
Theory and Methodology

Finding the critical path in an activity network with time-switch
constraints

Hsu-Hao Yang a,*, Yen-Liang Chen b

a Department of Industrial Engineering and Management, National Chin-Yi Institute of Technology, Taiping, Taichung, Taiwan, ROC
b Department of Information Management, National Central University, Chungli, Taiwan, ROC

Received 1 September 1997; accepted 1 September 1998

Abstract

An activity network is an acyclic graph with non-negative weights and with a unique source and destination. A

project consisting of a set of activities and precedence relationships can be represented by an activity network and the

mathematical analysis of the network provides useful information for managing the project. In a traditional activity

network, it is assumed that an activity always begins after all of its preceding activities have been completed. This

assumption may not be adequate enough to describe some practical applications where some forms of time constraints

are attached to an activity. In this paper, we investigate one type of time constraint called time-switch constraint which

assumes that an activity begins only in a speci®ed time interval of a cycle with some pairs of exclusive components.

Polynomial time algorithms are developed to ®nd the critical path (or longest path) and analyze the ¯oat of each arc in

this time-constrained activity network. The analysis shows that the critical path and ¯oat in this context di�er from

those of a traditional activity network in some management perspectives and thus, consideration of the time-switch

constraint leads to enhanced project management through more e�ective use of budgets and resource alloca-

tion. Ó 2000 Elsevier Science B.V. All rights reserved.

Keywords: Activity network; Critical path; Longest path; Time-constrained network

1. Introduction

An acyclic graph with non-negative weights and
with a unique source and destination is called an
activity network. In this network, an arc can rep-
resent an activity, while the precedence relation-

ships between all of the activities are represented
by the topology of the network. An arc leaving
from a node cannot begin until all of the arcs
going into this node have been completed. Given
that a common objective is to ®nd the longest path
(or critical path), a delay of one activity on the
path can delay the entire project's completion
time. Using this information, the project manager
can monitor critical activities more closely to en-
sure that the project meets the planned schedule.
Another subject of concern is to analyze the ¯oat

European Journal of Operational Research 120 (2000) 603±613
www.elsevier.com/locate/orms

* Corresponding author. Tel.: +886 4 3924505; fax: 886 4

3934620; e-mail: yanghh@chinyi.ncit.edu.tw

0377-2217/00/$ - see front matter Ó 2000 Elsevier Science B.V. All rights reserved.

PII: S 0 3 7 7 - 2 2 1 7 (9 8) 0 0 3 9 0 - 7

(or slack) of each arc. Arcs on the longest path
have zero ¯oat, while non-critical arcs have non-
zero ¯oats. The ¯oat of a non-critical arc indicates
the degree of ¯exibility in completing the activity
without a�ecting the project's completion. A non-
critical arc with more ¯oat means that the execu-
tion of the arc is more adjustable. Therefore, the
project manager can transfer resources from the
non-critical activities to those more critical ones
whenever necessary. Since ¯oat gives a measure of
the ¯exibility in scheduling the activities without
delaying the project's completion, it has an impact
on two issues of concern: resource allocation and
activity scheduling. Information pertaining to ¯oat
is important to the project manager who is re-
sponsible for managing budgets and allocating
resources to keep the progress of a project on
schedule. For details and surveys, see [1].

Analysis of an activity network is generally
concerned with scheduling issues, i.e., various time
factor aspects. For instance, some of the research
is concerned with estimating activity time more
accurately [2±4], while another area of research
deals with the stochastic nature of activity time
[5±8]. There has been some controversy, however,
about which path is the most critical one in a
stochastic activity network [8,9]. Su�ce to say, it is
no easy task to correctly estimate the completion
time of a project whenever stochastic activity times
are considered [5,10±13]. Study of the time factor
of an activity network extends to consider alter-
native outcomes in key nodes [14].

Though many aspects of the time factor have
been studied, an important factor has not received
much attention. In a traditional activity network,
an arc is assumed to begin at any time, depending
only on all of its preceding arcs being completed.
In practice, however, some kinds of time con-
straint are usually associated with an activity and,
hence, an activity is rarely ready for execution at
any time. Failure to take time constraints into
account may result in misleading information for
the project management. Consider if we identify a
critical path correctly, but ignore all the time
constraints. Several problems may arise. First, the
actual time of this path is likely to be much longer,
because some critical arcs are dependent upon time
constraints and can not be executed at any time.

