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Abstract

With today’s keen competition, semiconductor market has changed from producer-oriented to customer-oriented. To be successful,
companies need to consider both customer satisfaction in demand and the ultimate profit goal of companies. Semiconductor fabricators
today must face an environment with multi-product types and multi-priority orders. Since semiconductor fabrication has a very compli-
cated production process, the production planning of different products types and priority levels is an even more difficult task to experts.
The objective of this study is to construct an analytical approach under a fuzzy subjective judgment environment, in which fuzzy analytic
hierarchy process (AHP) method with entropy weight is utilized to deal with uncertainty, to generate performance ranking of different
priority mixes. The results provide guidance to experts in a fab regarding strategies for accepting orders with the consideration of man-
ufacturing efficiency in the aspects of product, equipment efficiency and finance.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In the construction of a wafer fab, a very high capital
investment in plant and equipment, from $US 500 million
to 1 billion each, is required. In addition, wafer fabrication
involves the most complex manufacturing system among
all the manufacturing industries. Production planning of
a semiconductor fabricator is very difficult due to its dis-
tinctive complexities in the manufacturing process. The
process may consist of 300–500 sequential processing oper-
ations and a flow time of usually more than twenty days.
The production planning and scheduling for the complex
manufacturing processes are a challenge due to the factors
such as complex product flows, random yields, diverse
equipment characteristics, equipment downtime, produc-
tion and development in shared facilities, data availability
and maintenance (Atherton & Atherton, 1995; Uzsoy,
0957-4174/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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Lee, & Martin-Vega, 1992). On top of that, different oper-
ations may require the use of the same process equipment,
and this is the so-called re-entry characteristic. Thus, a
decision made to assign an operation to run on a machine
will affect the future demand on this machine, and affect the
smoothness of the production flow.

Product mix determination is one of the core problems
in current semiconductor production planning system. Dif-
ferent products require different manufacturing processes,
and the requirements of setup may also be different. The
process plans of products can range from very identical
to being extremely distinctive depending on the types of
products. The greater is the difference among the process
plans, the more diverse are the loading demand and batch
difficulty on the factory. In order to best utilize a current
fab, a proper selection of product mix is necessary.

Multiple priority levels of orders are usually apparent in
wafer fabrication, and higher priority must be given to
some urgent lots in order to be competitive and to satisfy
customers’ demand of accelerating the speed of products
entering into the market. When a full loading policy is
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not required for batch machines and machines are thus not
fully utilized, processing a higher priority order can result
in machine capacity loss and a elongation of production
cycle time of normal orders is resulted. As the lots with
higher priority increase, the variation in shop floor perfor-
mance will increase and the system throughput will reduce.

In conclusion, product and priority mix has a tremen-
dous impact to the production system, and product mix
with different multiple priority lots has different and great
influence on the system and pose a great challenge to wafer
fabrication. Many performance factors such as cycle time,
WIP level, throughput, bottleneck utilization rate will be
affected. Organizing the available data is a complicated
task, and different people involved in the decision-making
may have different opinions on these performance factors.
In addition, uncertain thinking process of human beings is
present. Therefore, this research proposed a fuzzy AHP
model with entropy weight concept to deal with multiple
performance factors and to evaluate which product and
priority mix can provide a more stabilized production envi-
ronment and a better overall outcome for a wafer fab. The
proposed model can be followed by administrators to
determine the most suitable priority mix and can provide
a guidance regarding strategies for aggregate planning so
as to improve manufacturing efficiency for a fab.

This paper is organized as follows. Section 2 goes over
the key concepts of priority levels in production, entropy
method and fuzzy AHP. Section 3 presents the methodol-
ogy and algorithm. Section 4 applies fuzzy AHP based
on entropy weights to the evaluation of the efficiency under
different priority mixes. Some conclusion remarks are made
in the last section.

2. Priority levels in production, entropy method and fuzzy

AHP

2.1. Priority levels in production

In order to keep the competitive edge and to satisfy cus-
tomers’ demand of urgent products, a wafer fab often has
multiple priority levels of orders. Usually, the production
priorities can be divided into three ranks: hot, rush and
normal, and a higher priority is given to urgent lots. An
order with a higher priority level demands a shorter cycle
time, and it can use a machine whenever there is no other
higher priority or equal priority order in presence. On the
other hand, a lower priority order has to wait till higher
priority orders finish processing and the machine becomes
available to it. Because of a longer waiting time, the pro-
duction cycle time of lower priority orders will be elongated
as a result.

Some researchers have examined the impact of hot lots
to the production system. Ehteshami, Petrakian, and Shabe
(1992) proposed that cycle time of a system will remain a
constant but the standard deviation of the system will
increase sharply when the proportion of hot lots in the
fab increases. Further, as the hot lot ratio increases, the
average cycle time and the standard deviation of cycle time
of normal lots increase sharply.

Atherton and Atherton (1995) stated that a loss in pro-
duction capacity is resulted by the processing of hot lots
due to more complicated process, more process steps, higher
reentry frequency and longer processing time. As the num-
ber of hot lots increases, a bottleneck shifting may occur,
and production planning and capacity assignments will
become ineffective.

