x; u; y�, if denoted by hx; u; yi, are contained in the node-triplet
set of the corresponding time window. In so doing, the tra�c-light network model of the city is
constructed. The problem of how to ®nd the quickest path to go through a city with many tra�c-
light controls reduces to solve the SPP in the constructed tra�c-light network.

The content of this paper is organized as follows. In Section 2, we develop a solution method to
®nd the shortest path in this network. Section 3 includes conclusions, limitations and future re-
search directions.

2. The solution algorithm

Let N � �V1 [V2;A;WL; t; s; d� denote a tra�c-light network, where V1 denotes the node set
without window constraints, V2 represents the node set with window constraints, A is the arc set
without multiple arcs and self-loops, t�u; v� the length of time of arc �u; v� 2 A. For each node
u 2 V2, it is associated with a window-list WL�u� � �wsu;wu;1;wu;2; . . . ;wu;r�, where wsu is the
starting time of the ®rst window and wu;i the ith time window of node u for i � 1; . . . ; r. Besides,
each window wu;i is associated with a duration du;i and a set of node-triplets NTu;i, where a node-
triplet hx; u; yi is in NTu;i if visiting node y through node x is allowed in window wu;i. Since we
represent windows using a repeated sequence (recall the earlier relationship wu;�k�r��i � wu;i), it is
the very nature to contain multiple cycles and some way is required to treat arrivals in later cycles
of the signals. To resolve this matter, we choose to use the function ``mod'' and will be shown in
the example later. Also note that we assume the sequence of the windows describes the whole
phasing of the signal.

Since a node u in V1 can be regarded as a node in V2 by associating it with a window of in®nite
duration and containing all possible node-triplets, we therefore assume that all the nodes are in set
V2 for ease of presentation.

Before presenting the algorithm, we introduce the following labels and function.

Fig. 2. The network representation of Fig. 1(a).

244 Y.-L. Chen, H.-H. Yang / Transportation Research Part B 34 (2000) 241±253

· For each arc �v; u� in A, let arrived�v; u� denote the earliest time to arrive at node u through arc
�v; u�.

· For a node u 2 V2, let leaving�v; u;w� denote the earliest time to leave node u if the preceding
arc is �v; u� and the succeeding arc to travel is �u;w�.

· Let P ��u;w� denote the shortest path to node w through arc �u;w�.
· pred�u;w� � �v; u� means that the second-to-the-last arc in path P ��u;w� is the arc �v; u�.
· The function earliest�v; u;w; t� computes the earliest time to leave node u, provided that we visit

node u through arc �v; u� at time t and the next arc to travel is �u;w�.
Notice that if we visit node u from v at time arrived�v; u�, we may not be able to leave for node w
immediately. Chances are we need to wait until the coming window including the node-triplet
hv; u;wi. Therefore, we have the following relation

leaving�v; u;w� � earliest�v; u;w; arrived�v; u��:
After leaving node u, we will visit node w at the time leaving�v; u;w� � t�u;w�. Since we may visit
node u through a variety of arcs �v; u�, we have

arrived�u;w� � min
for all v

fleaving�v; u;w� � t�u;w�g:

Based on the above discussion, we give the following algorithm to ®nd the shortest path in the
underlying network.

Algorithm minimum-time
1. Set arrived�0; s� � 0.

Set all arrived�v; u� � 1 for all arcs �v; u� in A.
Insert all values of arrived�v; u� into the set HP.

2. Find and remove the minimum element arrived�v; u� from HP.
3. If u� d then go to step 5.
4. For each arc �u;w� emanating from node u, do

Begin
leaving�v; u;w� � earliest�v; u;w; arrived�v; u��.
temp�u;w� � leaving�v; u;w� � t�u;w�.
If temp�u;w� < arrived�u;w� then
arrived�u;w� � temp�u;w�; pred�u;w� � �v; u�, and
update the value arrived�u;w� in HP.

End.
Go to step 2.