By the same reasoning, this path may not be
the critical path because some other paths could
have longer times when time constraints are in-
cluded. Much worse, the solution may be infeasi-
ble because of time constraints. Finally, even if
the solution remains una�ected when the time
constraints are included, the ¯oat associated with
each arc may be seriously misleading [15]. All the
discussion suggests that we may manage a project
in an inappropriate way if time constraints are
ignored.

To more adequately deal with the problem, a
recent paper by [15] considers two improvements
over the traditional activity network by including
two types of time constraints. The ®rst type is the
time-window constraint [16], which assumes that
an activity to be executed only in a speci®ed time
interval. The second one is the time-schedule
constraint [15], which requires that an activity can
only be executed at one of an ordered schedule of
the beginning times. An important ®nding by [15]
is the interpretation of ¯oat when time constraints
are present in an activity network. For instance,
the arcs on the critical path may have positive
¯oat. By analyzing the nature of waiting time as-
sociated with an arc, the model provides more
managerial insights than those in a traditional
activity network for managing a project.

Based on the analysis and achievement of [15],
in this paper we assume that time can be treated as
repeating cycles where each cycle consists of two
categories: (1) some pairs of rest and work win-
dows; and (2) a leading number specifying maxi-
mal number of times each pair should iterate. In
this context, activities can be executed in a work
window, while activities can not be executed in a
rest window. We name this kind of time constraint
in an activity network as time-switch constraint.
Situations with this kind of time constraint in
practice are commonly encountered. For example,
the typical schedule of a regular working day
(Monday to Friday) is: 9±12 a.m. and 1±5 p.m.,
where a break takes place between 12 and 1 p.m.
In a traditional activity network, the longest path
denotes the most critical part of the project and
should not be delayed. This property may not hold
in a time-switch activity network as revealed by
[15], which implies that we may have the option of

604 H.-H. Yang, Y.-L. Chen / European Journal of Operational Research 120 (2000) 603±613

executing the activities in some perspective other
than simply monitoring critical activities. One such
possible option is to execute the activities accord-
ing to their priority. For example, handling cus-
tomer complaints may not be a critical activity in
completing a service but has a great impact on
impressing the customers. Moreover, under the
circumstances that the project's cost is directly
measured by the total hours spent, we may reduce
the cost if we start the activity somehow later. This
can be easily observed from the example that
starting at the break incurs unnecessary cost.

The remainder of this paper is as follows. In
Section 2, the problem is formally de®ned and
solution methods of two-phase (forward pass and
backward pass) for a time-switch activity network
are presented. Section 3 discusses the ¯oat in
more details and explores some management
perspectives when time constraints are consid-
ered. Conclusions and future extensions are in
Section 4.

2. The problem and the solution method

Let N � �V ;A; t; s; d� be an activity-on-arc
(AOA) network, where G� (V, A) is a directed
acyclic graph without multiple arcs, t(u, v) P 0
denotes the processing time of arc (u, v), s is the
source node and d the destination node. A project
represented by the current activity network is ®n-
ished when each arc is completed. Arcs in this
activity network can be classi®ed into two cate-
gories: normal arcs and time-switch arcs. Let k and
c be positive integers. A normal arc begins at
any time after all of its preceding activities are
completed. A time-switch arc is subject to the same
constraint as a normal arc but with an addi-
tional constraint TS�u; v� � �c; �r1;w1�; . . . ; �rk;wk��,
where ri (or wi), 16 i6 k, is the ith rest (or work)
window in a cycle, c is the leading number, and k is
the number of pairs. In this paper, we assume that
each cycle always starts with a rest window; ri (or
wi) may or may not equal rj (or wj) for i ¹ j; and
no preemption or interruption is allowed for a
work window. The assumption that each cycle
always starts with a rest window is founded on the
premises that: (1) time is modeled as repeating

cycles consisting of pairs of windows, each cycle
starting with either a work window or a rest win-
dow; (2) the algorithms presented below can be
easily modi®ed for situations where the cycle starts
with a work window (to be illustrated later).
Therefore, this assumption does not restrict the
applicability of the algorithms we propose. Be-
cause a normal arc is only a special type of a time-
switch arc, all arcs are assumed to be with time-
switch constraints in this paper. Take the regular
working day mentioned in Section 1 as an exam-
ple, then executing an activity can be represented
as [1, (16, 3), (1, 4)] if the rest window before
9 a.m. starts from 5 p.m. of the previous day.

