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Abstract

We propose a new group-oriented (z,n) threshold signature scheme that can withstand conspiracy attacks without attaching a secret
number. The group’s public key is determined by all members, each member signs a message independently and transmits the individual
signature to a designated clerk who checks and integrates them into a group signature. A verifier can authenticate the group signature and
trace back to find the signers. Further, we develop another threshold signature scheme without a trusted center. The proposed schemes

possess all of the characteristics listed in Harn’s scheme and are more difficult to break. © 1998 Elsevier Science B.V.
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1. Introduction

The concept of group-oriented cryptography was first
proposed by Desmedt [1]. The group-oriented cryptography
problem refers to the study of ciphering schemes for secure
communications among groups. In this kind of secure
system, each group, instead of all internal members of the
group, publishes a single group’s public key. An outsider
can use this public key to send a confidential message to a
group, but only a specified subset of the group members, ina
cooperative manner, can reveal the message. Recently,
several schemes have been developed and can be categor-
ized in two classes. The first type needs the assistance of a
mutually trusted center to select the parameters and generate
the secret keys for group members [2—4]. Another type does
not need the assistance of a mutually trusted center to select
the parameters and generate the secret keys, but extra com-
putations will be required [5-8]. Obviously, the latter type
of scheme is more common in some commercial appli-
cations when there does not exist any third party who can
be trusted by all members in a group.

By applying the concept of group-oriented cryptography,
signature schemes or threshold signature schemes in groups
are developed. In a threshold signature scheme, the group’s
public key is generated by all of the members, but the group
signature can be generated by the participating members in a
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subgroup. That is, in a (¢,n) threshold signature scheme, any
t members can represent this group to generate the group
signature. Later, in the signature verification process, an
outsider can employ the group’s public key to authenticate
the validity of the group signature.

Chaum and Heyst {9] proposed an (n,n) group-oriented
signature scheme, which used several groups’ public keys in
the system. Desmedt and Frankel [10] proposed the concept
of a (¢,n) threshold signature scheme based on the RSA [11]
system. In this scheme, they applied a trusted key authenti-
cation center to determine the group’s secret key and the
secret keys of all group members. Harn [12] used the cryp-
tographic technique of Shamir’s perfect secret sharing
scheme [13] which is based on the Lagrange interpolating
polynomial and digital signature algorithm to construct a
(1,n) threshold signature scheme. This scheme is designed
to partition the group secret key K into n different shadows.
By collecting any r shadows, the group signature can be
easily generated. Unfortunately, the schemes [10,12] may
suffer from the conspiracy attacks and the secret keys can be
revealed with high probability [14]. To avoid the attacks, the
schemes [14] attach a random number to the secret key,
which is concealed. In both of the schemes [12,14] there
exists a problem: how do we know who participated in
making the signature? For example, there are ¢ members
who are responsible for the signature. making a policy
decision, and obtaining a profit for their company. The com-
pany’s manager wants to know who the signers are and will
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reward them. An intuitive method to find the signers is that
the trusted center makes the ¢ individual secret keys public
and authenticates the partial and group signatures. Using
this method, the system needs to renew a group secret key
and redistribute an individual secret key for each member.
This can be very expensive.

In this paper, we shall first propose a threshold signature
scheme in which a mutually trusted center is required to
generate the parameters and the secret keys of group mem-
bers. Our methods can withstand conspiracy attacks without
attaching a secret random number as in the scheme of Li et
al. [14]. We can trace back to find the signers without
revealing the secret keys. Further, we also propose a thresh-
old signature scheme without the assistance of a mutually
trusted center. By the use of our (z,n) group-oriented thresh-
old schemes, the difficulty of breaking the systems is equal
to solving the discrete logarithm problem. By applying the
concept of shadow secret keys, the group secret key can be
considered as a set of individual secret keys. With the
knowledge of any ¢ individual secret keys, the group
signature can be easily generated. On the other hand, any
less than + members cannot regenerate the legitimate group
signature. Moreover, compared with Harn’s scheme, our
schemes are more difficult to break.

In the next section, we will review the group-oriented
threshold signature scheme [12] proposed by Harn. In
Section 3, we will present a new (t,n) group-oriented thresh-
old signature scheme with the assistance of a mutually
trusted center. In Section 4, a new (t,n) group-oriented
threshold signature scheme is proposed in which the
mutually trusted center is no longer used. Finally, we
make some conclusions in the final section.

2. Harn’s (t,n) threshold signature scheme

In this section, we will review briefly the concept of
threshold signature. In Harn’s (#,n) threshold signature
scheme [12], there is a trusted key authentication center
(KAC) which is responsible for selecting all parameters;
the secret keys for members in a group and the group’s
secret key. Assume that KAC selects the following
parameters:

P = a large prime modulus, where 2°'"' < p < 2°'%;

e Q= aprime divisor of P — 1, where 2'*° < Q < 2'®;
a polynomial function flx) = ap+ax+ ... +a,_ x !
mod Q with degree t — |, where 0 <a,; < Q,i=0,1,....¢
— 1, and q; are kept secretly;

e apositive integer g = £'"""?mod P, where | <h < P

— 1, and g is a generator with order Q in GF(P).