5. From pred�v; u� we ®nd the shortest path.
Output arrived�v; u� as the minimum time.

Example 1. Consider the tra�c-light network shown in Fig. 3, where the number along each arc is
the arc's time. Beside each node, we also show its window restriction. For example, the ®rst
window of node C starts at time 3; window wC;1�2i has a duration of 2 time units and the duration
of window wC;2�2i is 4 time units where i is a nonnegative integer. The triplet hA;C; di is the
allowable route in window wC;1�2i, while hB;C; di and hD;C; di are allowable in window wC;2�2i.

Y.-L. Chen, H.-H. Yang / Transportation Research Part B 34 (2000) 241±253 245

The execution of the algorithm is shown in Fig. 4, where the number in square brackets along
an arc denotes the value of arrived�v; u�. Initially, we choose arrived�0; s� from HP. Since there are
two arcs leaving node s, i.e., arcs �s;A� and �s;B�, we need to compute the values of arrived(s,A)
and arrived(s,B). The result of the ®rst iteration is shown in Fig. 4(a). In the second iteration, the
minimum value in HP is arrived�s;A� � 4. Although we visit node A at time 4, we are not allowed

Fig. 4. (a) The ®rst iteration of Algorithm minimum-time. (b) The second iteration of Algorithm minimum-time.

(c) The third iteration of Algorithm minimum-time. (d) The fourth and last iterations of Algorithm minimum-time.

Fig. 3. The original network with tra�c-light controls.

246 Y.-L. Chen, H.-H. Yang / Transportation Research Part B 34 (2000) 241±253

to leave for nodes B or C until window wA;2. That explains why leaving�s;A;B� � 5,
leaving�s;A;C� � 5, arrived�A;B� � 8 and arrived�A;C� � 10. On the contrary, we can leave for
node D immediately, and hence leaving�s;A;D� � 4 and arrived�A;D� � 5. Fig. 4(b) shows the
second iteration. The third iteration as shown in Fig. 4(c) chooses arrived�s;B� � 5 from HP.
Since window wB;1 contains the node-triplets hs;B;Ci and hs;B;Di, we must wait until the coming
window is wB;1. Therefore, the earliest leaving time from node B is time 8, and arrived�B;C� � 10
as well as arrived�B;D� � 15. After two more iterations, the minimum element chosen from HP is
arrived�D; d�, which satis®es the terminating condition. From Fig. 4(d), we see that the path is
�s;A;D; d� and the minimum time to arrive at node d is 8 time units.

The following theorem shows the validity of the algorithm.

Theorem 1. Algorithm minimum-time is correct.

Proof. We prove by induction. At any iteration, the algorithm partitions all arcs into two sets,
namely, HP and HP , where HP � Aÿ HP . Our induction hypotheses are founded on the premises
that: (1) the time label arrived�v; u� of each arc �v; u� in HP is optimal, and (2) the time label
arrived�v; u� of each arc �v; u� in HP is the total time of the shortest path from s to u through �v; u�
provided that each intermediate arc in the path lies in HP . We perform induction according to the
cardinality of the set HP .

To prove hypothesis (1), recall that at each iteration the algorithm moves an arc �v; u� in the set
HP with the smallest value to the set HP . It leaves to show that arrived�v; u� of arc (v,u) is op-
timum. Notice that by our induction hypotheses, arrived�v; u� is the total time of a shortest path to
node u through arc �v; u� among all paths that does not contain any intermediate arc in HP. We
now show that the total time of any path from s to u through arc �v; u� that contains some arcs in
HP as an intermediate arc will be at least arrived�v; u�. To do that, consider any path P from the
source to node u through �v; u� that contains at least one arc in HP as an intermediate arc. The
path P can be decomposed into two segments P1 and P2, where P1 does not contain any arc in HP
as an intermediate arc but the last arc, say �h; k�, is in HP. By the induction hypotheses, this
suggests that the total time of P1 is at least arrived�h; k�. Moreover, since arc �v; u� is the smallest
time label in HP, arrived�h; k�P arrived�v; u�. Therefore, the path segment P1 has total time at
least arrived�v; u�. Furthermore, since all arc times are nonnegative, the total time of the path
segment P2 is nonnegative. Consequently, the total time of path P is no less than arrived�v; u�.
This result establishes the fact that arrived�v; u� is the shortest path total time of node u through
�v; u� from the source node.