Fig. 1 shows an activity network with 7 nodes
and 10 arcs, where all arcs are time-switch arcs.
Activity times are shown on the arc, and the
number inside each node is its topological order.
Topological order is an order of nodes in an
acyclic graph and can be easily constructed in time
O�jAj � jV j� by using the algorithm in [17], where
|A| and jV j are the numbers of arcs and nodes in
the network. If the topological order of node u is
smaller than that of node v, all arcs emanating
from node v cannot be predecessors to arcs ema-
nating from node u. This ensures that all prece-
dence relationships are satis®ed when all the
activities are executed according to their topolog-
ical orders. To help understand examples follow,
Fig. 2 shows rest windows (plain areas) and work
windows (shaded areas) of each arc ranging from 0
to 36 based on the data given in Fig. 1.

Let EA(u) denote the earliest time that all
predecessors to node u are completed in a time-
switch activity network. If EA(u) falls inside a
work window, arc �u; v� begins just at the time
EA(u) without a delay. On the other hand, if
EA(u) happens to be in a rest window, arc �u; v�
cannot begin until the next work window. Owing
to this, we need to develop a procedure to de-
termine the earliest beginning time of arc �u; v�.
Let EB�u; v� be the earliest beginning time of
arc �u; v�, then the earliest ®nishing time of arc
�u; v�, denoted by EF�u; v�, may not equal to
EB�u; v� � t�u; v�, because the activity may need
more than one work window to complete. Con-
sequently, we also need to develop a procedure to
determine the earliest ®nishing time of arc �u; v�.

H.-H. Yang, Y.-L. Chen / European Journal of Operational Research 120 (2000) 603±613 605

We prove a theorem (Appendix A, Theorem A.1)
which validates the following algorithm for de-
termining EB�u; v� and EF�u; v�. In addition, the
time complexity of the algorithm is shown to be
O(k) in Appendix B, Lemma B.1. To present the
algorithm, we introduce variables used in the
algorithm ®rst.

Algorithm Earliest-Time.

1. (Initialization)
Let S0� 0 and WS0� 0.
Compute Si � ri � wi � Siÿ1 and WSi � wi �
WSiÿ1 for i� 1 to k.
De®ne S�n�k��i � �Sk � n� � Si; r�n�k��i � ri,
and w�n�k��i � wi for all positive integers n
and for i� 1 to k.

2. (Find the earliest beginning time of arc (u,v))
2.1. Compute n� ëEA(u)/Skû and rem�EA(u)
mod Sk.
2.2. Find a j such that Sjÿ16 rem < Sj where
16 j6 k.
As a result, S�n�k��jÿ16EA�u� < S�n�k��j.
2.3. If EA�u� < S�n�k��jÿ1 � r�n�k��j, then
EB�u; v� � S�n�k��jÿ1 � r�n�k��j

else EB�u; v��EA(u).

Sk the total duration of a cycle with k pairs of
rest and work windows, i.e.,

Sb �
Xb

i�1

�ri � wi�; 1 6 b 6 c� k

WSk the work duration of a cycle with k pairs
of rest and work windows, i.e.,

WSb �
Xb

i�1

wi; 1 6 b 6 c� k

n the number of complete k-pairs that
EA(u) goes through

rem the remaining time after EA(u) goes
through n of k-pairs

j rem falls inside either rj or wj

nw the number of complete k-pairs required
to ®nish arc �u; v�

rw in Step 3.1 below, it means that after nw of
work, how much more time is required to
®nish arc (u, v); in Steps 3.2 and 3.3, it
denotes the remaining time required to
®nish arc �u; v�

rb�1 the rest window follows wb which is
executing arc �u; v�

wb�1 the work window follows rb�1

Fig. 1. An example of a time-switch network.

606 H.-H. Yang, Y.-L. Chen / European Journal of Operational Research 120 (2000) 603±613

3. (Find the earliest ®nishing time of arc �u; v�)
3.1. Compute nw� ët(u, v)/WSkû and rw �
t�u; v� mod WSk.
3.2. If rw� 0 and EB�u; v� � S�n�k��jÿ1�
r�n�k��j;

then EF�u; v� � EB�u; v� ÿ r�n�k��j, go to
Step 3.4
If rw < S�n�k��jÿEB�u; v�, then EF�u; v��
EB�u; v� � rw, go to Step 3.4

rw � rwÿ �S�n�k��j ÿ EB�u; v��.
3.3. For b � n� k � j to �n� 1� � k � jÿ 1

if wb�1 P rw, then
if rw� 0, then EF�u; v� � Sb, go to Step 3.4

else EF�u; v� � Sb � rb�1 � rw, go to
Step 3.4

else rw � rwÿ wb� 1
Endfor.
3.4. EF�u; v� � EF�u; v� � nw� Sk:

Fig. 2. The rest and work windows of all arcs in Fig. 1.

