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Abstract

Many IT practitioners and researchers advocate that data models of data warehouses should incorporate the sources of
their data in order to achieve maximum efficiency. As the source data are probably derived from system designed with ER
diagrams, a great deal of research has been devoted to the design of methodologies for building multidimensional models
based on source ER diagrams. However, to the best of our knowledge, no algorithm has been proposed that can system-
atically translate an entire ER diagram into a multidimensional model with hierarchical snowflake structures. In this paper,
we propose an algorithm that achieves the above goal because it incorporates two features, namely, grain preservation and
the minimal distance from each dimension table to the fact table. The grain preservation feature guarantees that the trans-
lated multidimensional model will maintain cohesive granularity among the entities. Meanwhile, the minimal distance fea-
ture guarantees that if an entity can be connected to the fact table in the multidimensional model by more than one path,
the path with the smallest number of hops will always be chosen. The first feature is derived by translating ambiguous
relationships between entities into weighting factors stored in bridge tables and enhancing fact tables with unique primary
keys. The second feature results from including a revised shortest path algorithm in the translating algorithm, with the
distance being calculated as the number of relationships required between entities. A prototype system based on the meth-
odology is also developed, and snapshots of the screens used for the system’s execution are presented.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

As an increasing number of enterprises experience a rapid growth in the amount of data stored in their
operational systems, many consider implementing enterprise-wide data automation software to organize the
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Fig. 1. A sample multidimensional model; source [19].
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data and facilitate decision-making. The implementation of data warehousing software by organizations is
expected to grow rapidly in the next decade [29,34,25]. When correctly implemented, a data warehouse
(DW) system enables companies to reap many benefits and obtain timely information for decision-making
[15].

In DW projects, data are collected, cleaned, integrated, and organized into special data models designed for
quick access and easy comprehension by decision-makers [17,18]. Because of the importance of such applica-
tions, a great deal of research has been devoted to studying appropriate data presentation models
[1,2,4,5,7,12–14,16,18,19,23,24,26–28,30,32]. At present, the widely used DW model is the multidimensional
model1, which comprises a fact table and a set of dimension tables connected to the fact table around the
periphery. The fact table stores the measures of the performance indicators that are of interest to managers,
while the dimension tables provide viewpoints or entry points for accessing the data. Fig. 1, taken from [19],
shows a sample multidimensional model with a fact table and three dimension tables.

One of the most important tasks when designing a multidimensional model involves deciding the granular-
ity of the model. The grain is the level of detail at which measurements or events are stored [19,30]. To return
cohesive querying results, a multidimensional model design must have a consistent grain, as noted by Inmon
and Kimball [17,19]. After a model’s grain has been decided, all measures in the fact table and all dimension
tables must adhere to this grain; otherwise, serious mistakes can easily occur when query programs are being
written.

The following scenario is an example of a grain mismatch. In a typical supermarket visit, a customer buys
several products in a single transaction and the dollar amount of each product is aggregated into a total. If a
multidimensional model is used to record the total dollar amount of each transaction, the grain is on the level
of the transaction (shown in Fig. 2). If products are also stored as a dimension in the model, then querying the
transaction amounts in the product dimension will return figures that not only include the cost of a particular
product, but also the cost of other products purchased in the same transaction. This difference is due to a grain
mismatch between the fact table and the dimension table. The grain of the fact table is on the transaction level,
which may include more than one product. It can be seen from this example that designing a model with
coherent facts and dimensions is vital in designing multidimensional models.

Moreover, data in a data warehouse are derived from a variety of systems whose data are probable modeled
by ER diagrams [8]. In practice, model designers must study the ER diagrams of the source systems, decide the
granularity of the target models, and design a multidimensional model manually. Since ER models can be
quite complicated, the definition of the grain for each multidimensional model can be subtle; and to make mat-
ters worse, the models may be designed by more than one person. Although grain mismatches between facts
and related dimension tables are common, errors may not be detected until the query programs are completed
and the results are shown to business users. Debugging the errors may result in program redesigns, project
delays, and provoke user frustration and distrust of the generated reports. A systematic approach that can
automate the design processes is thus long overdue. Automatic processes would greatly reduce designers’
efforts and, more importantly, reduce errors due to grain mismatches.
1 The multidimensional model is also referred to as a dimensional model in some studies.