We next show that the algorithm preserves the hypothesis (2). After the algorithm has labeled a
new arc �v; u� permanently, the time labels of some arcs in HP ÿ f�v; u�g may decrease since arc
�v; u� could become an intermediate arc in the temporary shortest paths to these arcs. But recall
that after permanently labeling arc �v; u�, the algorithm examines each arc �u;w� emanating from
node u and sets

arrived�u;w� � leaving�v; u;w� � t�u;w�
if

leaving�v; u;w� � t�u;w� < arrived�u;w�:

Y.-L. Chen, H.-H. Yang / Transportation Research Part B 34 (2000) 241±253 247

Therefore, after the time label update operation, the time label of each arc �u;w� in HP ÿ f�v; u�g
is the total time of a shortest path from node s to arc �u;w� subject to the restriction that each
intermediate arc in the path must belong to HP [�v; u�: �

Having established the correctness of the algorithm, we will address two issues that eventually
lay the foundation for determining the time complexity of the algorithm. These issues are: (1)
How to compute the function earliest�v; u;w; t� in step 4 of Algorithm minimum-time? (2) What is
the underlying data structure to implement the set HP and what is the time complexity of Al-
gorithm minimum-time?

2.1. The computation of the function earliest(v, u, w, t)

Suppose that node u has r windows wu;1;wu;2; . . . ;wu;r. Let n denote the total number of nodes in
V. Then each window has at most n2 node-triplets hv; u;wi, since v and w are in V ÿ fug.
Therefore, if we ®nd the earliest leaving time by sequentially searching all the node-triplets in the
windows of node u, we need time at least O(rn2) for each computation of earliest�v; u;w; t�. This
may to some extent a�ect the performance of our algorithm. To overcome this drawback, we
deploy a strategy to preprocess every node in the network before we run the algorithm. After
processing node u, we get an n ´ n matrix Mu, where Mu�v;w� records what windows contain the
node-triplet hv; u;wi. Since each entry of Mu�v;w� contains no more than r windows, it is expected
that each call of the function earliest�v; u;w; t� can be answered very quickly.

2.1.1. Preprocessing every node u in the network
To build the matrix Mu, we need to scan the associated windows of node u. Initially, we set all

entries of Mu�v;w� � ;, then scan from window wu;1 to window wu;r. While scanning window wu;i, if
we ®nd that a node-triplet, say hv; u;wi, appears in the window, we then insert wu;i into the entry
Mu�v;w�. After ®nishing the processing, a list of windows is attached with each entry Mu�v;w�.
Obviously, since there are at most n2 node-triplets hv; u;wi in each window, this processing for
each node can be done in time O(rn2), and the entire network O(rn3).

For ease of presentation, we initiate a function on±o� �wu;i) to denote if window wu;i is present in
the entry Mu�v;w�. In other words, if window wu;i appears in the entry Mu�v;w�, we set on±o�-
�wu;i)� on; otherwise, we set on±o� �wu;i)� o�. According to this scheme, each entry Mu�v;w�
consists of a list of r on±o� switches, where the ith switch indicates that whether window wu;i is
present in the entry Mu�v;w�.

With the design of on±o� switches, let us take a look at how they can facilitate the execution.
Suppose we visit node u at time t and t is in window wu;i. If on±o� �wu;i)� on in entry Mu�v;w�,
then earliest�v; u;w; t� � t because we can leave immediately. On the other hand, if on±o�-
�wu;i)� o�, we must wait until the next window wu;j satisfying on±o� �wu;j)� on. By using an
attribute called next-window �wu;i�, we give the relationship as below.

next-window�wu;i� � wu;i if on±off �wu;i� � on in Mu�v;w�;
next-window�wu;i� � wu;j if on±off �wu;i� � off in Mu�v;w� and wu;j is the next window

satisfying on±off �wu;j� � on

248 Y.-L. Chen, H.-H. Yang / Transportation Research Part B 34 (2000) 241±253

These attributes can be easily constructed in O(r) time by scanning the on±o� switch list of entry
Mu�v;w� one time. The procedure is given in below.
1. Find the ®rst window wu;i satisfying on±o� �wu;i�� on.