H.-H. Yang, Y.-L. Chen / European Journal of Operational Research 120 (2000) 603±613 607

4. If EF�u; v� > c� Sk then the solution is infeasi-
ble.
If the cycle starts with a work window, simply

rede®ne Si to be wi � ri� Siÿ1, and modify
computations relevant to the window sequence.
For example, Step 2.3 becomes: If EA�u� <
S�n�k��jÿ1 � w�n�k��j, then EB�u; v��EA(u), else
EB�u; v� � S�n�k��j. Refer to Theorem A. 1 where
modi®cations are needed.

Example 1. Consider the arc (6, 7) in Fig. 1, where
t(6, 7)� 8 and TS(6, 7)� [1, (2, 4), (1, 4)], i.e.,
c�1, k� 2, r1� 2, w1� 4, r2� 1, w2� 4. Suppose
that EA(6)� 23. By Step 1, S0� 0, S1� 6, S2� 11,
WS0� 0, WS1� 4 and WS2� 8. Step 2.1 computes
n� ë23/11û� 2, and rem� 23 mod 11� 1. In Step
2.2, since 0�S0 6 1� rem < S1� 6, we have
22�S4 6 23�EA(6) < S5� 28. Consequently,
EA(6) falls inside either r5 or w5. Step 2.3 tests
whether EA(6) is in r5 by comparing EA(6) with
S4 � r5 �� 22� 2 � 24�. Since it is true (EA(6)
< 24), EB(6, 7) is set to S4 � r5� 24.

To compute EF(6, 7), by Step 3.1, nw� ë8/
8û� 1, and rw� 8 mod 8� 0. Step 3.2 ®rst checks
whether rw can be ®nished in w5. Since rw� 0,
which means requiring none of w5, EF(6,7)�
EB(6,7)ÿ r5 � 24ÿ 2 � 22. Finally, by nw� 1 and
S2� 11, Step 3.4 computes EF(6,7)� 22�
1� 11 � 33.

To analyze the ¯oat of the longest path in a
time-switch network, we develop an algorithm
similar to the two-phase procedure used in the
traditional activity networks. The ®rst phase (or
forward pass) is to ®nd the earliest beginning time
of each node v, EA(v), and the longest path from s
to d. On the other hand, the second phase (or
backward pass) is to ®nd the latest beginning time
of every node v, denoted by LL(v), and analyze
each arc's ¯oat. In the ®rst phase, we examine
every node v according to its topological order in
ascending sequence, and use P(v) to denote the
preceding node to node v. Theorem A. 2 in Ap-
pendix A validates the following algorithm for
®nding EA(v). We also show the time complexity
of the algorithm to be O�jV j � jEjk� in Appendix
B, Lemma A. 2.

Algorithm for the ®rst phase.

1. Set EA(vi)� 0 for all nodes.
2. Examine every node vi in ascending sequence of

topological order.
2.1. For every arc �u; vi� going into node vi, do

if EA�vi� < EF�u; vi�, then
EA�vi� � EF�u; vi�
P�vi� � u:

2.2. For every arc �vi; u� leaving from node vi,
call Algorithm Earliest-Time to calculate
EB�vi; u� and EF�vi; u�.

3. Find the longest path by following the prede-
cessor path from d to s.

Example 2. Using the Algorithm for the ®rst phase
to solve the activity network in Fig. 1, the applying
sequence of nodes is 1, 2, 3, 4, 5, 6, 7 and the ®nal
result is shown in Fig. 3, where the longest path is
indicated by bold lines. If we examine node 6, we
have EF�2; 6� � 13, EF�3; 6� � 12, EF�5; 6� � 23,
and EA(6)� 0. By Step 2.1, EA�6� � 23, because
23 � maxf13; 12; 23g. Since there is only one arc
�6; 7� leaving from node 6, we only have to
determine EB�6; 7� and EF�6; 7� by calling Algo-
rithm Earliest-Time. Thus, we have EB�6; 7� � 24
and EF�6; 7� � 33. Remaining nodes are handled
in the same way and omitted.

After presenting the algorithm for the ®rst
phase, we continue to discuss the second phase.
Let ®nish be the duration of the longest path (in
fact, ®nish�EA(d)). In the second phase, we ex-
amine every node v according to its topological
order in descending sequence. Recall that LL(v) is
the latest beginning time to leave node v while
completing all remaining activities by the time
®nish. Suppose nodes vjV j; vjV jÿ1; . . . ; vi�1 have been
examined and now we examine node vi, where the
subscript denotes the topological order of a node.
The value of LL(vi) can be de®ned as

Min
u
fLB�vi; u�j�vi; u� 2 Ag;

where LB�vi; u� denotes the latest time arc �vi; u�
must begin to complete all remaining activities by
the time ®nish.