Fronckowiak, Peikert, and Nishinohara (1996) applied
simulation to analyze the impact of different percentages
of hot lots on the cycle times and developed a rule in allo-
cating the amount of hot lots to reduce the impact of over-
all system cycle time. Narahari and Khan (1997) developed
an analytical method based on mean value analysis (MVA)
to predict the performance of semiconductor manufactur-
ing system in the presence of hot lots. The results also show
that hot lots have a significant effect on the mean cycle
time, variance of cycle time and throughput rate of normal
lots.

Since cycle time estimation is the basis for production
planning and control, Chung, Lee, and Chuang (2002)
developed cycle time estimation algorithms, block-based
cycle time (BBCT), for wafer fabs with or without existing
engineering lots. The basic logic of the algorithms is to base
on the material flow to examine the production cycle time
characteristic formation for each lot. Chung, Pearn, Kang,
Chen, and Ke (2001) further proposed a block-based cycle
time for multiple-priority (BBCT-MP) algorithm to esti-
mate cycle time for the product type with a distinct priority
class with the considerations of release size setting, batch
policies and dispatching rules for each priority class of
products. The proposed algorithm was proved to have an
outstanding performance on cycle time and utilization esti-
mation and a quick and satisfactory response.

Chung et al. (2002) constructed a capacity pricing mech-
anism for wafer fabrication, in which capacity price for
each priority of orders is determined by considering the
length of cycle time of an order, impact to the cycle time
variance of the order, and the usage amount of critical
resources. The comprehensive strategies include differenti-
ated price setting for orders of different levels of urgency,
analysis of system contribution of order acceptance, and
a quick response to the need of emergency order from
customers.

Chung, Pearn, Lee, and Ke (2003) presented an effective
job order releasing and throughput planning system for
multi-priority orders. The system is capable of setting
batch policy, estimating cycle time, determining suitable
system WIP level, designing daily bottleneck operations,
planning release schedule, and setting due date for job
orders.

In conclusion, the process of higher priority orders can
result in machine capacity loss if a full loading policy is
not required for batch machines and machines are not fully
utilized. As more orders with higher priorities are pro-
cessed, the variation in shop floor performance increases,
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and the system throughput reduces eventually. If bottle-
neck shifting occurs as a result, the production of lower pri-
ority orders will be impacted even more.

2.2. Entropy weight method

Shannon and Weaver (1947) introduced the entropy
method to measure the expected information content of
certain message, and the method has become an important
concept in many fields such as social sciences and physi-
cal sciences (Capocelli & De Luca, 1973; Nijkamp, 1997;
Shannon & Weaver, 1947). In information theory, entropy
is a criterion for the amount of information (or uncertainty)
represented by a discrete probability distribution, Pi

(Hwang & Yoon, 1981; Jaynes, 1957). A broad distribution
represents more uncertainty than a narrowed distribution
does. The entropy is expressed by a probability distribution,
and the terms ‘‘entropy’’ and ‘‘uncertainty’’ are considered
as synonymous (Hwang & Yoon, 1981). The measure of
uncertainty was proposed by Shannon as (Chan, Kao,
Ng, & Wu, 1999; Hwang & Yoon, 1981; Shannon & Wea-
ver, 1947):

SðP 1; . . . ; P hÞ ¼ �g
Xh

l¼1

P l ln P l; ð1Þ

where g = 1/ln(h) is a positive constant which guarantees
that 0 6 S(P1, . . . ,Ph) 6 1. The larger is the value of
S(P1, . . . ,Ph), the less is the information contained in
P1, . . . ,Ph. In consequence, 0 entropy indicates that the
maximum information (or uncertainty) is contained, and
1 indicates that the minimum information is contained. If
all Pl are equal to each other for a given l, that is,
Pl = 1/h, then S(P1, . . . ,Ph) takes on its maximum value.

Competitive priority ratings can be obtained through
the entropy method (Chan et al., 1999). Let the decision
matrix R of m alternatives and n attributes (criteria) be

ð2Þ

The outcomes, rij, of alternative Ai and attribute Bj, then
can be calculated as following:

P ¼

r11

m1

r12

m1
� � � r1n

m1
r21

m2

r22

m2
� � � r2n

m2

..

. ..
. ..

. ..
.

rm1

mm

rm2

mm
� � � rmn

mm

2666664

3777775 ¼
p11 p12 � � � p1n

p21 p22 � � � p2n

..

. ..
. ..

. ..
.

pm1 pm2 � � � pmn

266664
377775; ð3Þ

where Pij = rij/mi and mi ¼
Pn

j¼1rij.
The entropy weight ei of the set of outcomes of alterna-

tives i can be defined by Eq. (3) as (Cheng, 1996)
ei ¼ �
Xn

j¼1

ðpijÞlog2ðpijÞ for i ¼ 1; . . . ;m. ð4Þ

The normal entropy weight êi of alternatives i can be
obtained as

êi ¼
eiPm
i¼1ei

for i ¼ 1; . . . ;m. ð5Þ

Many researches, from several justified characteriza-
tions, have proved that the assessments of attributes’ rela-
tive importance or priorities can be related very sensibly to
this information concept (Chan et al., 1999; Juang & Lee,
1991; Moinpur & Wiley, 1974). Therefore, entropy weight
method is adopted in the proposed model in this paper.