Fig. 2. The many-to-many relationship between the fact and dimension tables.

Y.-T. Chen, P.-Y. Hsu / Information Sciences 177 (2007) 3679–3695 3681
Given such potentially substantial benefits, many IT practitioners and researchers have striven to develop
methodologies for designing multidimensional models from operational systems. Golfarelli and Rizzi [14] con-
sidered that the techniques required for designing a data warehouse are completely different from those used
when designing operational systems. They also noted that there is no complete and consistent design method-
ology available for designing a data warehouse. Therefore, they outlined several key steps and crucial issues
that should be considered when designing a data warehouse. Dori et al. [11] provided a survey of techniques
for transforming an operational system model into a data warehouse model, and classified the construction
techniques into two categories. In the first category, structural (data) models, such as ERD and XML, are
used as source systems to build corresponding data warehouse models [4,7,13,14,21,23,24,28,30,32]. In the sec-
ond, the data warehouse model is derived from business processes [10,3,20]. The former method has attracted
much more attention than the latter, so we only review research in the first category. Moody and Kortink [24]
proposed a three-step method that derives multidimensional models from entity relational models, namely,
entity classification, identification of hierarchies, and the production of dimensional models. They also
described five optional schemas as outcomes, ranging from a simple flat schema to a complex snowflake
schema. Song et al. [30] presented five methods for handling specific issues of many-to-many relationships that
might arise while transforming an ER diagram into a dimensional model. Tryfona et al. [32] proposed the
starER model, which can handle richer semantics than the traditional multidimensional model when recording
many-to-many relationships between a fact table and dimension tables. Bonifati et al. [5] proposed a three-step
method for designing a data mart. They used top–down requirement analysis to elicit and consolidate user-
requirements, bottom–up data model extraction to form candidate models, and consolidation to derive ideal
data models. Cabibbo and Torlone [7] proposed a method that constructs a multidimensional schema from an
underlying operational database. The schema consists of a finite set of dimensions, a finite set of fact tables,
and a finite set of level descriptions of the dimensions. Golfarelli et al. [13] suggested using a graphical con-
ceptual model (Dimensional Fact model) for data warehouses and a semi-automated methodology to con-
struct a tree-structured fact schema from an Entity–Relation schema. Marotta et al. [23] provided a set of
reasoning rules to trace the mapping between the source’s logical schema and the data warehouse’s logical
schema. Boehnlein et al. [4] proposed the Structured Entity Relationship Model (SERM), which visualizes
the dependencies between different types of data objects, while Lechtenboerger and Vossen [22] discussed
the normal forms of multidimensional models.

Although the above approaches provide guidelines for building multidimensional models from source ER
diagrams, they do not formally propose an automatic algorithm that can preserve the granularity of data dur-
ing the construction process. In an attempt to fill this research gap, we propose a novel algorithm that can
achieve the following:

(a) given a fact table and an ER diagram, the algorithm automatically builds a multidimensional model
from the ER diagram,

(b) it generates a multidimensional model that has consistent granularity,
(c) in the case where a dimension table is connected to the fact table by more than one path in the ER dia-

gram, the algorithm chooses the path with the smallest number of relationships to minimize the number
of join operations needed to query measures via a dimension table.
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The remainder of the paper is organized as follows. Section 2 formally defines the concept of grain preser-
vation. Section 3 describes the algorithm used to translate an ER into a multidimensional model. Section 4
explains how the algorithm preserves the grain of a fact table and calculates the minimum distance between
tables. Section 5 describes how we implement the proposed algorithm. Finally, in Section 6, we present a sum-
mary of the paper and suggestions for future work.