Suppose LL(v) is given, we are to ®nd the latest
time to ®nish arc �u; v� by going backward. If
LL(v) falls inside a work window, the latest time to

608 H.-H. Yang, Y.-L. Chen / European Journal of Operational Research 120 (2000) 603±613

®nish arc �u; v� is LL(v), because later than this
time contradicts to the de®nition of LL(v). On the
other hand, if LL(v) falls inside a rest window, the
latest time to ®nish arc �u; v� may be at the end of
the previous work window. Hence, a procedure is
required to determine the latest ®nish time of arc
�u; v�. Let LF�u; v� denote the latest ®nishing time
of arc �u; v�, then the latest beginning time of ac-
tivity �u; v� may not equal to LF�u; v� ÿ t�u; v� as
explained in the earlier. Therefore, we also need a
procedure to determine the latest beginning time of
arc �u; v�. The following algorithm determines
LF�u; v� and LB�u; v�. The proof and time com-
plexity of the algorithm are referred to those of
Algorithm Earliest-Time.

Algorithm Latest-Time.

1. Same as Algorithm Earliest-Time.

2. (Find the latest ®nishing time of arc (u, v))
2.1. to 2.2. Same as Algorithm Earliest-Time.

2.3. If LL�v� < S�n�k��jÿ1 � r�n�k��j, then
LF�u; v� � S�n�k��jÿ1 else LF�u; v��LL(v).

3. (Find the latest beginning time of arc �u; v��
3.1. Same as Algorithm Earliest-Time.

3.2. If rw� 0 and LF�u; v� � S�n�k��jÿ1;
then LB�u; v� � LF�u; v� � r�n�k��j; go to
Step 3.4

If rw < LF�u; v� ÿ �S�n�k��jÿ1�

r�n�k��j�, then LB�u; v� � LF�u; v� ÿ rw go
to Step 3.4
rw� rw ÿ [LF�u; v�ÿ�S�n�k��jÿ1�r�n�k��j�].

3.3. For b � �n� k� � j to �nÿ 1� � k�
jÿ 1

if wbÿ1 6 rw, then
if rw� 0, then LB(u, v)�Sb, go

to Step 3.4
else LB(u, v)�Sb ÿ 1 ÿ rw, go

to Step 3.4
else rw� rw ÿ wbÿ1

Endfor.
3.4. LB(u, v)�LB(u, v) ÿ nw ´ Sk.

Now, we discuss the algorithm for the second
phase to compute the latest leaving time for every
node, and the latest beginning and ®nishing times
of every arc. The proof and time complexity of the
algorithm are also referred to those of the Algo-
rithm for the ®rst phase.

Algorithm for the Second Phase.

1. Set LL(vi)�1 for all nodes. Set
LL(d)�EA(d), where d is the destination node.

2. Examine every node vi in descending sequence
of topological orders.
2.1. For every arc (vi, u) leaving from node vi,

do

Fig. 3. The results of the forward pass of the algorithm.

H.-H. Yang, Y.-L. Chen / European Journal of Operational Research 120 (2000) 603±613 609

if LL(vi) > LB�vi; u�, then LL(vi)�
LB�vi; u�.

2.2. For every arc �u; vi� going into node vi, call
Algorithm Latest-Time to calculate
LB�u; vi� and LF�u; vi�.

Example 3. Based on the results of Fig. 3, we use
Algorithm Latest-Time and the Algorithm for the
second phase to solve the activity network in
Fig. 1. Fig. 4 shows the ®nal results, where the
longest path is indicated by bold lines.

3. Discussions of ¯oats

Since information about ¯oat is critical for a
project manager who monitors the project to stay
on schedule by adjusting budgets and allocating
resources, in this section we provide a more de-
tailed analysis of the ¯oat. Recall that the total
¯oat of an arc (u, v) in a traditional activity net-
work is de®ned as

LL�v� ÿ EA�u� ÿ t�u; v�:
To have an insight into the ¯oat and study how

it may a�ect the scheduling of the project when
time-switch constraints are included, we decom-
pose the total ¯oat of an arc (u, v) into four parts:

pre-waiting ¯oat, post-waiting ¯oat, in-waiting
¯oat and net ¯oat. Their de®nitions and calcula-
tions are given as follows:
· pre-waiting ¯oat: the time we are forced to wait

before begin the activity (�EB(u, v) ÿ EA(u)),
· post-waiting ¯oat: the time we are forced to wait

after ®nish the activity (�LL(v) ÿ LF(u, v)),
· in-waiting ¯oat: the time we are forced to wait

during the execution of the activity
(�LF�u; v� ÿ LB�u; v� ÿ t�u; v��,

· net ¯oat: the beginning time of the activity can
vary (�LB�u; v� ÿ EB�u; v�).