Harn’s threshold signature scheme contains three phases.

1. Group and individual secret keys generation phase. The
KAC determines the following keys:

(a) Computes each member’s secret key fix;) mod Q,

fori=1,2,...,n, where x, is the public value associated
with each member.

(b) Selects a group’s secret key f{0) and computes the
group’s public key y = "% mod P.

(c) Computes each member’s public key, y; = g™ mod
P, fori=12,..n

2. Threshold signature generation phase. The threshold sig-
nature scheme allows any ¢ members to represent the
group to sign a message m. Without loss of generality,
assume that the t group members can be denoted as
Uy,Uy,....u,. Firstly, the member u;, i = 1,2,....f, ran-
domly selects an integer K, K; € [1,0 — 1], then com-
putes a public value r;, r; = g% mod P, and makes r;
publicly available through a broadcast channel. After all
values are available, each member u; computes the value
R= l—[fz yr; mod P, and uses his secret keys f(x,) and K
to compute the signature s

s’.Ef(x'-)XmIX< l—l O—XJ>—leRmOdQ,

j=Lj#i YT X

where m' =f(m)

Then he transmits {m,s;} to a designated clerk C. After receiv-
ing the individuval signature {r;s;} from u;, i = 1,2,....t, the
clerk uses the public keys x;, y;, and the individual signature
{r;s;} to check if the following equation is true:
13
m’' X l_[ —0 — xj
j=1,#i Xi T X

j 7 R
Yi =r

X g mod P

If the above equation holds, the partial signature {r;s;} of
the message m received from u; is valid. Once ¢
partial signatures are received and verified, the clerk can
compute and generate the group signature S of the message
m, where

t
S= Z s; mod Q
i=1
3. Threshold signature verification phase. After receiving
the group signature {R,S} of the message m, any verifier
can use the group’s public key y to authenticate the
validity of the signature by the following equation:

y’"’ = RR-gS mod P, where m’' =f(m)

If the equation holds, the group signature {R,S} is valid.

3. A (t,n) threshold signature scheme with the assistance
of a mutually trusted center

Harn’s method [12] employed Shamir’s perfect secret
sharing scheme [13], Lagrange interpolating polynomials,
and ElGamal’s signature scheme [15,16]. Based on the
modified ElGamal’s signature scheme, we will improve
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Harn’s method and propose a more efficient signature
scheme. Further, several possible attacks [14] to our scheme
are considered.

Lemma 3.1 [17]. If x;,x,,...,x, are n distinct numbers and
Y1.¥u....y, are the associated function values, respectively,
then Lagrange interpolating polynomial f{x) of degree n — 1
with the property fix,) = y, for k = 1,2,...,n, is given by

fw=Yyx [ =2

J
i=1 =i XX

Assume that there are n members in a group, and the set of
group members is denoted as A. Here |Al = n. The set of any
t legitimate members of A is denoted as B. Note that |Bl = 1.
Further, the system contains a mutually trusted center
(MTC), which is responsible for selecting all parameters,
individual secret keys and the group’s secret key. The
scheme is composed of the following three phases.

1. Parameter selection and secret keys generation phase.
The MTC selects the following parameters:

a one-way hash function H;
two large prime numbers P and P’, g is a generator with
order P’ in GF(P);

e alarge prime factor Q of P’ — 1, « is a generator with
order Q in GF(P'),

e apolynomial function flx) = ag+ aix + ... + a,_ ¥ !
mod Q with degree t — 1, where 0 < a,; < Q,i=0,1,....¢
— 1, and q; are kept secretly.The MTC also selects the
following secret and public keys:

e computes each member’s secret key o/ mod P', for
i = 1,2,...,n, where x; is the public value associated
with each member;

o selects a group secret key f(0), and computes the group’s
public key y = ¢ mod P;

e computes each member’s public key y =
fori=12,...n,andy; # y;if i #j.