2.3. Fuzzy AHP

Many researches have been done to solve multiple crite-
ria decision making (MCDM) problems. For example,
Suwignjo, Bititci, and Carrie (2000) constructed a quantita-
tive model for performance measurement system (QMPMS)
that relied on AHP to quantify both tangible and intangible
factors for performance to let organizations incorporate
and map performance measures in a hierarchical way. Bit-
itci, Suwignjo, and Carrie (2001) further applied the
QMPMS for manufacturing strategy evaluation and man-
agement in a dynamic environment. By adopting the AHP
methodology, Wei, Chien, and Wang (2005) presented a
comprehensive framework, that ‘‘systematically construct
the objectives of ERP selection to support the business
goals and strategies of an enterprise, identify the appropri-
ate attributes, and set up a consistent evaluation standard
for facilitating a group decision process’’, to select a suitable
ERP system. Chung, Lee, and Pearn (2005) proposed an
application of the analytic network process (ANP) for the
selection of product mix for efficient manufacturing in a
semiconductor fabricator by incorporating experts’ opinion
on various performance factors.

A good decision-making models needs to tolerate vague-
ness or ambiguity since fuzziness and vagueness are com-
mon characteristics in many decision-making problems
(Yu, 2002). Since decision-makers often provide uncertain
answers rather than precise values, and the transformation
of qualitative preferences to point estimates may not be
sensible. Linguistic values, whose membership functions
are usually characterized by triangular fuzzy numbers,
can be used to assess preference ratings instead of conven-
tional numerical equivalence method since the fuzzy lin-
guistic approach can take the optimism/pessimism rating
attitude of decision makers into account (Liang & Wang,
1994). Due to the fact that uncertainty should be consid-
ered in some or all of the pairwise comparison values, the
pairwise comparison under traditional AHP, which needs
to select arbitrary values in the process, may not be appro-
priate (Yu, 2002). The use of fuzzy numbers and linguistic
terms may be more suitable, and the fuzzy theory in AHP
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should be more appropriate and effective than traditional
AHP in an uncertain pairwise comparison environment.

One of the most important concepts of fuzzy sets is the
concept of an a-cut. For a fuzzy number C and any number
a 2 [0, 1], the a-cut, Ca, is the crisp set (Klir & Yuan, 1995)

Ca ¼ x j CðxÞP af g. ð6Þ
The a-cut of a fuzzy number C is the crisp set Ca that

contains all the elements of the universal set U whose mem-
bership grades in C are greater than or equal to the speci-
fied value of a.

By defining the interval of confidence at level a, the tri-
angular fuzzy number can be characterized as (Cheng,
1996, 1999; Cheng & Mon, 1994; Juang & Lee, 1991; Kauf-
mann & Gupta, 1991)eCa ¼ ½pa; sa� ¼ ½ðq� pÞaþ p;�ðs� qÞaþ s�; 8a 2 ½0; 1�.

ð7Þ
Many methods have been suggested to rank fuzzy num-

bers, such as intuition ranking method, fuzzy mean and
spread, uniform distribution, proportional distribution
and a-cut method (Adamo, 1980; Lee & Li, 1988). Adamo
(1980) made the definition by selecting a particular value of
a 2 [0, 1] and a-cut eEa ¼ ½pe; se�, eF a ¼ ½pf ; sf �, and theneE 6 eF if se 6 sf[0]. This definition is dependent on the cho-
sen value of a, which is usually required to be greater than
0.5. More sophisticated methods such as the use of multiple
a-cut values are also present (Mabuchi, 1988). Recently,
Chen and Cheng (2005) proposed a metric distance method
to deal with the ranking order of fuzzy numbers both for
positive and negative, symmetry and non-symmetry fuzzy
numbers. A review and comparison of the models were
done by some researchers (Chen & Hwang, 1992; Lee &
Li, 1988; Zimmermann, 1987). Each method has its own
advantages and disadvantages (Klir & Yuan, 1995).

Numerous researches have been done with the applica-
tion of fuzzy AHP (Boender, de Graan, & Lootsma,
1989; Chen, 1996; Cheng, 1999; Cheng & Mon, 1994; Laa-
rhoeven & Pedrycz, 1983; Murtaza, 2003). There are also
several papers that combine AHP, fuzzy theory and
entropy method to deal with MCDM problems. Mon,
Cheng, and Lu (1995) proposed a model for evaluating
weapon systems using fuzzy AHP based on entropy weight.
Symmetric triangular fuzzy numbers ~1 to ~9 were used to
indicate the relative strength of the elements in the hierar-
chy, and fuzzy judgment vectors (matrices) through the
comparison of performance scores were built next. The pri-
ority among the weapon system alternatives could be
derived by the entropy weight. Cheng (1996) proposed an
algorithm for evaluating naval tactical missile systems by
the fuzzy AHP based on grade value of membership func-
tion. Membership function of judgment criteria for all subi-
tems was built first, and the grade of membership function
by practical data was calculated to represent performance
scores. Fuzzy AHP based on entropy was adopted to calcu-
late aggregate weights to deal with naval tactical missile
systems valuation and selection problem.
Chan et al. (1999) rated the importance of customer
needs in quality function deployment (QFD) by fuzzy
and entropy methods. A concise and applicable qualitative
description and the corresponding quantitative presenta-
tion of the customer needs were generated first. The fuzzy
method was next applied to convert customers’ linguistic
assessments of the needs to fuzzy numbers, and the relative
importance of the needs was rated using fuzzy arithmetic.
The entropy method was adopted to analyze customers’
assessments of the performance of related companies to
obtain competitive priority ratings. The above two sets of
ratings were combined to generate the final importance rat-
ings of customer needs. Chou and Liang (2001) presented a
fuzzy MCDM model for shipping company performance
evaluation by combining fuzzy set theory, AHP and con-
cept of entropy. The AHP was first used to construct sub-
jective weights for criteria and subcriteria, and linguistic
values represented by triangular fuzzy number were used
to evaluate subjective criteria. Financial performance crite-
ria were transformed into trapezoidal fuzzy numbers, while
the objective weights for financial subcriteria were obtained
by entropy weighting method. The aggregation fuzzy
assessment of different shipping companies was synthesized
to rank the company performances. Kwong and Bai (2003)
proposed a fuzzy AHP with an extent analysis approach to
determine the importance weights for the customer require-
ments in QFD, and stated that the method was effective
due to its capability to capture the vagueness of human
judgment. The algorithm is simple to determine the weight
vectors and easy to implement since the tedious calculation
of eigenvectors required by the conventional AHP is no
longer necessary.