It is easy to see that the following equation holds:

total float � pre-waiting float� in-waiting float

� net float� post-waiting float:

Consider the arc (4, 7) in Figs. 3 and 4, we have:

EA�4� � 17; EB�4; 7� � 19; LB�4; 7� � 22;

EF�4; 7� � 29; LF�4; 7� � 32; LL�7� � 33:

Though node 4 is ready for execution at time 17, it
can not be executed until the next work window,
time 19. Therefore, the pre-waiting ¯oat� 19 ÿ
17� 2. In an analogous way, the postwaiting
¯oat� 33 ÿ 32� 1. Suppose the activity begins at

Fig. 4. The results of the backward pass of the algorithm.

610 H.-H. Yang, Y.-L. Chen / European Journal of Operational Research 120 (2000) 603±613

time 22, it will ®nish at time 32 and thus the du-
ration is 10. However, the actual working time is
only t�u; v� � 7 and leaves the in-waiting ¯oat to
be 3. Finally, the net ¯oat is 22 ÿ 19� 3, which
indicates that we have the ¯exibility of 3 to begin
the activity.

After introducing four kinds of ¯oats in the
time-switch activity network, we present some in-
teresting ®ndings and discuss their implications
di�erent from those in a traditional activity net-
work.

(1) The beginning time of an arc may no longer
be a single range of continuous values but contain
multiple ranges of values. Consider the arc (3, 6).
We have

EB�3; 6� � 4; LB�3; 6� � 16:

According to the de®nition, the net ¯oat equals
12. In a traditional sense, the activity can begin in
range [4, 16] without delaying the entire project.
In this example, however, the allowable beginning
times are in ranges [4, 6), [9, 12), and [15, 16). On
the one hand, the result simply re¯ects the nature
of the problem. On the other hand, it supple-
ments information for e�ectively allocating the
resources by properly meeting the separate
schedule.

(2) The net ¯oat of an arc may not remain a
constant. Consider an alternate form of de®nitions
of the net ¯oat and in-waiting ¯oat:
· in-waiting ¯oat: the time we are forced to wait

during the execution of the activity
(�EF�u; v� ÿ EB�u; v� ÿ t�u; v�),

· net ¯oat: the ®nishing time of the activity can
vary (�LF�u; v� ÿ EF�u; v�),

where the total ¯oat remains equal to the sum of
four types of ¯oat. Interestingly, the net ¯oats in
these two viewpoints could be di�erent. Consider
the arc (3, 5):

EB�3; 5� � 4; LB�3; 5� � 10;

EF�3; 5� � 17; LF�3; 5� � 21:

According to the original de®nition the net ¯oat is
10 ÿ 4� 6, in contrast, the alternate form shows
that the net ¯oat equals 21 ÿ 17� 4. What leads
to these two values unequal is because di�erent

beginning times require di�erent work and rest
windows. In this example, beginning at time 4 will
®nish the activity at time 17, while 4 out of 13 are
in the rest window. In contrast, beginning at time
10 will ®nish the activity at time 21, leaving only 2
in the rest window. The result suggests that be-
ginning earlier may require actual working times
longer, an interesting outcome compared with a
traditional model where the length of actual
working time is generally insensitive to the begin-
ning time. From a management perspective where
the project's cost is related to the actual working
time, the cost can be controlled more precisely
using this information.

(3) The total ¯oat of a critical arc may no longer
be zero. It is obvious from (2) the arc (3, 5) is on
the longest path but with a positive ¯oat. What
does it imply that a critical arc may have a positive
¯oat? From the perspective of scheduling, this
®nding suggests that a critical arc is likely to be
delayable, i.e., to execute a critical activity but
with relaxed time constraints. From the perspec-
tive of resource allocation, it indicates that an arc
on the longest path is less critical than that in a
traditional one. Whether or not to pay the most
attention to the critical arcs should actually de-
pend on the progress or needs of the project. That
is, we may execute the activities based on a priority
list in order of their ¯oats.

