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Abstract  

This paper considers signomial geometric programming (GP) dual problems, a class of nonconvex nonlinear program- 
ming problems possessing multiple locally optimal solutions. The primary purpose of this paper is to investigate the quality 
of solutions found by use of a path-following algorithm. The path-following method may be applied to either the original 
nonconvex problem, or to each of a sequence of convex posynomial GP problems approximating the original problcm. For 
each test problem, the algorithms were initiated with thousands of different starting points. It was determined that, when the 
stopping criterion was relaxed lor early posynomial GP problems in the sequence, the ultimate solution tended to be of better 
quality, and more frequently globally optimal. © 1997 Elsevier Science B.V. 
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1. In t roduc t ion  

Geometric programming (GP) [5] is a class of  
optimization problems with a nonlinear objective 
function subject to nonlinear constraints. The term 
"geome t r i c "  is used because the arithmetic-geomet- 
ric mean inequality plays a central role in its early 
development. One of  the remarkable properties of 
GP is that if the primal problem is in posynomial 
fort-n, then a global minimizing solution to that prob- 
lem can be obtained by solving the dual maximiza- 
tion problem. Hence, any solution to the dual prob- 
lem satisfying the necessary conditions corresponds 
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tO a global minimizing solution to the primal prob- 
lem. Unfortunately, a signomial GP problem, which 
is a class of nonconvex nonlinear programming prob- 
lems possessing multiple locally optimal solutions, 
does not have the inherent primal convexity, and 
hence greatly weakens the relationship between the 
primal and the dual problems. Nonetheless, it is still 
possible to forint, late a dual problcm corresponding 
to the primal problem. The drawback is that precise 
equivalence between primal and dual problems no 
longer holds, so that the dual problem is often re- 
ferred to as " p s e u d o - d u a l " .  

The path-following algorithm (PFA) is one of the 
interior point methods which is inspired by Kar- 
markar 's  method [11]. If one is to minimize the 
objective function, the main idea behind the interior 
point methods is that the objective function should 
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be minimized and the solutions kept away from the 
boundary. The classical way to implement this idea 
is to use a barrier function to solve a sequence of 
subproblems associatcd with a positive barrier pa- 
rameter. As the barrier parameter  gradually decreases 
by a certain factor and approaches zero, the sequence 
of  the solutions will converge to an optimal solution. 

In this paper, we investigate the use of the path- 
following algorithm on signomial  GP problems. The 
main purpose of  the research emphasizes more on 
the quality of the solution than the time required to 
find the solution; therefore, the CPU time will not be 
a major issue of concern. The computational results 
are based on the implementation of the algorithms 
using APL (A Programming Language) code, cither 
on a Macintosh SE or an HP-UX workstation. 

This paper is organized as follows. Section 2 
introduces the primal-dual pair of  GP problems and 
reviews the literature. Section 3 describes how to 
apply the path-following algorithm to solving the 
posynomial  GP dual problem. Section 4 is the moti- 
vation of applying the path-following algorithm in 
this research. Computational  results of different 
strategies for solving signomial GP problcms are 
presented in Section 5. Section 6 contains the con- 
clusions. 

2. The p r i m a l - d u a l  pa i r  of  GP 

A GP primal problem can be expressed as the 
following general form 

Minimize g o ( t )  

subject to 

g~( t) < 1, k:~ 1,2 . . . . .  p ,  

t j >  O, j = :  1,2 . . . . .  m, 

where 

g , ( ' )  E o-,,:, 1-I ,, .... , k--  
i.= [,q j= 

P 

I = ( 1 , 2  . . . . .  , ,), [ k ] c ¢ ,  U[k] I, 
k 0 

a, d [ k ]  [ , , ]  = f o , k  .,, 

o-i= _+1 for all i ~ l ,  

c i > O f o r a l l  i ~ l ,  

a~j unrestricted in sign for all i ~ I and j = 1 . . . . .  m. 

The index set I numbers the total n terms, and 
the index subset [k] numbers the terms in a function 
gk. In each gk, if (r~'s are all positive, then this g~ is 
referred to as a posynomial .  On the other hand, if 
one or more of o ' [s  are negative, then function gk is 
called a signomial.  A GP problem is a posynomial 
GP problem if  each gk it contains is a posynomial ,  
otherwise it is a signomial GP problem. 