Lee, Kang, and Wang (in press) constructed an analyti-
cal approach for dealing with the priority mix problem
under subjective judgment environment, and fuzzy AHP
was applied to deal with uncertainty while considering var-
ious important factors for efficient semiconductor fabrica-
tion. However, the research was rather rough, and the
information content of message and the degree of optimism
of experts were not considered. As a result, we will propose
a more comprehensive model that combines the AHP,
fuzzy set theory and entropy method, to solve the priority
mix problem in semiconductor manufacturing.

3. Methodology and algorithm

In this section, a systematic fuzzy AHP model with
entropy method for evaluating the performance under dif-
ferent priority mixes in a semiconductor fabricator is pro-
posed. The steps are summarized as follows:

Step 1. Experts in semiconductor industry are invited to
define the priority mix problem. Since multiple pri-
ority lots have great influence on the production
system and final financial return for a fab, the
selection of an appropriate priority mix for a fab
to produce is essential for the fab to be successful.
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Step 2. Decompose the priority mix problem hierarchi-
cally. The efficient production performance in a
semiconductor fabricator is the overall objective
in the first level. The criteria for achieving the
overall objective in the second level and detailed
criteria in the third level are analyzed by the
experts.

Step 3. Based on the hierarchy proposed, formulate a
questionnaire to first compare criteria pairwisely
in their contribution toward achieving the goal
of efficient production performance and next
compare detailed criteria pairwisely in their con-
tribution toward achieving their upper-level crite-
rion. Five different levels of evaluation are used,
and the linguistic values can be obtained from
Table 1.

Step 4. Establish fuzzy weight vector. The geometric
mean method was adopted to generalize the opin-
ion of experts. For a number of T experts, the rel-
ative importance level between factor P and
factor q rated by expert k, k = 1,2, . . . , t, can be
expressed as gpqk, and the synthetic fuzzy set rep-
resenting the relative importance level between
factors p and q can be expressed as (Kuo, Chi,
& Kao, 2002)
Table 1
Linguistic v

Fuzzy lang

Very impor
Important
Equal impo
Unimporta
Very unimp
gpq ¼
Yt

k¼1

gpqk

 !1
t

; 8k ¼ 1; 2; . . . ; t; ð8Þ

Q ¼

g11 g12 � � � g1z

g21 g22 � � � g2z

..

. ..
.

gpq
..
.

gz1 gz2 � � � gzz

26666664

37777775 ð9Þ

where gqp ¼
g�1

pq if p 6¼ q;
1 if p ¼ q;

�

ap ¼

Xz

q¼1

gpq; 8p ¼ 1; 2; . . . ; z; ð10Þ

Zp ¼
apPn
p¼1ap

; 8p ¼ 1; 2; . . . ; z. ð11Þ

By synthesizing experts’ opinions, the weights of
criteria, can be represented by a fuzzy weight vec-
tor ~w:
alue table

uage Quantitative value

tant 9
7

rtant 5
nt 3
ortant 1
~w ¼

~w1

~w2

..

.

~wn

266664
377775 ð12Þ

where ~wp ¼ ~1; ~3; ~5; ~7; ~9.

Step 5. Establish judgment vector for each detailed crite-

rion that use simulation results. Both simulation
results and experts’ opinions are used to estimate
the performance of detailed criteria under each
priority mix. For simulation results, the unit of
measure can range from number of lots to hours
and to dollars, these quantitative data need to be
transformed into values between zero to one.
Membership function is applied here, and ‘‘1’’
represents the best outcome while ‘‘0’’ represents
the worst outcome. The membership function
for a detailed criterion that is better with a bigger
value is as follows:
lh ¼
ðx� x�h Þ=ðxþh � x�h Þ; x�h 6 x 6 xþh ;

1; x P xþh .