(4) The whole system may have a system's ¯oat,
because the latest beginning time of the entire pro-
ject might be greater than zero. For example, Fig. 4
has the following:

EA�1� � 0; EA�7� � 33;

LB�1; 3� � 8; LL�7� � 33:

Given the data, if the project begins at the earliest
time 0, then it takes 33 time units to ®nish the
project. However, if the project does not begin
until time 8, it still can ®nish at time 33, only re-
quiring 25 time units. The ®nding is in principal
consistent with that of (2) above, since a project is
composed of a set of activities with time-switch
constraints. The implication is that we may have
an option of evaluating the entire project's cost
from an overall perspective without knowing each
activity's detailed ¯oat.

H.-H. Yang, Y.-L. Chen / European Journal of Operational Research 120 (2000) 603±613 611

4. Conclusions

Managing a project with e�ective allocation of
budgets and resources is important in practical
applications. Since time factors play a dominant
role in scheduling and managing the project, fail-
ure to include them not only produces misleading
information but also results in incorrect decisions.
In this paper, we incorporates one type of time
constraint, called time-switch constraint, into the
traditional network. The main results of this paper
are summarized as follows.

(1) A more practical and useful model is pro-
posed. In a traditional activity network, an activity
is executed at any time after all of its preceding
activities have been completed. In reality, however,
an activity is rarely ready for execution at any time
because of some forms of time constraints. Inclu-
sion of such time constraints is more valuable and
practical.

(2) E�cient solution methods have been devel-
oped. Both the forward pass and the backward
pass algorithms for determining the critical activ-
ities are developed and can be run in time of
O�jAj � kjV j�. Because of the algorithms' e�cien-
cy, they can be applied without causing serious
computational di�culties.

(3) The di�erences from a management per-
spective between the traditional model and the
proposed model are investigated. By decomposing
the traditional total ¯oat into four components,
the investigation reveals the following ®ndings:
(a) the critical arcs may have ¯oats, (b) the entire
project may also have the ¯oat, (c) the ¯oat of an
arc may consist of multiple ranges of values, and
(d) the net ¯oat of an arc can be viewed in two
ways.

This paper has some possible extensions. First,
the window time can be assumed to be uncertain in
nature. Moreover, to re¯ect the importance of
controlling the project's cost, a setup cost associ-
ated with executing an activity can be considered.
Finally, as discussed in the earlier section that the
system may have a system's ¯oat, two interesting
issues deserve further studying: (1) what is the
shortest critical path in a time-switch network?
and (2) when to begin the project with minimum
actual time to ®nish the project?

Acknowledgements

The authors are grateful to the anonymous
referees for their helpful comments.

Appendix A

Theorem A.1. Let EB(u, v) and EF(u, v) denote the
earliest beginning time and ®nishing time of arc
(u, v). Then the algorithm Earliest-Time correctly
®nds EB(u, v) and EF(u, v) for each arc (u, v) in the
arc set A.

Proof. The central logic of the algorithm consists
of two parts: (1) determines the number of k-pairs
(Sk) advanced, and (2) ®nds the remaining time
and the window. To compute EB(u, v), Steps 2.1
and 2.2 obtain n, rem, and j as described in (1) and
(2). Then, there are two cases.

Case 1. If EA(u) is in a work window, then arc
�u; v� can begin right away; therefore,
EB�u; v��EA(u).

Case 2. If EA(u) is in a rest window, then arc
�u; v� has to delay until the next work window;
therefore, EB�u; v� � S�n�k��jÿ1 � r�n�k��j:

To compute EF�u; v�, Step 3.1 does (1) and (2)
and obtains nw and rw. After obtaining nw and rw,
we ®rst ®nd the ®nishing time based on rw and
EB�u; v�, and then add this ®nishing time to the
result of multiplying Sk by nw. There are three
cases to be considered.

Case 1. If rw� 0 and EB�u; v� � S�n�k��jÿ1

�r�n�k��j, then S�n�k��jÿ1 is the end of work; there-
fore, EF�u; v� � EB�u; v� ÿ r�n�k��j.

Case 2. If rw < wb (i.e., current work window),
then arc �u; v� can be ®nished in this window;
therefore, EF�u; v� � EB�u; v� � rw.

Case 3. If rw > wb, then we must iteratively
search subsequent k ÿ 1 work windows, each by
reducing rw, to ®nish arc �u; v�. In each iteration,
there are two cases.
· If wb�1 > rw and� 0, then wb is the end of

EF�u; v�; therefore, EF�u; v� � Sb.
· If wb�1 > rw, then EF�u; v� can be ®nished in

wb�1; therefore, EF�u; v��Sb� rb�1� rw.
Finally, it is obvious the solution is infeasible if
EF�u; v� > c� Sk. �

612 H.-H. Yang, Y.-L. Chen / European Journal of Operational Research 120 (2000) 603±613

Theorem A.2. Let EA(v) denote the earliest time
that all predecessors to node v are completed. Then
the algorithm for the ®rst phase correctly ®nds
EA(v) for each node v in the node set V.