The posynomial  GP primal problem can be sim- 
plified as follows 

Minimize g o ( t )  

subject to 

gk( t )  < 1 ,  k =  1,2 . . . . .  p ,  

t j>O,  j =  1,2 . . . . .  m, 

where 

m 

g k ( t )  = Y'~ c'i[- [ t  i~', k = 0 , 1 , . . . , p .  
i=[kl j = l  

Corresponding to a posynomial  GP primal prob- 
lem, the GP dual problem is to 

Maximize v ( 6 , A ) =  17  A2~ ]7-[ 

subject to 

A0= 1, 

Y'~ aij6 i = O, 
i ~ l  

E •i= ak '  
ic[k} 

j =  1 , 2 , . . . , m ,  

k .... 0,1 . . . . .  p ,  

6i > 0 for all i c l ,  

Zk>_0, 

which, unlike the primal, is linearly constrained. 
The A variable is not really a decision variable 

since each A k is simply the sum of the ,5 i values for 
all the terms in that posynomial  k and may be 
eliminated by substitution. The logarithm of the ob- 
jective function v(8 ,A)  is a concave function if A is 
eliminated as suggested. Since the logarithmic func- 
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tion is strictly increasing, the maxima of v(a,A) ~md 
its logarithmic function will be achieved at the same 
dual solution. One thus could maximize the loga- 
rithm of the dual objective function 

Maximize f ( 8 )  = In( v ( 8 ) )  

= k { S i l n c  i - 8  IlnSi} 
i = 1  

+ k =~0 ( ,£~]  6~) ln{ ~e~[k] 6i ) 

subject to 

Ao= 1, 

E aij(~i = O, 
iE1 

j =  1 ,2 , . . . ,m,  

6~>0 for all i ~ l .  

The relationship between optimal dual and primal 
solutions, namely 

m 

= F I  t?.,,  [ k ] , / ,  = 0,1 . . . . .  p ,  
j=l 

can in most cases be used to recover the primal 
optimal solution when a dual-based algorithm is 
used. If a primal constraint k is slack at the opti- 
mum, all the optimal dual variables A k and 8~ (i ~-. 
[k]) associated with this constraint are zero. Dual- 
based algorithms typically include procedures tot" 
special handling of slack primal constraints, e.g., 
placing a lower positive bound on all dual variables. 

The pseudo-dual signomial GP problem is to 

Maximize v(8,A) = o-ok=I~0 A2 ~ 1-I 
i~[k] 6i ] ] 

subject to 

E O'i6i= CrO, 
i e [0] 

(riaij6 i=O, j =  1,2 . . . .  m, 
i ~ l  

E Ov;Si = A k '  k = 0,1 . . . . .  p, 
i ~  [1:I 

6i > 0  for all i ~ l ,  

hk>O.  

The value of o- 0 is the sign of the optimal value, 
which will usually be known in advance for most 

problems. Linear constraints still constitute the con- 
straint set; however, the logarithm of the objective 
function is not a concave function over the feasible 
region. In fact, the weak duality theorem for the 
posynomial GP problem does not hold true for this 
dual, and hence it is called a pseudo-dual. 

2.1. Literature review for signomial GP problems 

A GP problem can be solved in its either primal 
or dual form. Among all primal-based algorithms for 
signomial GP problems, successive approximation 
by posynomials, called "condensation", has re- 
ceived the most popularity. The idea is to approxi- 
mate a signomial GP problem at the current iteration 
by condensing to an approximating posynomial prob- 
lem. Thus the solution of the signomial GP problem 
proceeds by iteratively solving a sequence of posyn- 
omial approximations, for which the solutions con- 
verge to at least a stationary point of the signomial 
problems. The main difference between the various 
algorithms ([1,4,10,17,19,23]) which employed this 
solution philosophy lies in the precise forms of the 
posynomial approximations to signomial programs. 

Since a signomial GP problem has no convex 
reformulation, Passy and Wikte [18] developed a 
weaker type of duality, called pseudo-duality, to 
accommodate this class of nonlinear optimization. 
The pseudo-duality theorem assures the occurrence 
of a stationary point, called "pseudo-maximum", in 
the pseudo-dual program corresponding to every lo- 
cal minimum of the primal problem such that the 
primal and pseudo-dt, al objective values are equal. 
To find the global solution one must find all locally 
maximizing solutions and then choose, not tile maxi- 
mum, but the minimum, from among them. This 
procedure is called "pseudo-minimization". Other 
dual-based algorithms were developed in [2] and 
121]. 

Use of general purpose nonlinear programming 
methods taking no advantage of the structure of GP 
problems were reported in [7,8,22,25]. Discussions 
on computational aspects of solving signomial GP 
problems are available in [3] and [24]. A detailed 
survey of several techniques for solving signomial 
programs can be found in [20]. The comparison of a 
special purpose algorithm versus gene,al purt)ose 
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algori thms was published by Ecker et al. [6]. Their  
experiments  showed that the special purpose algo- 
rithm often finds approximate solutions more quickly 
than do the general purpose algorithms, but is usu- 
ally not significantly more efficient when greater 
accuracy is required. 

2.2. Condensat ion o f  s ignomial  GP problems 

Since the condensation process is the most popu- 
lar method to solve the signomial GP problem, this 
section is dedicated to showing how a signomial GP 
problem can be approximated by posynomial  pro- 
grams. The principle is to approximate a multiterm 
posynomial  with a monomial ,  i.e., a single term. 