2. Grain preservation

According to Kimball [19], a multidimensional model usually contains a fact table and a set of dimension
tables. Each dimension table has a primary key, which is a foreign key for the fact table. The primary key of
the fact table is a combination of the foreign keys of all the dimension tables. If there is a grain mismatch
between the fact table and any of the dimension tables, the query results may be incorrect [19,30], since erro-
neous or ambiguous queries return values that cause individual measures to be aggregated more than once. In
contrast, a multidimensional model with a consistent grain always aggregates at most one copy of an individ-
ual measure, regardless of the dimensions a user adopts to submit a query. Before formally defining grain pres-
ervation, we define two operators, namely,

P
and w.

Given a table, T, in which attributes a1; . . . ; am are measures and attributes amþ1; . . . ; an are weight factors,
where m 6 n,

• Sak ðT Þ ¼
P

t2T t � ak if 1 6 k 6 m, where a is attribute value of t,
• SðT Þ ¼ hSa1

ðT Þ; . . . ; SamðT Þi,
• HðT Þ ¼ ft0j8a 2 attributes of T ; t 2 T ; ða 2 fa1; . . . ; amg ! t0 � a ¼ t:a � t � amþ1 � . . . � t � anÞ ^ ða 62 fa1; . . . ;

amg ! t0 � a ¼ t � aÞg.

The w operator is used to refine a measure to a finer grain. Table 1 shows an example where the customer#
is a non-measured attribute, the amount and the cost are measures, and weight_factor1 and weight_factor2 are
weight factor attributes.

Table 2 shows the results of applying the q operator to Table 1.
In a multidimensional snowflake model, a new dimensional table can be connected to the fact table directly,

or connected as a table in a snowflake hierarchy. The latter is composed of a set of tables connected like a tree,
with the fact table as the root. A table added to a multidimensional model without breaking the existing grain
provides an entry point to correctly summarize the measures.
Table 1
A sample table with measures and weight factors

Customer# Amount Cost Weight factor1 Weight factor2

c125 50 30 0.4 0.2
c125 50 30 0.6 0.8
c125 50 30 0.4 0.8
c125 50 30 0.6 0.2
c127 40 30 1.0 1.0

Table 2
Applying w to Table 1

Customer# Amount Cost Weight factor1 Weight factor2

c125 4 2.4 0.4 0.2
c125 24 14.4 0.6 0.8
c125 16 9.6 0.4 0.8
c125 6 3.6 0.6 0.2
c127 40 30 1.0 1.0
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Given a multidimensional model with a fact table, F, and a new table T. When T is added to the model, it
generates a path of F ;D1; . . . ;Dk; T that connects T to F, and SðHðF ffl D1 . . . ffl Dk ffl T ÞÞ ¼ SðF Þ, whereffl is
a natural join operator. This type of addition is called Grain Preservation.

Example 1. Let F be a fact table in which the summary of the purchase amount and the cost of the items are
measures. In addition, let M be a store dimension and let D be the number of departments in each store. This
is a snowflake table of the store dimension. Let B1 and B2 be the bridge tables connecting F and M, and M and
D, respectively. The details of this example are listed in Tables 3–7.

The joined result of F ffl B1 ffl M ffl B2 ffl D is shown in Table 1. The results of applying operator w to
Table 1 are shown in Table 2. Note that the sum of the measure columns is equal to those in F. Since
SðF Þ ¼ SðHF ffl B1 ffl M ffl B2 ffl DÞ, D is added to the multidimensional model and the model’s grain is
preserved.
Table 3
F: Summary of customer purchase

Customer# Amount Cost

c125 50 30
c127 40 30

Table 4
M: Mall

Store# Address

M1 123 Main Street
M2 456 High Street
M3 890 Low Street

Table 5
D: Departments

Department# Description

D3 Clothing
D4 Hardware

Table 6
B1: Bridge Table 1

Customer# Store# Weight factor1

c125 M1 0.4
c125 M2 0.6
c127 M3 1

Table 7
B2: Bridge Table 2

Store# Department# Weight factor2

M1 D3 0.2
M1 D4 0.8
M2 D3 0.2
M2 D4 0.8
M3 D3 1
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3. The mapping algorithm

In this section, we discuss the relationship translation algorithm, which translates the entities and relation-
ships in an ER diagram into multidimensional model tables, while using the smallest number of join operators
to maintain the grain preservation.