Set next � wu;i.
2. For i� r to 1.

If on±o� �wu;i�� on, then next-window�wu;i� � wu;i

next�wu;i

Else next-window �wu;i�� � next:
Since the above procedure is executed for all n2 entries in matrix Mu, the total time for computing
matrix Mu is O(rn2), and the whole network O(rn3).

In summary, the preprocessing stage contains two major parts, i.e., to get on±o� switch lists
and to compute the next-window attributes. Totally, they can be done in O(rn3) for the whole
network. The following is an example to illustrate the preprocessing works.

Example 2. Let us consider a sample network with four nodes A, B, C and D and what we concern
here is node D. Assume that there are ®ve windows associated with node D as follows.

wD;1 fhB;D;Ci; hC;D;Aig;
wD;2 fhC;D;Ai; hA;D;Ci; hB;D;Aig;
wD;3 fhA;D;Bi; hC;D;Ci; hC;D;Big;
wD;4 fhB;D;Ai; hB;D;Ci; hA;D;Cig;
wD;5 fhA;D;Bi; hB;D;Aig:

By scanning the windows of node D sequentially, we can build the initial matrix MD as shown in
Table 1. The matrix can be easily represented in a form of on±o� switch list. For example, the on±
o� switch lists of entries MD�B;C� and MD�A;B� are shown in Table 2. Finally, we need to
compute the next-window attributes, and the results concerning MD�B;C� and MD�A;B� are also
shown in Table 2.

Now we present the following procedure to ®nd the earliest leaving time.

2.1.2. Finding the earliest leaving time for a given t
Having obtained attributes next-window(wu;i) for entry Mu�v;w�, the function earliest�v; u;w; t�

can be determined as follows.
1. Determine the window containing the value t. Without loss of generality, assume that t is in

window wu;i.
2. If next-window �wu;i� � wu;i then earliest�v; u;w; t� � t Else earliest�v; u;w; t� �the beginning

time of next-window �wu;i�.

Table 1

The matrix MD

A B C

A ; wD;3; wD;5 wD;2; wD;4

B wD;2; wD;4; wD;5 ; wD;1; wD;4

C wD;1; wD;2 wD;3 wD;3

Y.-L. Chen, H.-H. Yang / Transportation Research Part B 34 (2000) 241±253 249

In step 1 of the above procedure, we are to ®nd the window wu;i containing t for the case of
multiple cycles. Given a t, this can be achieved by the following.
1. Set a � b�t ÿ wsu�=TDuc.
2. Set b � �t ÿ wsu� mod TDu.
3. Find a value i such that Du;iÿ16 b < Du;i.
4. Output window wu;i.
where Du;i �

Pi
k�1du;k and TDu �

Pr
k�1du;k. Since Du;i and TDu can be computed beforehand, these

values can be used directly. Thus, the above procedure can be done in time O�log r�, since the
bottleneck lies in searching the value of i satisfying Du;iÿ16 b < Du;i that can be done in time
O�log r� by binary search. Therefore, we have the following lemma.

Lemma 1. After the preprocessing of the network requiring time O(rn3), each call of the function
earliest�v; u;w; t� can be answered in time O�log r�.