�
ð13Þ

The membership function for a detailed criterion
that is better with a smaller value is as follows:

lh ¼
ðxþh � xÞ=ðxþh � x�h Þ; x�h 6 x 6 xþh ;

1; x 6 x�h ;

�
ð14Þ

where xþh is the largest possible value of a detailed
criterion, x�h is the smallest possible value of a de-
tailed criterion, and x is the value of a detailed
criterion.
Step 6. Establish judgment vector for each detailed crite-
rion that is evaluated by the experts. Some
detailed criteria may be difficult to be obtained
through simulation, and experts’ opinions are,
therefore, used instead. Five different levels of
evaluation are used and their linguistic values
are similar to those shown in Table 1, except that
the fuzzy language is changed to ‘‘very good’’,
‘‘good’’, ‘‘fair’’, ‘‘poor’’ and ‘‘very poor’’. The
geometric mean method was again used to gener-
alize the opinions of experts. To be consistent
with the results obtained from simulation, the
geometric mean result for each detailed criterion
under each priority mix is minus one and divided
by 8. The judgment vector for each qualitative
detailed criterion is obtained.

Step 7. Combine the judgment vectors of detailed criteria
with the same upper-level criterion with the
results from Steps 5 and 6 to obtain transformed
values for detailed criteria with the same upper-
level criterion. A fuzzy judgment matrix, eX, is
built next to represent the relative performance
of the priority mixes under different criteria.
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Step 8. Establish the total fuzzy judgment matrix, eR, by
multiplying the elements in fuzzy judgment
matrix eX with the elements in fuzzy vector ~w.
The equation is2 3

eR ¼

~x11 � ~w1 ~x12 � ~w2 � � � ~x1n � ~wn

~x21 � ~w1 ~x22 � ~w2 � � � ~x2n � ~wn

..

. ..
. ..

. ..
.

~xm1 � ~w1 ~xm2 � ~w2 � � � ~xmn � ~wn

66664
77775.

ð15Þ

Step 9. Establish the total fuzzy judgment matrix with a-

cuts by performing fuzzy number multiplications
and additions with the interval arithmetic and
cuts. From Eq. (7), Eq. (15) can be simplified to
eRa ¼

ra
11L; r

a
11U½ � ra

12L; r
a
12U½ � � � � ra

1nL; r
a
1nU½ �

ra
21L; r

a
21U½ � ra

22L; r
a
22U½ � � � � ra

2nL; r
a
2nU½ �

..

. ..
. ..

. ..
.

ra
m1L; r

a
m1U½ � ra

m2L; r
a
m2U½ � � � � ra

mnL; r
a
mnU½ �

26666664

37777775;

ð16Þ

where ra
ijL ¼ xa

ijL � wa
iL, ra

ijU ¼ xa
ijU � wa

iU for
0 < a 6 1 and for all i, j.
Step 10. Establish the total fuzzy judgment matrix with a-
cuts and the degree of satisfaction of the experts
on judgment, bRb

a . When a is fixed, the index of
optimism b can be set to represent the degree of
the optimism of a decision maker. A larger b indi-
cates a higher degree of optimism, and vice versa.
The index of optimism is a linear convex combi-
nation and is defined as
r̂ab
ij ¼ ð1� bÞra

ijL þ bra
ijU ; 8b 2 ½0; 1�. ð17Þ

Thus the total fuzzy judgment matrix with a-cuts
and index of optimism b is

bRb
a ¼

r̂ab
11 r̂ab

12 � � � r̂ab
1n

r̂ab
21 r̂ab

22 � � � r̂ab
2n

..

. ..
. ..

. ..
.

r̂ab
m1 r̂ab

m2 � � � r̂ab
mn

2666664

3777775. ð18Þ
Step 11. Compute the entropy weight ei of alternative i by
applying Eqs. (3) and (4). Then, obtain the nor-
mal entropy weight êi of alternative i by Eq. (5).
4. Numerical example

In this section, the proposed fuzzy AHP model is
applied to solve the priority mix problem for a fab. In a
multi-criteria problem, numerous criteria are considered,
and the selection of criteria should be based on the analysis
of the specific requirements of the problem. With a compre-
hensive review of literature and a consultation with domain
experts, the hierarchy and the factors for determining the
efficiency of priority mix are as in Fig. 1.
The three major criteria and the detailed criteria used to
evaluate manufacturing performance of a semiconductor
fab are defined as follows:

(1) Product evaluates how products are manufactured in a
fab.
• WIP measures the number of lots of manufacturing

that have been released into the wafer fab but have
not yet been finished processing through all of their
manufacturing steps.

• Throughput represents the number of lots of manu-
facturing that pass through the final operation step
in a period.

• Total layers count the number of layers the bottle-
neck processed in a period of time.

• Total cycle time is the duration of time, expressed in
hours, consumed by a unit of manufacturing from
the time of release into the fab until time of exit from
the fab. It is a weighted average cycle time, with
the weights being the ratio of product and priority
mix.

• On time delivery indicates the ability to meet produc-
tion schedules. It is calculated by dividing the percent-
age of actual output quantity by the end of a period
that is greater than or equal to the scheduled quantity
in a period of time, to the scheduled output in that per-
iod of time. It can be expressed at the die level or at the
finished goods level (Leachman & Hodges, 1996).