Consider  again the general form of  the GP primal 
problem 

Minimize g o ( t )  

subject to 

g , ( t )  < 1 ,  k =  1,2 . . . . .  p ,  

t i > O ,  j =  1,2 . . . . .  m. 

Assume that go(t )  > 0 at the optimum. By intro- 
ducing a new variable t o and adding the constraint 
t o > go(t) ,  it can be rewritten as the following gen- 
eral form 

Minimize t o 

subject to 

_< l, 

where 

k = 0 , 1  . . . . .  p ,  

' = 1 1  ~'  k-- 1 , 2 , . . . , p ,  
i~-[k] J "  ! 

g ; ( t ) =  
ie[0] j=0 

where 

UiO "- -- l .  

Furthermore, g'k(t) can be written as the differ- 
ence of two posynomials  

8'k( t)  = Pk( t) - Qk( t ) ,  

where 

P~( t )  = 
i~[k] + 

Q k ( t )  = E 
i~1~]- 

[k] + 

u i = collection of positive terms 

in the k-th constraint,  

ui = collection of negative terms 

in the k-th constraint, 

= {ilcr i = + 1 for i ~ [k ]} ,  [ k ] -  

= {ilo" i = - 1 for i ~ [k ]} ,  

/./i = 

f l  a C i t j  'J, 
j=O 

[0] + if or i =  +1  

[ 0 ] -  if cr i =  - 1  

( [ k ]  + if o ' i=  +1  
c i f i  t~ ~J, i 

j= ,  ~ [ k ]  if cri = - 1 

Therefore, one can derive the following equiva- 
lent program 

Minimize t o 

subject to 

P~(t) 
- -  < 1 ,  k = O , 1  . . . . .  p,  
O ; ( t )  - 

where 

Q ~ ( t )  = 1 + Q k ( t ) .  

Use of the ari thmetic-geometric mean inequality 
with Q ~ ( t ) -  ~.~iLti results in the Iol lowing 

>_ , i ~  [ k ]  
• 6 ,  ] 

where 

,.,,(,.') 
6i - Q'[ ( t ' )  ' i ~ [ k ], t' is a current operating po in t  

If Pk(t)  is divided by both sides, then it implies 
that 

P~(t) Pk(t) 
- -  < 

(u,(,) 
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where the function on the right hand side is a 
posynomial .  Let Q'k(t) represent the monomial  ob- 
tained by condensing Q [ ( t )  at the point l ' ,  one has 
the following problem 

Minimize t o 

subject to 

Sk ( t )  
- - <  1, k = 0 , 1  . . . . .  p. 
Q,k( t )  - 

Note that posynomial  constraint 

,%(0 &CO 
<1 

O'~Ct) ( u i ( t  ) a' 

\ ,+, 

implies that 

< 1 ,  
e ; ( , )  - 

since Q'~(t)>_ Q'~O). That is, the feasible region of  
the condensed posynomial  constraints is a subset of  
the feasible region of  the original signomial con- 
straints. Hence, any optimal solution, t, to the con- 
densed program will be feasible (but not necessarily 
optimal) for the original problem. The condensed 
posynomial and that original posynomial are equal at 
the point t = F. 

3. Path-following a lgo r i thms  

Consider the following linearly constrained con- 
vex programming problem with non-negative vari- 
ables 

Minimize f ( x )  

subject to 

Ax :-- b, 

x>_ O, 

where 

f ( x )  is a twice differentiable function, 

A is an rn × n matrix, 
. .  ) f  

X = ( .V j ,  . ,2C,, i s  a n  n - v e c t o r ,  

b = ( b  I . . . . .  b,,,) r is an m-vector. 

Assume that the interior feasible set S = {x ~ R"; 
Ax = b, x > 0} is nonempty and bounded. If a loga- 
rithmic term is added, then one has to solve the 
following family of problems 

qS(z) = Minimize f ( x )  - z Y~. In x i 
i 

subject to 

Ax = b, 

where 

z > 0 is the barrier penalty parameter,  

In x i serves as a barrier function. 
i 

As onc solves the problcm penalized by the bar- 
rier function for a sequence of  decreasing positive 
values of the parameter z, the result is a sequence of  
feasible points converging to the optimal solution of  
the original problem. 

Thc K a r u s h K u h n - T u c k c r  (KKT) optimality 
conditions for 4,(z), which mr, st be satisfied by 
x ( z ) ,  thc optimal solution of cb(z), are written as: 

{ Xs = ze 
A x =  b ' 

where 

X is the n X n diagonal matrix of x, 

s = g f ( x )  - A"y ,  

g f ( x )  is the gradient of f ( x ) ,  

y are dual variables associated with the constraints 

Ax = b, 

e -  (1,1 . . . . .  1) r .  

l+et F denote {(x ,s) :  Xs .... ze, z > 0}. The trajec- 
tory Y, for z > 0, is known as the central path 
because of the intm-iority forced by the barrier func- 
tion. The path-following algorithm generates a se- 
quence of solutions, (xe,s'~), which lie in the prox- 
imity of the central trajectory of the problem. 