Example 3. Suppose node u has seven windows with du;1 � 2, du;2 � 3; du;3 � 5; du;4 � 2; du;5 �
1; du;6 � 3; du;7 � 5 and the window starting time wsu� 4. From these durations, we have Du;0 �
0; Du;1 � 2; Du;2 � 5; Du;3 � 10; Du;4 � 12; Du;5 � 13; Du;6 � 16; Du;7 � 21 and TDu � 21: Sup-
pose, among these seven windows, windows wu;2; wu;5 and wu;6 contain the node-triplet hv; u;wi. By
scanning these windows from wu;1 to wu;7, we construct the on±o� switch list of entry Mu�v;w� as
shown in the ®rst column of Table 3. From this on±o� switch list, we further construct the next-
window attributes as shown in the second column. Now, given a t� 87, we get a � b�87ÿ
4�=21c � 3; b � �87ÿ 4� mod 21� 20. By searching among the values Du;1;Du;2; . . . ;Du;7, we ®nd
that the window containing b� 20 is window wu;7. Since next-window �wu;7� � wu;2, we have the
earliest leaving time, i.e., the beginning time of the next window wu;2, as

wsu � �TDu � �a� 1�� � Du;2ÿ1 � 4� �21� 4� � 2 � 90:

If given a di�erent t� 94, then we have a � b�94ÿ 4�=21c � 4; b � �94ÿ 4�mod 21 � 6. By
searching among the values Du;1;Du;2; . . . ;Du;7, we ®nd that the window containing b� 6 is window

Table 2

On±o� switch Next-window

MD�B;C�
wD;1 On wD;1

wD;2 O� wD;4

wD;3 O� wD;4

wD;4 On wD;4

wD;5 O� wD;1

MD�A;B�
wD;1 O� wD;3

wD;2 O� wD;3

wD;3 On wD;3

wD;4 O� wD;5

wD;5 On wD;5

250 Y.-L. Chen, H.-H. Yang / Transportation Research Part B 34 (2000) 241±253

wu;3. Since next-window wu;3� � wu;5, we have the earliest leaving time, i.e., the beginning time of
the next window wu;5, as

wsu � �TDu � a� � Du;5ÿ1 � 4� �21� 4� � 12 � 100:

2.2. Data structure for HP and the time complexity

In e�orts to obtain the time complexity of the algorithm Minimum-time, recall that the set HP
involves operations of insertion (step 1), ®nd-minimum and delete-minimum (step 2), decrease-
value (step 4) and calling the function earliest (step 4). In light of these facts, consider using
Fibonacci heap to implement the set HP (Fredman and Tarjan, 1987). The advantage of using
Fibonacci heap is that insertion, decrease-value and ®nd-minimum operations can all be done in
O�1� amortized time, and delete-minimum operation in amortized time O�log h�, where h is the
heap size. Then we have the following lemma.

Lemma 2. If we use the Fibonacci heap data structure to store arrived�v; u� for every �v; u� in A, then
the time complexity of Algorithm minimum-time is O�mn log r � rn3� � O�r � n3�, where n is the
number of nodes, m the number of arcs and r the number of di�erent windows in a node.

Proof. Since HP contains at most m arcs, it is obvious that the total time for step 1 (insertion) is
O(m), step 2 (®nd-minimum and delete-minimum) is O(m log m). Two operations, namely,
decrease-value and calling the function earliest, jointly determine the complexity of step 4. As far
as decrease-value is concerned, we need to examine n nodes each with at most m arcs to update the
value arrived�u;w�. Therefore, the total number for this part is simply O(mn). Next, in each
examination of arc �u;w�, we need to compute its leaving time by calling the function
earliest�v; u;w; arrived�v; u��. Since there are O(mn) examinations and each call can be done in
O(log r) time as shown in Lemma 1, the total time for calling functions is O(mn log r). That is,
total time for step 4 is O(mn log r). Adding up the preprocessing time, which is O(r ´ n3) in
Lemma 1, the time complexity is O(mn log r + r n3)�O(r ´ n3). h

Finally, because of Lemma 2, the following su�ces to show our algorithm has an optimum time
complexity.