• Lateness variance states the deviation between an
order’s completion time and its due date. If an order
is completed after its due date, it will have a positive
lateness. On the other hand, if it is completed before
its due date, it will have a negative lateness. A greater
lateness variance indicates a higher uncertainty of
completing orders on the right time.

• WIP turnover is the replacing rate of WIP during a
period. It shows how often the inventory of WIP is
replaced during the period being measured. It is cal-
culated by dividing the finished units out by the aver-
age WIP (SEMI, 2002).

• Cycle time standard variation expresses the variability
of cycle time in the production process. A higher
value indicates a higher difficulty in the prediction
of the cycle time and a more unstable production
system.

• Critical WIP measures the WIP level of the bottle-
neck resource. It is the WIP level that (theoretically)
allows the factory to have the highest throughput
rate with the shortest cycle time.

(2) Equipment efficiency measures how effective the equip-
ment is used in manufacturing.
• BN utilization measures the average utilization rate

of the bottleneck in the system for a period of time.
Equipment utilization should be as high as possible
at the bottleneck workstation since the bottleneck
gates the throughput of the entire manufacturing
system.
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Determine the
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Equipment
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Total cycle time
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9:0:1

7:2:1

WIP  turnover

Cycle time standard
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Critical WIP

Tardy penalty

CCR Utilization

Average load size

Throughput

WIP

Priority Mix
(N:R:H)

Fig. 1. The hierarchical framework of factors.
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• CCR utilization shows the average utilization rate of
the CCR in the system for a period of time. A CCR is
a workstation with a substantially high utilization
rate, even though it is not a bottleneck.

• Average load size measures the average loading rate
on batch equipment. It represents the average num-
ber of lots batch equipment can process at a point
of time.

• Overall equipment efficiency (OEE) measures the
equipment performance relative to theoretical pro-
duction time. It is calculated by dividing the theoret-
ical production time for the effective unit output by
the total time (SEMI, 2002).

(3) Finance evaluates the cash flow a wafer fab can make
or need to spend in the manufacturing process.
• Total revenue is calculated by summing up revenue of

each product type. The price for a product is set by
its product type, priority level and the number of lay-
ers that product goes through, and revenue of a
product is calculated by multiplying the price of the
product with its throughput.
• Variable costs include total variable manufacturing
costs and total holding costs. Direct material cost is
the primary part of total variable manufacturing
costs. Other variable manufacturing cost includes
indirect material cost and is varied according to the
manufacturing level. The holding cost is the time cost
of carrying WIP in the manufacturing system.

• Tardy penalty measures the cost of not meeting due
dates. A certain amount of discount or penalty may
need to be given to the customers if the completion
time of an order is after the contracted due date. In
addition, the deterioration of goodwill must be
considered.

A questionnaire was constructed and targeted on the
experts in the semiconductor industry. A total of six
experts are invited to contribute their professional experi-
ence. Four of them are senior managers of production
planning and finance departments from three internation-
ally well known semiconductor manufacturing companies
in the Science-Based Industrial Park in Taiwan, and the
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other two are scholars in production management from
two universities in Taiwan. The first question, ‘‘which crite-
ria should be emphasized more in determining efficient
manufacturing, and how much more?’’ was asked, and a
pairwise comparison with the fuzzy language in Table 1
was used by experts to express their opinions. The group’s
opinions can be synthesized by applying Eqs. (8)–(12), and
a fuzzy weight vector ~w can be obtained where ~wp ¼
~1; ~3; ~5; ~7; ~9. The weight of product, equipment efficiency

and finance represented by a fuzzy weight vector ~w is

~w ¼
product equipment efficiency finance

~3 ~1 ~9

� �
.

Based on the experts’ judgments, finance is the most impor-
tant criterion followed by product. Therefore, profitability
is the major concern for selecting a product mix.

To obtain a priority mix that is efficient for manufactur-
ing, actual data is collected from a wafer fabrication fac-
tory located on the Science-Based Industrial Park in
Taiwan. A simulation model is developed by EM-Plant
(Tecnomatix Technologies Ltd., 2001) to generate relevant
quantitative production performance indicators. To sim-
plify the complexity of the environment for analysis, we
made the following assumptions:

• Two different product types, L and M, are fabricated in
this system. Product L is a logic product, and product M
is a memory product. The process of each product is dif-
ferent and unique. Product L requires 276 operations
and passes through the bottleneck 16 times, or 17 layers
are processed. Product M requires 330 operations and
passes through the bottleneck 21 times (22 layers
processed).
Table 2
Simulation result

Rank mix (N:R:H)

I:Mix(10:0:0) II:MIX(9:0:1)

WIP (lots) 278.71 309.63

Throughput (TP) (lots) 640 600

Total layers (TL) 12160 11400

Total cycle time (CT) (hours) 292.63 346.86

BN utilization (BU) (%) 0.99 0.94

CCR utilization (CU) (%) 0.83 0.87

Total revenue (TR) (103$) 16248 15994

Variable costs (VC) (103$) 3909 3666
• The lot priority is classed into hot, rush and normal in
descending order. Processing a higher priority lot may
result in the loss of machine capacity if non-full load-
ing policy is adopted for batch machines. A higher
ratio of higher priority lots thus incurs longer waiting
time for lower priority lots. Three alternatives are eval-
uated here: producing only normal products, producing
10% of hot lots and 90% of normal products for each
product type, and producing 10% of hot lots, 20% of
rush lots and 70% of normal lots for each product
type.