One can use Newton's  methc)d to solve the KKT 
optimality conditions, v.,hich is a system of nonlinear 
equations. If Newton's  method is applied, suppose 
that at iteration k, one has the solution x ~, yk, s~; 
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then one must solve the following linear system, 
resulting in search direction ( A x ,  A y )  

[ V 2 f ( x ' )  + ( X k )  - '  S k ] A x  - ATAy 

= y ( X k ) - i e - - s  k 

A A x  = 0 

where 

( X t )  -i is the n × n diagonal matrix 

1 
with elements x~ - - )  

S t is the n × n diagonal matrix with elements s t ,  

v 2 U ( x )  is the Hessian matrix of f ( x ) ,  

",/= (1 - c~)z  k < z k, 

0 < ~ < 1 .  

Once the search direction (Ax ,  Ay)  is computed,  
let 

x k i  l = x k - i -  A x )  

yk+ I ._ y~ + A y ,  

s k +-I = V f ( x  ~+ l) __ A r y k ,  I 

thus complet ing one iteration of the algorithm. Rather 
than making several Newton 's  steps to converge to 
the central path for a fixed value of z, one iteration 
only is usually performed of Newton 's  method, and 
then z is reduced. 

In the previous discussion, it is assumed that an 
initial feasible solution is available so that one can 
start the algorithm, l lowever ,  it is necessary in gen- 
eral to produce such an solution so that the algorithm 
can be initiated. An initial feasible solution can be 
obtained by the introduction of an artificial variable 
and by rewriting the objective function and con- 
straints as follows 

Minimize f ( x )  - z E In x,  + M x  
t 

subject to 

Ax  -:" b - Ax  ° ) x .  = b, 

~ x ,_<.M, 
t~ a 

where 

M is a positive big cost, 

x ,  is an artificial primal variable,  

x ° > 0 is an initial solution, 

x~ < M is the bounding row which will 
i@a 

correspond to the artificial dual variable.  

Now ( x ° , x , )  is feasible with x , , =  1. In our 
implementation, we let x ° equal to e = (1,1 . . . . .  1). 
Once an initial feasible solution ( x  °, x<,) is available, 
x a must be driven to zero at the opt imum solution. 
In order to obtain values of the y variables for the 
initial solution, we let each of  them equal to zero 
except the artificial variable which is associated with 
the bounding row. 

3.1. Apply ing PFA to GP dual prob lems  

The path-following algorithm applied to a twice 
differentiable convex function f ( x )  solves a se- 
quence of problems of the form 

(;b(z) '-: Minimize f ( x )  - z ~ l n  x, 
i 

subject to 

A x = b ,  x>_ O. 

To apply the path-following algorithm, we need 
to minimize the negative of In(L,'(8)) so that it is in 
standard form 

<~(z) = Minimize - f ( a )  - - z ~  h, B, 
i 

subject to 

A ~ = b ,  

where 

A =  [ 1 1 . . . 1 0 0 .  O] 
AT , AI~:= ~ a i j 6  i = O ,  

i ~ l  

j = O , l  . . . . .  m ,  

(5=(51 . . . . .  ~j,,)r, <5~_>0 for all i ,  

b =  (A o ,0  . . . . .  O) r A<I- 1. 
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The system of equations of optimality conditions 
needed to be solved for a fixed z is of the form 

Os = ze 
A 6 = b  ' 

where D is the diagonal matrix of 8, 

s = V ( - f ( a ) ) - A r y .  

Other than linear programming (LP), extensions 
of interior point methods to special classes of pro- 
grams are available in [9,12-16]. 

4. Motivat ion of  applying path-following algo- 
r i thm 

starting point but with two distinct tolerances, will 
the algorithm converge to different local solutions? 
What can be characterized under several tolerances 
using the same starting point? For that reason, the 
implemented algorithm uses the initial tolerance 
(z_tol )  as an input. After the tolerance is input, the 
problem is condensed to an approximating posyno- 
mial which is then solved by the path-following 
algorithm. As each condensed posynomial is solved, 
the termination tolerance of  the path-following algo- 
rithm is reduced by a certain factor ( a j a c t o r ) ,  
which is positive and less than 1. By the reduction of  
this factor, the tolerance would gradually decrease, 
converging to zero. The algorithm iteratively pro- 
ceeds as follows. 