In the ER diagram of a source system, some entities are connected to each other via many-to-many rela-
tionships. The cumulative numeric attributes are candidates for inclusion in the fact tables [18]. We assume
that a table in the source ER diagram is designated as the fact table, which contains several fact attributes
(also known as measures).

Given a source ER diagram with hE;Ri, where E is the set of entities and R is the partial functions of rela-
tionships in the ER diagram, then R : E � E ! {‘1–1’, ‘1–M’, ‘M–1’, ‘M–N’}, where ‘1–1’, ‘1–M’, ‘M–1’ and
‘M–N’ denote the cardinality of the relationships.

A multidimensional model is represented by hDE;DRi, where DE denotes the set of tables in the model, and
DR denotes the partial function of the relationships between the tables. Every entity in E or DE is assumed to
have a primary key.

3.1. Naive mapping rules

Naive mapping rules are used to analyze the relationships between the entities in the source (original) ER
diagram, and to translate the corresponding entities and relationships into a multidimensional model. The
translation of ‘1–M’ and ‘M-to-N’ relationships may cause grain mismatching if it is not handled carefully.
As noted in [18,19,30], a mismatch can be corrected by either relaxing the grain of the fact tables or the grain
of the dimension tables. In the case of a snowflake multidimensional model, we argue that lowering (relaxing)
the grain of the dimension tables would be preferable, since the same methodology could be used to relax the
grain of tables in the snowflake hierarchy.

Given a numeric attribute w in a table, B, which has two and only two foreign keys, f1 and f2, let f1 be the
primary key to the table closer to the fact table. B is termed a Sound Bridge Table if the entries in f1 and f2

cover all entries in the original tables, the composite value of f1 and f2 does not have duplicates in B, and
8v 2 f1; t 2 B,

P
t:f1¼vt:w ¼ 1.

If RðEi;EjÞ exists and Ei 2 DE, then Ej is added to DE in one of the following ways:

• Rule#1: RðEi;EjÞ ¼ ‘M-to-1’
In this case, the translation is straightforward.
DE ¼ DE
[
fEjg

DRðEi;EjÞ ¼ RðEi;EjÞ

Fig. 3 shows an example of such a case.
i j

Since the grain of Ej is finer than the grain of Ei, a weight factor is added to Ej to tune the grain of Ej. The

• Rule#2: RðE ;E Þ ¼ ‘1-to-M ’

corresponding Sound Bridge Table is reduced to a single attribute in Ej:
E0j ¼ Ej þ weight factor

DE ¼ DE
[
fE0jg

DRðEi;E0jÞ ¼ RðEi;EjÞ

Fig. 4 shows an example of ‘1–M’ translation.
i j

Since the grains of the two tables are incompatible, a Sound Bridge Table, B, is added to tune the grains.

• Rule#3: RðE ;E Þ ¼ ‘M-to-N’

The table has two foreign keys, derived from Ej and Ei, respectively, and a weight factor [18,30]. The foreign
key from Ei groups entries in Ej so that the combinations have the same grains as the corresponding entries



Fig. 3. Translation of a ‘Many-to-One’ relationship.

Fig. 4. Translation of a ‘One-to-Many’ relationship.
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in the Ei. The weight factor records the contribution of each entry in the group. The sum of the weight fac-
tors in each group should be equal to one:
B ¼ hweight factori
DE ¼ DE

[
fEj;Bg

DRðEi;BÞ ¼ ‘1-to-M ’

DRðB;EjÞ ¼ ‘M-to-1’
Fig. 5 shows such an example. The algorithm is shown in Fig. 6.



Fig. 5. Translation of a ‘Many-to-Many’ relationship.

Fig. 6. The main mapping rules algorithm.
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3.2. Applying the mapping rules to an ER diagram

In this section, the process of building an entire multidimensional model from a source ER diagram is
explained in detail. The proposed algorithm identifies the fact table in the original ER diagram, and tries
to construct a multidimensional model using the smallest number of relationships.