• The releasing batch size for normal lots is six lots, and
that for hot lots is one lot. The hot orders are not limited
by batching policy, and they can be released into shop
floor and be loaded onto any batch machine with only
a single lot. For normal lots, a full batch of six lots must
be formed before releasing to the floor in order to have
effective use of many workstations which have a maxi-
mum batch size (MBS) of six lots. For rush orders, the
batch size is determined by the minimum batch size of
the machine being worked on while the minimum batch
size of a machine can be varied from one lot to six lots
depending on the machine setting. Wafer lots are
released under a fixed work-in process (WIP) policy,
CONstant WIP (CONWIP).

• The planning horizon is 168 working days, and each day
consists of 24 working hours. The first 84 days are a
warm-up period, and the results of the next 84 days
are collected. The simulation model is run 15 times to
generate statistical results under each product and prior-
ity mix. Mix(7:2:l) means that the priority mix ratio for
normal, rush and hot levels for both product L and
product M are 7, 2 and 1.
Membership function

III:MIX(7:2:1)

279.73
lWIP ¼

ð400� xÞ=150; 250 6 x 6 400
1; x 6 250

�

620 lTP ¼
ðx� 500Þ=200; 500 6 x 6 700
1; x P 700

�

11780 lTL ¼
ðx� 10000Þ=4000; 10000 6 x 6 14000
1; x P 14000

�

303.21 lCT ¼
ð400� xÞ=200; 200 6 x 6 400
1; x 6 200

�

0.97 lBU ¼
ðx� 0:69Þ=0:3; 0:69 6 x 6 0:99
1; x P 0:99

�

0.90 lCU ¼
ðx� 0:5Þ=0:49; 0:50 6 x 6 0:99
1; x P 0:99

�

17156 lTR ¼
ðx� 15000Þ=3000; 15000 6 x 6 18000
1; x P 18000

�

3787 lVC ¼
ð4000� xÞ=500; 3500 6 x 6 4000
1; x 6 3500

�



Table 4
Transformed values for detailed criteria under product

Item I:Mix(10:0:0) II:Mix(9:0:1) III:Mix(7:2:1)

1 WIP 0.81 0.60 0.80
2 Throughput (TP) 0.70 0.50 0.60
3 Total layers (TL) 0.54 0.35 0.45
4 Total cycle time (CT) 0.54 0.27 0.48
5 On time delivery 0.95 0.52 0.57
6 Lateness variance 0.74 0.06 0.57
7 WIP turnover 0.66 0.22 0.48
8 Cycle time standard

variation
0.85 0.03 0.79

9 Critical WIP 0.06 0.57 0.60
Total score 5.85 3.11 5.35

Table 5
Transformed values for detailed criteria under equipment efficiency

Item I:Mix(10:0:0) II:Mix(9:0:1) III:Mix(7:2:1)
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The data obtained from running simulation is shown in
Table 2. The concept of membership function is used to
transform the data into values between zero and one.
The membership functions of detailed criteria are listed
in Table 2 to assign values of zero and one to the worst
and the best outcomes, and the judgment vectors for qual-
itative detailed criteria are obtained.

Although simulation results can be used to estimate the
manufacturing performance, data of many factors are very
hard to be obtained through simulation, even if possible.
Therefore, some important factors are evaluated by the
experts instead. Depending on the availability of data,
either data collected from the floor or the opinions given
by experts can be analyzed in real practice. Five different
levels of evaluation are used here, namely, very good, good,
fair, poor and very poor. Group’s opinions are generated
by geometric average method and are shown in Table 3.

Priority mix I is assessed by experts to perform pretty
well on factors such as on time delivery, tardy penalty
and cycle time standard variation due to the facts that only
normal products are produced and that the environment is
most stable with little unexpectedness. The performance of
priority mix III is perceived to be relatively better than pri-
ority II in many aspects even though three priority levels of
products are produced under priority mix III, compared
with only hot and normal orders under priority mix II.
The major reason for the expected outcomes is because
of the batch size of rush orders. In the setting of the pro-
duction system, the batch size of normal lots is six lots, that
is, a full batch of six lots must be formed before it can be
released to the floor. On the other hand, the batch size of
rush lots can range from one to six lots, depending on
the minimum batch size of the machine being worked on.
In consequence, the waiting time under priority mix III is
lower, and the factors such as cycle time, cycle time stan-
dard variation and lateness variance are considerably bet-
ter. However, the evaluation may change if the batch
sizes of the three priorities of orders are set differently from
those set in this model.

Each value in Table 3 is minus one and divided by 8, and
the judgment vectors for qualitative detailed criteria are
obtained. By combining the judgment vectors for both
qualitative detailed criteria and quantitative detailed crite-
Table 3
Geometric average of experts’ opinion on factors

Priority mix (N:R:H)

I:Mix(10:0:0) II:Mix(9:0:1) III:Mix(7:2:1)

On time delivery 8.63 5.14 5.59
Lateness variance 6.90 1.44 5.59
WIP turnover 6.26 2.72 4.86
Cycle time standard

variation
7.83 1.20 7.30

Critical WIP 1.44 5.59 5.83
Average load size 4.86 2.72 7.62
OEE 6.90 3.56 8.63
Tardy penalty 8.28 3.56 7.94
ria, the transformed values for detailed criteria with the
same upper-level criterion (product, equipment efficiency

and finance) are listed in Table 4–6.
By using the total score for each priority mix under each

criterion, a fuzzy number is given to represent the relative
performance of each priority mix on each criterion. A fuzzy
judgment matrix is resulted:

eX ¼ ~9 ~3 ~3
~1 ~1 ~1
~7 ~5 ~3

264
375.