Proof. We prove this theorem by induction. Let v1

be the ®rst node examined in the algorithm.
Obviously, v1� s and the theorem is true because
node s is the source node. Assume the theorem is
true for nodes v1; v2...; viÿ1. Now we consider node
vi whose topological order is i. For node vi, the
value of EA(vi) can be de®ned as Maxu {the
earliest time arc �u; vi� reaches node vij�u; vi� 2 A}.
Since EF�u; vi� found by Algorithm Earliest-Time
is the earliest time arc �u; vi� reaches node vi, the
de®nition of EA(vi) can be rewritten as Maxu

fEF�u; vi�j�u; vi� 2 Ag. Since Step 2.1 matches this
de®nition, EA(vi) is truly the earliest time that all
of the activities preceding node vi are complet-
ed. �

Appendix B

Lemma B.1. Algorithm Earliest-Time has time
complexity O(k), where k is the maximum number
of pairs of windows in a cycle.

Proof. Steps 1 and 2.2 can be done in time O(k),
while Steps 2.1, 2.3, 3.1, 3.2, 3.4 and 4 can be done
in time O(1). Because the loop in Step 3.3 iterates
from b � n� k � j to b � �n� 1� � k � jÿ 1, the
algorithm can be done in time O(k). �

Lemma B.2. The time required for the ®rst phase is
O�jV j � jEjk�, where k is the maximum number of
pairs of windows in a cycle.

Proof. The ®rst phase examines every node one
time and every arc two times. Further, we call
Algorithm Earliest-Time when initially examining
each arc. �

References

[1] S.E. Elmaghraby, Activity nets: A guided tour through

some recent developments, European Journal of Opera-

tional Research 82 (3) (1995) 383±408.

[2] K.C. Chae, S. Kim, Estimating the mean and variance of

PERT activity time using likelihood-ratio of the mode and

the midpoint, IIE Transactions 22 (3) (1990) 198±203.

[3] J.C. Hershaur, G. Nabielsky, Estimating activity times,

Journal of Systems Management 23 (9) (1972) 17±21.

[4] D.L. Keefer, W.A. Verdini, Better estimation of PERT

activity time parameters, Management Science 39 (9)

(1993) 1086±1091.

[5] J. Magott, K. Skudlarski, Estimating the mean completion

time of PERT networks with exponentially distributed

durations of activities, European Journal of Operational

Research 71 (1) (1993) 70±79.

[6] A. Nadas, Probabilistic PERT, IBM Journal of Research

and Development 23 (3) (1979) 339±347.

[7] H. Soroush, Risk taking in stochastic PERT networks,

European Journal of Operational Research 67 (2) (1993)

221±241.

[8] T.M. Williams, Criticality in stochastic networks, Journal

of the Operational Research Society 43 (4) (1992) 353±357.

[9] H.M. Soroush, The most critical path in a PERT network,

Journal of the Operational Research Society 45 (3) (1994)

287±300.

[10] P.K. Anklesaria, Z. Drezner, A multivariate approach to

estimating the completion time for PERT networks,

Journal of the Operational Research Society 37 (8)

(1986) 811±815.

[11] J. Kamburowski, An upper bound on the expected

completion time of PERT networks, European Journal

of Operational Research 21 (2) (1985) 206±212.

[12] P. Robillard, M. Trahan, The completion time of PERT

networks, Operations Research 25 (2) (1977) 15±29.

[13] D. Sculli, The completion time of PERT networks,

Journal of the Operational Research Society 34 (2)

(1983) 155±158.

[14] D. Golenko-Ginzburg, D. Blokh, A generalized activity

network model, Journal of the Operational Research

Society 48 (4) (1997) 391±400.

[15] Y.L. Chen, D. Rinks, K. Tang, Critical path in an activity

network with time constraints, European Journal of

Operational Research 100 (1997) 122±133.

[16] M.M. Solomon, Algorithms for the vehicle routing and

scheduling problems with time window constraints, Oper-

ations Research 35 (1987) 254±265.

[17] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction

To Algorithms, MIT Press, Cambridge, MA, 1992, pp.

485±488.

H.-H. Yang, Y.-L. Chen / European Journal of Operational Research 120 (2000) 603±613 613