The major motivation of using the path-following 
algorithm for solving a problem possessing many 
local solutions is that the algorithm is initiated with 
an interior point and moves within the feasible re- 
gion. Intuitively, if the solution found by the path- 
following algorithm for each condensed posynomial 
program is not too close to the boundary, then it 
should have a better opportunity to avoid being 
trapped in competing local solutions in the early 
iterations of  the algorithm. What this irnplies is that 
it is hoped that the algorithm can approach the global 
solution eventually, but not too early. The question 
lies in how to implement the path-following algo- 
rithm so that the solution will not converge to one of  
the competing local minima in the early iterations. 
The answer is at hand in the termination tolerance of  
the path-following algorithm. Remember that the 
path-following algorithm is terminated when the 
value of z, which is the barrier parameter, is less 
than the tolerance. If the tolerance is not small 
enough, the algorithm terrninates at a point which 
may not really satisfy the optirnality conditions, while 
could be a desirable outcome for our purpose, in that 
the solution is far away from the boundary. Of 
course, the tolerance needs to be small enough at the 
final solution so that the algorithm converges to a 
point which satisfies the optimality condition. The 
convergence proof of this approach is given in [26]. 

f low could the initial value of the termination 
tolerance, which is reduced during the course of the 
optirnization, affect the quality of the solution? For 
example, if the algorithm is initiated with the same 

Step O. Rewrite the problem as a linear objective 
function constrained by upper bounds of 1 on 
nonlinear functions expressed as a ratio of 
posynomial functions. Select an initial point t' 
(which need not be feasible) and termination 
tolerance, z_tol, of the path-following algo- 
rithm. 

Step 1. Condense the denominator of each ratio, 
which is a posynomial function, into a single 
term, using weights evaluated at the current 
point f .  

Step 2. Solve the resulting condensed posynomial 
program by applying the path-following algo- 

Inptt l :  z _ ' r O l ,  

z ._ lu l ( - -Z_ ' lO | .  
- -  [ 

! 

~ . Y 

N 
T 

i . . . . .  
l~elllaL'C 

z. lol < .- z_f;iclOl" X ~<..I~I 

- -  -II,- STOP 

r-'--- ~ I'VA ] 

, X , ,  !5  , .  

Fig. 1. A l g o r i t h m  for  sol , , ing a sequence o f  condensed posynomi .  

als by PT.A. 
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Table 1 
Number of global solutions found using two different initial z_tols of PFA 

237 

Problem no. Total no. Total no. Total no. of terms z_tol = 0.01 
of variables of constraints in condensed GP freq. % 

z_tol = 0.0001 

freq. % 

tl 2 4 6 1483 
t2 2 4 6 2273 
t3 2 4 5 2277 
t4 2 4 6 2322 
t5 2 4 6 1070 

44.08 898 26.97 
67.57 1143 33.98 
67.59 2295 68.22 
69.02 2295 68.22 
31.81 1551 46.11 

rithm with termination tolerance z tol. Calcu- 
late the new solution t". 

Step 3a. Compare the distance moved, ~St, to some 
tolerance. If the tolerance is satisfied, go to Step 
3b; otherwise, let t' = t" and go to Step 1. 

Step 3b. If z tol is less than the stopping criterion, 
epsilon, stop; otherwise, go to Step 4. 

Step 4. Reduce z_tol by a certain factor, let t' = t' 
and go to Step 1. 

Fig. 1 shows the proposed algorithm. The dis- 
~,n I tj tance moved in Step 3a is measured by 6 t = ).7,j= t " 

- t}l. The stopping criterion, epsilon, in Step 3b, is 
limited by the precision of the computations; a value 
of 10-~4 was used in obtaining the computational 
results which follow. 

5. Results of computational strategies tbr signo- 
mial GP problems 

In this section, the following situations will be 
investigated 
1. solve a sequence of condensed posynomial dual 

problems by PFA, 
2. solve the pseudo-dual signomial problems by 

PFA. 

5.1, Solve a sequence o f  condensed posynomial dual 
problems by PFA 

To investigate the effect of the accuracy with 
which the earlier approximating posynomial GP 
problems are solved, five test problems (Table 1) 
were artificially generated, each having several con> 
peting locally optimal solutions. (Appendix A in [26] 
lists these problems and their solutions.) For each 

problem, a total of 3364 starting points are selected. 
These 3364 points are uniformly distributed with 
increment equal to 0.4 in a square region. 

For each starting point, the problem was solved 
twice, once with the initial stopping tolerance (z_tol)  

equal to 0.01 and again with the tolerance equal to 
0.0001. In each case, the tolerance was reduced by a 
factor of 0.01, with the algorithm terminated after an 
approximating posynomial GP problem was solved 
with z_tol equal to 10-~4 

To have a better picture of how the algorithm 
proceeds, test problem tl is used as an illustration. 

Minimize go = t2 

subject to 

gt = - 0 .0019 t ~  + 0.09108tj - 0.0038t 2 _< 1, 

g2 = -0 .0013 t~  + 0.0779tt - 0.0065t 2 < I, 

g3 = -0 .000814 t~  + 0.0586tj - 0.002035t 2 < 1, 

g4 = O.lt~t2 j - 5 . S t ~ t 2  ~ + 105-1t2 ~ -< 1. 