Total fuzzy judgment matrix, eR, is

eR ¼ ~9� ~3 ~3� ~1 ~3� ~9
~1� ~3 ~1� ~1 ~1� ~9
~7� ~3 ~5� ~1 ~3� ~9

264
375.

By applying Steps 9–11 in Section 3, the performance of
different priority mixes under different a-cuts and index of
optimism b are calculated and shown in Fig. 2 and Table 7.
The results are variant depending on the values of a and b.
For example, when we let a = 0, as b increases from 0.0
(very pessimistic) to 1.0 (very optimistic), the best alterna-
1 BN utilization (BU) 1.00 0.83 0.93
2 CCR utilization (CU) 0.67 0.76 0.82
3 Average load size 0.48 0.22 0.83
4 OEE 0.74 0.32 0.95

Total score 2.89 2.13 3.53

Table 6
Transformed values for detailed criteria under finance

Item I:Mix(10:0:0) II:Mix(9:0:1) III:Mix(7:2:1)

1 Total revenue (TR) 0.42 0.33 0.72
2 Variable costs (VC) 0.82 0.33 0.57
3 Tardy penalty 0.91 0.32 0.87

Total score 2.15 0.98 2.16



Fig. 2. The curves of entropy weight for priority mix I, II and III with
a = 0.0 (0.25) 1 and b = 0.0 (0.25) 1.

Table 7
Performance of priority mixes under different a-cuts and b

b êi a

0.0 0.25 0.5 0.75 1.0

0.00 ê1 0.41 0.46 0.48 0.49 0.50
ê2 0.21 0.13 0.10 0.08 0.06
ê3 0.38 0.41 0.42 0.43 0.44

0.25 ê1 0.41 0.44 0.46 0.48 0.50
ê2 0.17 0.13 0.11 0.08 0.06
ê3 0.42 0.43 0.43 0.44 0.44

0.5 ê1 0.41 0.43 0.45 0.48 0.50
ê2 0.16 0.14 0.11 0.09 0.06
ê3 0.43 0.43 0.43 0.44 0.44

0.75 ê1 0.41 0.43 0.45 0.47 0.50
ê2 0.16 0.14 0.12 0.09 0.06
ê3 0.43 0.43 0.44 0.44 0.44

1.0 ê1 0.41 0.42 0.44 0.47 0.50
ê2 0.16 0.14 0.12 0.09 0.06
ê3 0.43 0.43 0.44 0.44 0.44
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tive changes from mix I with ê1 ¼ 0:41 (mix III with
ê3 ¼ 0:38) when b = 0 to mix III with ê3 ¼ 0:43 (mix I with
ê1 ¼ 0:41) when b = 1. This implies that when the experts
are very undetermined about their evaluations and the sim-
ulation results are not very certain, the best alternative may
change depending on the experts’ level of optimism. On the
other hand, as a increases, the best alternative under differ-
ent levels of b tends to be mix I. From Fig. 2, we can also
notice that the surfaces of ê1 and ê3 are intersected. As a
result, the best alternative can be either mix I or mix III,
depending on the values of a and b. However, since a is
usually set to be greater than 0.5 in practice, the best alter-
native is mix I, in which only normal orders are processed.
This implies that the fab should stress on producing normal
orders and reduce its acceptance of hot or rush orders if
possible.

5. Conclusions

Wafer fabrication consists of a very complex production
environment, and the priority level issue complicates the
production system even more. The aim of this research is
to construct a fuzzy AHP model that applies fuzzy set the-
ory and entropy weight concept, to evaluate different prior-
ity mixes and to support the selection of priority mix that is
efficient for a wafer fab to manufacture.

In the performance evaluation of wafer fabrication,
many factors, including financial success for an enterprise,
production outcome and smoothness, and equipment utili-
zation, must all be considered. In addition, some factors
are quantitative, while others are qualitative. The combina-
tion of these factors to generate a final evaluation ranking
for different priority mixes is the objective of the proposed
model. The importance of the factors is first evaluated by
experts, and the uncertainty of human decision-making is
taken into account through the fuzzy concept. The out-
comes of quantitative factors under different priority mixes
are obtained through a simulation model, while the out-
comes of qualitative factors under different priority mixes
are examined by experts. Fuzzy set theory, entropy weight
concept and level of optimism are applied to determine the
relative efficiencies of different priority mixes.

In this paper, priority mixes with hot, rush and normal
orders are considered. To simplify the model, two products
with a fixed product mix ratio are taken into account.
However, in this intensive competitive semiconductor
industry, many different products with multiple priorities
are usually manufactured in order to satisfy customer
demand. As a result, the manufacturing environment is
even more complex, and this is our future research
direction.
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