Since an ER diagram can be translated into more than one multidimensional model, the most important
decision is the selection of the relationships that will form the translated multidimensional model. The point
is illustrated by the following example.



Fig. 7. An example of the same ERD translated into different multidimensional models.
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Example 2. The original ER diagram, shown in Fig. 7A, includes several loop relationships.
A loop between snowflake tables causes problems when the data is queried because of the aggregating

measures. A loop means that more than one path joins a particular table in the loop to the fact table. Different
paths may cause measures to be aggregated differently, which may cause confusion. Thus, the loop in the ER
diagram has to be broken when the ER diagram is translated into a multidimensional model.

A loop can be broken in several ways. For example, the loop relationship in the original ER diagram shown
in Fig. 7A can be pruned to two ERDs (in Fig. 7B1,C1). Next, different multidimensional models (see
Fig. 7B2,C2) are generated by applying the naive mapping rules outlined in Section 3.1. The differences
between the two figures are highlighted by dotted lines.

Hence, there is more than one way to build a multidimensional model from an ER diagram. In this paper,
we use a single source shortest path algorithm to construct a multidimensional model, in which each entity
follows the shortest path to the fact table. The distances between entities and the fact table are calculated
by the number of relationships between the entities, since the greater the number of relationships, the greater
the number of join operations needed to submit queries. Note that the distance can be determined in many
different ways, such as the number of tuples in each join, without jeopardizing the integrity of the algorithm.

To compute the shortest distances between the fact table and the other tables, an initial distance matrix
must be built. The matrix is formed by scanning the entire ER diagram. For each entity pair connected by
relationships other than ‘M-to-N’, an initial value of 1 is assigned. For ‘M-to-N’ relationships, an initial value
of 2 is assigned to the corresponding entities, since a bridging table will be needed in the translation.

After deriving the initial matrix, the algorithm calculates the shortest path vector and the predecessor
matrix. The former records the shortest path between the fact table and the corresponding entity, while the
latter records other entities connected to the corresponding entity along the path. The algorithm is a revision
of the famous Dijkstra algorithm [9].

Zero is inserted into the initial distance matrix to indicate the distance of an entity to itself. The assumption
may not be applicable to ER diagrams in which entities are allowed to have self-reference relationships. How-
ever, we assume that the translated multidimensional model is free of such relationships. This assumption is
based on the widely adopted practice whereby most self-reference relationships are flattened into their corre-
sponding entities by the hierarchy recorded in the attributes. The algorithm for computing the shortest dis-
tances is shown in Fig. 8.

The performance cost is determined by the Shortest_Distance algorithm, which calculates the most cost-
effective means of connecting dimension tables to the fact table in terms of the number of relationship travers-
als required. The complexity of the Shortest_Distance procedure is OðjEj3Þ, where jEj is the number of entities
in the source ER diagram. The cube comes from the While Loop in the procedure, which examines an added



Fig. 8. Finding the shortest distances between entities and the fact table F.
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entity and its associated relationships to derive the shortest distances between all entities. The loop terminates
when all entities have been examined.

4. Correctness

We now prove that, from an ER diagram of hE;Ri with a designated fact table, the MR algorithm generates
a hDE;DRi that satisfies the Grain Preservation requirement. In addition, we show that all dimension tables are
connected to the fact table by the smallest number of relationships.

Theorem 3. Given an ER diagram and a fact table in it, the multidimensional model constructed by the MR

algorithm connects each entity to the fact table with the smallest number of relationships.
Rationale. The predecessor of each entity in the multidimensional model is decided by Dijkstra’s algorithm

[9], which discovers the shortest path to the fact table. The weights on the edges represent the number of

relationships needed by the multidimensional model to translate the corresponding relationships in the ER

diagram. Therefore, MR returns a multidimensional model with the smallest number of relationships between

each dimension table and the fact table.
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Let F be the designated fact entity in the ER diagram of hE;Ri, and let E denote the entity added to the
multidimensional model hDE;DRi to form hDE0;DR0i.