The feasible region of the test problem t l is 
shown in Fig. 2, where several local solutions are 
present. 

Now, let's take a closer look at the step at which 
the first condensed problem was just solved by the 
path-following algorithm, starting from a feasible 
point (37, 37). In t'ig. 3, it appears that with a 
smaller initial z_tol, the algorithm has the tendency 
to go to a local solution in the early stage of the 
algorithm. This can be further verified if the inter- 
ested point was rotwarded to the solution where the 

second condensed problem was solved, as shown in 
Fig. 4. 

By studying Fig. 3 and Fig. 4, one can find 
significant clues that suggest that use of a larger 
tolerance at the beginning could be advanta-eous To 
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Fig. 2. Feasible region of the test problem t 1. 
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Fig. 3. Path-following where the first condensed program is 
solved starting from a point with two different initial z_tols. 

i d e n t i f y  the  d e p e n d e n c e  o f  the  loca l  s o l u t i o n  f o u n d  

on  the  l o c a t i o n s  o f  all s t a r t i ng  po in t s ,  t he  b a s i n s  o f  

a t t r ac t ion  for  t w o  z tols  are s h o w n  in [26]. T h e  

bas in  o f  a t t r ac t ion  o f  a local  s o l u t i o n  is d e f i n e d  as  

the  set  o f  d i f f e r e n t  s t a r t ing  po in t s  f r o m  w h i c h  the  

a l g o r i t h m  c o n v e r g e s  to that  so lu t ion .  W h e n  a l a rge r  

ini t ia l  z _ t o l  (0 .01)  is u sed ,  t h e r e  are  o n l y  t w o  b a s i n s  

o f  a t t r ac t ion ,  i n c l u d i n g  that  o f  the  g l o b a l  so lu t i on .  I f  

a s m a l l e r  ini t ia l  z _ t o l  ( 0 . 0001 )  is u s e d ,  h o w e v e r ,  

b a s i n s  o f  a t t r ac t ions  a p p e a r  fo r  o t h e r  c o m p e t i n g  local  

s o h t t i o n s .  T h i s  e n c o u r a g i n g  resu l t  j u s t i f i e s  o u r  use  o f  

the  t e r m i n a t i o n  t o l e r a n c e .  

I l a v i n g  j u s t i f i e d  ou r  r e s e a r c h  p u r p o s e ,  w e  f u r t h e r  

c o m p a r e  o u r  a l g o r i t h m  wi th  t w o  e x i s t i n g  m e t h o d s  

w h i c h  are  c o m m o n l y  r e f e r r e d  in the  l i te ra ture .  T a b l e  

2 l ists  the tes t  p r o b l e m s  and  the i r  so lu t i ons ,  w h e r e  

p r o b l e m  n a m e s  b e g i n n i n g  wi th  " R M "  are f r o m  [24], 

" D "  f rom [3]; " n / a "  m e a n s  no t  ava i l ab le ;  total  

Table 2 
The results by PFA compared to existing methods 

Problem name V C Primal objective value 

PFA RM D 

Total infeasibilities ot constraints 

PFA RM I) 

RM09 2 I 11.96438 
RM10 3 I - 83.24973 
RMll  4 2 - 5.73982 
RMI2 8 4 - 6.04823 
RM13(D5) 8 6 70a9.2477 
RM14 10 7 1.14362 
RMI5 10 7 0.20565 
RMI6 10 7 0.19663 
RMI7 I I 9 0.14(161 
RMI8 13 9 1.86163 
RM19 8 5 17485.988 
RM20 13 9 .116.4515 
RM22 9 10 376.3109 
RM23(D2) 5 6 10121.773 
RM24(D6) 10 10 97.59237 
D4A 8 4 3.95116 

11.96392 
--83.05711 
-5.73972 
- 6.04823 

7049.247 
1.14368 
0.2056 
0.19659 
0.1,1-061 
1.81818 

17486.039 
.... 121.5388 
- 375.7705 
10121.977 

97.59753 
n / a  

n / a  0 0.000004965 
n / a  0 0 
n / a  0 0 
n / a  0 0.000001384 

7049.324 0 0.000004616 
n/a  0 0 
n / a  0 0.00136019 
n / a  0 0.00179802 
n / a  0 0.009473293 
n / a  0 2.374294926 
n / a  0 0.000001522 
n / a  0 0.03119618 
n / a  0 0.00121822 I 
10122.431 0 0.000062905 

97.59103 0 0.000186638 
3.9517 0 n/a  

n / a  
n/a  
n /a  
O.O00006212 
r l /a  
n/a 
n /a  
n / a  
l l / a  
II / ~'t 
I1/,'1 
n / a  
0 
0.00001908 I 
0.000016337 
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Fig. 4. Path-following where the second condensed program is 
solved starting from a point with two different initial z_tols. 

infeasibilities of  constraints are computed by 
E k e  K(gk -- 1), K = {k I gk > 1, k = 1,2 . . . . .  p}; 
" V "  is the number of  primal variables, and " C "  is 
the number of  primal constraints. According to Table 
2, it can be seen that the PFA outperforms two 
existing methods in terms of  primal objective value 
and total infeasibilities of  constraints. Unfortunately, 
however, only a single instance in the literature was 
found for which a signomial GP problem has several 
competing local solutions, namely test problem D4A 
in [3]. This problem was initiated with 2304 primal 
starting points. It was found that when a larger initial 
tolerance (Z__tol= 10 -4)  was used, 2296 points 
(99.65%) converge to the global solution, while only 
2284 points (99.13%) converge to thc global solution 
when using a smaller initial tolerance ( z_tol = 10 -8). 