Table 3

The structure of entry Mu�v;w�
On±o� switch Next-window

wu;1 O� wu;2

wu;2 On wu;2

wu;3 O� wu;5

wu;4 O� wu;5

wu;5 On wu;5

wu;6 On wu;6

wu;7 O� wu;2

Y.-L. Chen, H.-H. Yang / Transportation Research Part B 34 (2000) 241±253 251

Lemma 3. The time complexity of Algorithm minimum-time is optimal.

Proof. The network has n nodes, where each node has at most r windows. Besides, there are at
most n2 node-triplets in each window. Taking account of these facts, the number of input
parameters of the problem may have a size up to r ´ n3. If we are to solve a problem, each input
parameter of the problem must be examined at least once. That means the lower bound of the
complexity to solve the problem is O(r ´ n3). By Lemma 2, we therefore know that O(r ´ n3) is the
optimum time complexity. h

3. Conclusions

This paper has two major contributions. First, our tra�c-light model shows to be a powerful
tool in solving various kinds of path problems encountered in a modern city with light controls in
many intersections. The great strength of the model attributes to the tra�c-light constraint that
demonstrates the ability to simulate the operations of a practical light control. By incorporating
such a constraint into a node, when and what routes one is allowed to pass through the inter-
section can be easily speci®ed. The second contribution is that a polynomial algorithm is devel-
oped for ®nding the minimal total time path. Besides a polynomial time complexity, we further
show that the complexity is optimal.

Several limitations should be noted in this paper. First, no inter-green times are used in the
model. In reality between the end of phase i and the start of green in phase i + 1 there is an inter-
green time due to safety reasons. Second, the proposed algorithm does not take into account
limited capacity during green nor queuing e�ects at the stop-line. In the model it is assumed that
all the waiting vehicles can immediately start regardless of the number of queued vehicles. In the
real world problems, the number of vehicles being able to pass the signal during green depends on
the number of lanes. This limitation underestimates delays that may be signi®cant with tra�c
demand approaching capacity and in over-saturated conditions.

Finally, we brie¯y mention possible extensions of the paper. Since the total time of a path
consists of the travelling time and the waiting time, a natural extension is to consider the problem
under a combination of the goals such as the total time, the travelling time and the waiting time.
Moreover, we can consider the vehicle routing problem in a tra�c-light network rather than the
traditional network. For example, we can assume that some nodes are required to be visited; some
node is the depot and a vehicle route should not spend time more than a given threshold. The
problem becomes how to send the minimum number of vehicles with a given capacity to complete
the service in a tra�c-light network. In a similar manner, a number of vehicle scheduling problems
can be introduced in a tra�c-light network.

Acknowledgements

The authors are grateful to the anonymous referees for their helpful comments.

252 Y.-L. Chen, H.-H. Yang / Transportation Research Part B 34 (2000) 241±253

References

Balakrishnan, N., 1993. Simple heuristics for the vehicle routing problem with soft time windows. Journal of

Operational Research Society 44, 279±287.

Bodin, L.D., Golden, B.L., Assad, A.A., Ball, M.O., 1982. Routing and scheduling of vehicles and crews: the state of

the art. Computers & Operations Research 10, 63±211.

Bramel, J., Simchilevi, D., 1996. Probabilistic analyses and practical algorithms for the vehicle routing problem with

time windows. Operations Research 44, 501±509.

Deo, N., Pang, C., 1984. Shortest path algorithms: taxonomy and annotation. Networks 14, 275±323.

Fredman, M.L., Tarjan, R.E., 1987. Fibonacci heaps and their uses in improved network optimization algorithms.

Journal of ACM 34, 596±615.

Golden, B.L., Magnanti, T.L., 1977. Deterministic network optimization: a bibliography. Networks 7, 149±183.

Kolen, A.W.J., Rinnooy Kan, A.H.G., Trienekens, H.W.J.M., 1987. Vehicle routing with time windows. Operations

Research 35, 266±273.

Russell, R.A., 1995. Hybrid heuristics for the vehicle-routing problem with time windows. Transportation Sciences 29,

156±166.

Y.-L. Chen, H.-H. Yang / Transportation Research Part B 34 (2000) 241±253 253