Lemma 4. If hDE;DRi is a grain preserved multidimensional model in which F is the fact table, and E is connected

to F in the original hERi (but it is not yet included in the multidimensional model), then connecting E to F by the
proposed rules will preserve the grain of the model.

Proof. In hDE;DRi, F and E can be connected by any of the three types of relationships, namely, ‘1-to-M’,
‘M-to-1’ and ‘M-to-N’ while keeping grain preserved with MR’s corresponding translations.

‘M-to-1’:
According to the rule, the entity is connected to F directly in hDE0;DR0i. Since no bridge table is added
between F and E, and every entry in F is matched to exactly one record in E,
SðHðF ffl EÞÞ ¼ SðF ffl EÞ
¼ SðF Þ

‘1-to-M’:
In this case, a weight factor from a Sound Bridge Table is added to E, and the new E 0 is connected to F by
the original relationship.

SðHðF ffl E0ÞÞ ¼ SðHfuþ vj8u 2 Fv 2 E0 u � primary key ¼ v � foreign keygÞ
¼ Sðfhu � a01 . . . u � a0mij8 measures ai inF ; 8u 2 Fv 2 E0

u � primary key ¼ v � foreign key ^ u � a0i ¼ u � ai � v � weight factorgÞ
¼ SðFÞ

‘M-to-N’:
In MR, a Sound Bridge Table, B, is inserted between F and E with two ‘1-to-M’ relationships originating
from F and E.

SðHðF ffl B ffl EÞÞ ¼ SðHfuþ wþ vj8u 2 Fw 2 Bv 2 E

u � primary key ¼ w � foreign key1^
w � foreign key2 ¼ v � primary keygÞ
¼ Sðfhu � a01 . . . u � a0mij8 measures ai in F; 8u 2 F

w 2 Bv 2 Eu � primary key ¼ w � foreign key1^
w � foreign key2 ¼ v � primary key^
u � a0i ¼ u � ai � w � weight factorgÞ
¼ SðFÞ

Therefore, the translation done by MR is Grain Preservation when dimensions are connected to the fact
table directly. h

Theorem 5. Given an ER diagram, hE;Ri, a multidimensional model, hDE;DRi, is derived from part of the dia-

gram using MR. An entity E in the ER diagram (E has not been included in the multidimensional model yet) is

added to hDE;DRi using MR to preserve the grain.

Proof. When E is connected to more than one entity in the ER diagram, the Shortest_Distance algorithm is
applied to decide which relationship should be retained. Therefore, the proof proceeds with the assumption
that E is connected to only one entity in the multidimensional model. The proof is derived by mathematical
induction with the parameter ranges over the number of dimension tables positioned between the fact table F
and E in hDE;DRi.



Induction base (N = 0)

In the case where entity is linked to the fact table F directly, Lemma 4 proves that the MR approach can
preserve the grain.
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Induction hypothesis (N = k)
Assuming that MR’s translation preserves grain when there are k entities between the fact table and E.
Induction Step. We assume that E is connected to Dk in hDE;DRi, Dk is connected to the fact table though
(k � 1) dimension tables D1 . . . ;Dk�1, F has measures a1; . . . ; am, and T ¼ F ffl D1 ffl . . . ffl Dk. The proof
shows that, even when an entry in T matches more than one record in E, the value of the S operation
of the joined result is the same as the original value. The relationship between Dk and E is again one of
the three types: ‘1-to-M’, ‘M-to-1’, and ‘M-to-N’. The proof shows that MR can preserve the grain in
all of the following cases.
‘M-to-1’:

Since each record in T is mapped to exactly one entry in E, HðT ffl EÞ ¼ HðT Þ.
‘1-to-M’:

For each ai 2 fa1; . . . ; amg,

SaiðHðT ffl EÞÞ ¼
X
fa0ij8t 2 HðT Þ; e 2 E

e � foreign key 2 t! a0i ¼ t � ai � e � weight factorg
¼
X
fa0ij8t 2 HðT Þ; a0i ¼ t � aig