5.2. Solve pseudo-dual signomial problems by PEA 

The results (Table 4.3 in [26]) suggest that the 
approach is not recommended. The main drawbacks 
are 
1. for most of  the test problems, the algorithm did 

not converge, 
2. even when the algorithm converges, the solution 

is not guaranteed to be a global solution, 
3. the number of iterations required to converge is 

large, making it less competitive. 

The major problem associated with this approach 
is that the solution generated by the path-following 
algorithm frequently tends to approach the boundary 
or even to leave the feasible region. This tendency 
not only makes it difficult for the algorithm to 
approach a feasible solution at each iteration, but 
slows down convergence because the actual step size 
needs to be shortened to maintain feasibility. Al- 
though several stepsize reduction factors, ranging 
from 0.1 to 0.9, were tested in an attempt not to 
approach too close to the boundary, none worked 
well. Another alternative is to use a two-phase 
method to find a feasible solution for the path-fol- 
lowing algorithm. The intention was, rather than 
always initiating the search with the unit vector, to 
start the algorithm from a solution which is feasible 
and likely to be located inside the feasible region. 
However, the results show this alternative to be not 
helpful. 

6. Conclusions 

This research primarily investigates the use of  a 
path-following algorithm for solving signomial GP 
problems, whose special feature is possessing multi- 
ple locally optimal solutions. Two approaches for 
solving the problem were investigated, i.e., either 
solving a sequence of  approximating posynomial 
convex programs or solving its pseudo-dual directly. 
The research leads to the following major conclu- 
sions: 
1. Solving the signomial GP problems by iteratively 

solving the dual problems of  a sequence of  ap- 
proximating posynomial GP problems is appar- 
ently better than solving its pseudo-dual directly. 

2. When applying the path-following algorithm to a 
problem with many locally optimal solutions, in 
order to converge to a better quality solution, the 
algorithm should not terminate at a point that is 
too close to the boundary of  the first few approxi- 
mating posynomial GP problems. 
There exists limitations regarding the application 

of the proposed method, too. First, the results are 
solely derived from dealing with signomial GP prob- 
lems. In addition, one might ask, how "c lo se"  is too 
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close? At  this moment ,  no rule can be expl ic i t ly  

given,  however .  A b o v e  all, both the size and the 

structure o f  the p rob lem play a crucial  role in deter-  

min ing  the terminat ion tolerance.  

Second,  f rom the perspect ive  of  computa t ional  

e f f ic iency,  when  N e w t o n ' s  method  was used to solve  

the fo l lowing  sys tem of  nonl inear  equat ions  

X s  = z e  

A x  = b ' 

it requires  the inverse o f  this approximat ing  l incar 

system. Occas iona l ly ,  it is difficult  to compute  the 

inverse,  especia l ly  when  the solutions are highly 

sensi t ive to the capabi l i ty  o f  a computer .  In our 

exper ience ,  the same A P L  codes  implemented  on a 

Macin tosh  SE and an H P - U X  workstat ion could 

return different  results when  the system cquat ions  

are ncar-singular .  To  deal  with this difficulty,  tech- 

niques such as the conjuga te  gradient  method were  

uti l ized when  the inverse is not obtainable.  One  can 

see that tim implementa t ion  o f  this technique is at the 

cost of  computa t iona l  efforts.  

Finally,  instead o f  spec i fy ing  the terminat ion tol- 

erance of  the pa th- fo l lowing  algori thm, another  altcr- 

native is to specify the m a x i m u m  number  o f  itera- 

tions per formed at each iteration of  the path-fo l low-  

ing algori thm. W e  favor  using the tolerance rather 

than m a x i m u m  iterations as a terminat ion criterion, 

since the valuc of  tolerance,  z ,  is the barrier parame-  

ter and would  serve  as a better indicator of  how 

close the point  is to the boundary.  

Acknowledgements 

The first author  was supported in part by National  

Science Foundat ion grant  no. 85-2213-E-  158-002. 

R e f e r e n c e s  

[ 1] Avriel, M.. and Williams, A.('., "Complementary geometric 
programming", ,SIAM Journal on Applied Mathematics 19 
(1970) 125-141. 