¼ SaiðHðT ÞÞ
¼ SaiðFÞ
‘M-to-N’:

Let B be the Sound Bridge Table connecting Dk and E. For each ai 2 fa1; . . . ; amg,

SaiðHðT ffl B ffl EÞÞ ¼
X
fa0ij8t 2 HðT Þ; b 2 B; e 2 E b � foreign key1 2 t^

b � foreign key2 2 e! a0i ¼ t � ai � b � weight factorg
¼
X
fa0ij8t 2 IðT Þ; a0i ¼ t � aig ¼ SaiðFÞ

Thus, E can be safely added to the multidimensional model hDE;DRi by MR. h
5. Implementation

We have developed a prototype of the proposed system. Since the program is coded in Java, it can be run
on most personal computers. The program provides an interface to input an ER diagram, and a function bar
Fig. 9. The main interface of the translation program.
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to calculate the distances from the entities to the fact table and trigger the translation. The main screen, shown
in Fig. 9, has four major functional areas.

(a) In the top-left part of the screen, the entity and the relationships of an ER diagram can be entered; the
first entity is the fact table.

(b) There is a Message window in the top-right.
Fig. 11. Original ERD marked with the initial number of levels.

Fig. 12. Pruned ER diagram showing the shortest paths.

Fig. 10. An original ER diagram.
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(c) A function bar in the middle contains the TRANSLATE option, which calculates the shortest distances.
There are also two STAR options, which review the multidimensional model output in Graph and XML
Format, respectively.

(d) At the bottom of the screen, two matrix windows show the Shortest Path and the Reference Matrix
between the fact table and all dimensions.

Next, we describe the translation process using an ER diagram. The original ER diagram, shown in Fig. 10,
is taken from a commercial sales order tracking system. The entity ‘Order’ is the designated fact table, so the
Fig. 13. A snapshot of the translation program’s execution.

Fig. 14. Part of the input ER diagram in XML format.



Fig. 16. Part of the output in XML.

Fig. 15. The output graph generated by the translation program.
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other entities are treated as dimension tables for the translation process. The annotated edges are the relation-
ships needed to complete the MR translation (see Fig. 11). The shortest path from the fact table to each entity
is shown by the ER diagram in Fig. 12.

The sample ER is input via the interface. Fig. 13 shows a snapshot of the program’s execution. The ER can
be viewed in XML format, as shown in Fig. 14. The initial distance matrixes of the ER diagram and the short-
est path vector are shown in the bottom window of Fig. 13. The loops in the keyed-in ER diagram can be
broken by removing any edge whose distance from the fact table is longer than the preserved paths. The acy-
clic ERD is shown in Fig. 12.

The output of the sample case generated by the program is shown in Fig. 15; it can also be generated in
XML format, as shown in Fig. 16.

6. Conclusions

As enterprises place a high priority on real time management, data warehouse systems have become critical
tools of information analysis. However, most companies lack experienced data warehouse professionals who
can design effective multidimensional models. In contrast, professionals with experience in ER concepts are
more widely available. Hence, deriving a data warehouse schema from an ER diagram may be a compromise
solution. Even so, it is not easy for an inexperienced team to build a corporate data warehouse in a short time.
It is our hope that the techniques and mapping rules presented in this paper will help such individuals.

We have proposed a method for deriving data warehouse schema from ER diagrams. The translation rules
provide a very effective tool, while the proposed grain preservation algorithm automatically translates an ER
diagram with a fact table into a multidimensional model. The algorithm is very efficient because every dimen-
sion table in the proposed hierarchy is connected to the fact table via the smallest number of relationships.

The approach presented in this paper provides a foundation for future research on automatic translation of
ER diagrams into multidimensional models. A number of issues still need to be addressed. For example, inte-
grating multiple ER diagrams with heterogenous data types in the original source systems is a practical and
difficult issue. A great deal of work has been done on integrating heterogeneous data in ETL (Extraction,
Transformation, and Loading) operations [6,31,33]. Further research based on that work and the results pub-
lished in this paper may lead to fully automatic multidimensional model design processes.
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