[2] Blau, GE., and Wilde, D.J., "A Lagrangian algorithm for 
equality constrained generalized polynomial optimization". 
A.I.Ch.E. Journal 17 ( 1971 ) 235--240. 

[3] Dcmbo, R.S., "'Current state of thc art o1" algorithms and 

computer software for geometric programming", Journal of  
Optimization Theory and Applications 26/2 (1978) 149-184. 

[4] Duffin, RJ., and Peterson, E.L., "Reversed geometric pro- 
gramming treated by harmonic means", Indiana University 
Mathematics Journal 22 (1972) 531-550. 

[5] Duffin, R.J., Peterson, E.L., and Zener, C.M., Geometric 
Programming, John Wiley, New York, 1967. 

[6] Ecker, J.G., Kupeerschmid, M., and Sachet, R.S., "Compari- 
son of a special-purpose algorithm with general-purpose 
algorithms for solving geometric programming problems", 
Journal of  Optimization Theory and Applications 43/2 
(1984) 237-263. 

[7] Falk, J.E., "Global solutions of signomial problems", Report 
No. "1"-274, George Washington University, 1973. 

[8] Fiacco, A.V., and Ghaemi, A., "Optimal treatment lcvels of 
a stream pollution abatement system under three environmen- 
tal control policies", Rcport No. "I"-38, George Washington 
University, 1979. 

[9] Hart, C., Pardalos, P.M., and Ye, Y., "Implementation of 
interior-point algorithms for some entropy optimization prob- 
lems", Optimization Methods and Software 1/1 (1992) 71-- 
80. 

[10] Jefferson, '1'., "Manual for the geometric programming cc~e 
GPROG (CDC) version 2", Report No. 1974/OR/2, Me- 
chanical and Industrial Engineering Department, University 
of New South Wales, Australia, 1974. 

[ I 1 ] Karmarkar, N., "A new polynomial-time algorithm for linear 
programming", Combinatorica 4 (1984) 373- 395. 

[12] Karmarkar, N., Resende, M.G.C., and Ramakrishnan, K.G., 
"Interior point algorithm to solve computationally difficult 
set covering problems", Mathematical Programming 52/3 
(1991) 597-618. 

[13] Kojima, M., Megiddo, N., and Ye, Y., "An interior point 
potential reduction algorithm for the linear complementarity 
problem", Mathematical Programming 54 (1992) 267-279. 

[14] Kortanck, K.O., and No, H., "A sccond ordcr affirm scaling 
algorithm for the geometric programming dual with logarith- 
mic barrier", Optimization 23 (1992) 303- 322. 

[15] Kortanek, K.O., and Zhu, J., "A polynomial barrier algo- 
rithm tor linearly constrained convex programming prob- 
lems", Mathematics'of Operations Research 18/I (1993) 
116-127. 

[16] Monteiro, R.C., and Adler, I., "'Interior path following pri- 
mal-dual algorithms. Part II: convex quadratic 
programming", Mathematical Programming 44 (1989) 43- 
66. 

[17] Pascual, L.. and Ben-lsrael, A., "Constraincd maximization 
of posynomials by geometric programming", Journal o f  
Optimization "lheory and Applications 5 (1970) 73 86. 

[18] Passy, U., and Wilde, D.J., "'Generalized polynomial opti- 
mization", Journal on Applied Mathematics 15/5 (1967) 
134-4-1356. 

[19] Passy, U., "Generalized weighted mean programming", 
SIAM Journal on Applied Mathematics 20 ( 1971 ) 763-778. 

[20] Phillips, I).T., and Beightler, C.S.. "'Geometric program- 
ruing: A technical state-of-the-art survey", AIIE Transac- 
tions 5/2 (1973) 97 112. 



H.-H. Yang, D.L. Bricker / European Journal of Operational Research 103 (1997) 230-241 241 

[21] Phillips, D.T., and Reklaitis, G.V., "On geometric program- 
ruing with slack constraints and degree of difficulty", AIIE 
Transactions 8/2  (1976) 275-279. 

[22] Ratner, M., Lasdon, L.S., and Jain, A., "Solving geometric 
programs using GRG: Results and comparisons", Journal of 
Optimization Theory and Applications 26/2 (1978) 253-265. 

[23] Reklaitis, G.V., and Wilde, D.J., "Geometric programming 
via primal auxiliary programs", ORSA 38th National Meet- 
ing, Dallas, Texas, May 1971. 

[24] Rijckaert, M.J., and Martens, X.M., "Comparison of general- 
ized geometric programming algorithms", Journal of Opti- 
mization Theory and Applications 26/2 (1978) 205-242. 

[25] Smeers, Y., "Studies in geometric programming with appli- 
cations to management science", Ph.D. Dissertation, 
Carnegie-Mellon University, 1972. 

[26] Yang, H., "Investigation of path-following algorithms for 
signomial geometric programming problems", Ph.D. Disser- 
tation, University of Iowa, 1994. 