¢ mod P,

2. Individual signature generation and verification phase.
Assume that there are ¢ group members representing
the group to sign a message m. Each member u; selects
a random number d;, and computes a secret value
r; = % mod P'. Then, each member uses the secret
key %) mod P’, and the random number d; to compute
the value s; by

! —_— .
(f(x,) [1 0%

o =t i

f) X Hm) X o« mod P’ (3.1)

5 =

To generate a group signature and protect against a forged
signature from an outsider, the signer’s identification
needs to be verified by a designated clerk. So, each
member u; regards the individual signature s; as a
message and uses his secret key o/ and public key y "
to sign the message s; by ElGamal’s signature scheme
[15]. First, member u; selects a random number &;, where

(k,P') = 1, and computes two numbers z,s;, where
z=g"mod P, s’ =k~ '(s;, — &/*"z) mod P’. Then, the
messages {m,r.,s;,2;s;'} are transmitted to a designated
clerk. Note that the designated clerk does not contain any
secret information. He merely takes the responsibility to
authenticate each signer’s identification and create a group
signature. The authenticated identification is supplied to
verify and trace the signers and the group signature is
supplied to check the validity with threshold members. On
receiving the messages {m,r;.s,z;s;,} from u, the clerk
utilizes the public value y; to compute the following equa-
tion and authenticate the validity of the partial signature:
g =372 mod P (3.2)
If the equation holds, the individual signature s; from mem-
ber u; is valid. Further, the clerk uses subset B’s ¢ pairs of
public values (y;x;) to construct a Lagrange polynomial
function A(y) by using Lemma 3.1, where

! 7 v,
h(y) = in l_l “y,——){_:bf—l.‘”_l'*‘---‘i‘bl)"i'bo
i=1 j=1j#i i Y

(3.3)

Note that in using Lemma 3.1 the roles of x; and y; are

exchanged here. The subset B’s ¢ pairs (y;,x;) are integrated

by the function A(y). In fact, the purpose of the above func-

tion is to authenticate who the signers are in the next phase.

3. Group signature generation and verification phase. After
¢ individual signatures are received and verified by the
clerk in the second phase, the group signature of the
message m can be obtained as {R.S}, where

R= l—[ r; mod P’ 3.4)
IER

s=]]s mod P’ (3.5)
EB

Any verifier can use the group public key y and the group
signature {R,S} of the message m to authenticate the validity
of the signature. The verification equation is given as follows:

2 r
g = YR mod P

If the above equation holds, the group signature {R,S} is valid.

As stated, the group signature has been authenticated, but
the verifier does not know who are the signers. If he intends
to determine the singers, he can substitute the public value y;
to A(y) as in Eq. (3.3). If A(y;) = x;, then the signer with
public value y, belongs to the set B. Otherwise, the member
with public value y; is not one of the original signers. In the
process of verification, the verifier computes the function
h(y;) and checks whether it is equal to x;. There are only two
public parameters required.

Theorem 3.1. If g’ = _V(H('")),R mod P, then the group
signature {R,S} of the message m is authentic.
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Proof. In the second phase, the individual signatures s; of
the message m satisfy the equations

{
( fle) l_[ O_xj

o A=LFET ’) X H(m) X o% mod P’

§; =

By multiplying the above equations for i = 1,2,...,t, we have

[Ts=11| (a

i=1 i=1

! O—XJ
flx) l_[
j=1=i i

_xj> X H(m) X o | mod P’

(3.6)
The right-hand side of Eq. (3.6) can be rewritten as
!
s [] — > 4
o= j=1j#i A ) X(H(m)) X ai=! mod P’
(3.7)

By Lemma 3.1, Eq. (3.7)
o9 X (H(m))' X R. Therefore

ﬂs

g =gi=l

can be rewritten as

mod P = g“m)‘("('"))’R mod P = y(H('"))IR mod P
If ¢° = y(H('"))'R mod P, then the group signature {R,S} can
be verified, and the proof is completed.

Now we will analyze the security of our scheme. Several
possible attacks will be considered, but none of them can
successfully break the scheme. Firstly, we assume that an
outsider wants to reveal the secret keys by knowing the
public keys.

1. To obtain the individual secret keys ozf ) for i =

1,2,...,n. From the public keys y, =g v mod P, it is
obvious that he should solve the discrete logarithm
problem.

2. To obtam the group secret key f{0). From the public key
y=g " mod P, he is still required to solve the discrete
logarithm problem. Secondly, we assume that there is an
attacker who intends to reveal the secret keys from the
signature.

3. To derive the individual secret key o™ mod P’ from the
signature s; in Eq. (3.1). There are two unknown values
o/ and d; in one equatnon therefore he cannot solve the
problem.

4. To derive the group secret key f{0), from the signature
pair {R,S}, by Eq. (3.1), Eq. (3. 5) and

( Zf(X) l_l

i=1 =1,j#i

S = IL[s,-modP’E

i=1

"'x> X (H(m))'

!

2 d;

X ai=!  modP' =o' ? x (H(m)) X Rmod P’

If, unfortunately, any ¢ or more malicious members act in

collusion, then the term (H(m))'R can be determined, and

they can find o/ ). However, when f(0) is further intended, it

has to solve the discrete logarithm problem.

5. To derive the secret function flx), from any ¢ pairs
(x;, o &2y in collusion, they cannot reconstruct the func-
tion by the Lagrange interpolating function.

Further, if a forger wants to impersonate a member u; by
randomly selectjng a number d;" € [1,Q — 1] and broad-
casting r;’ = o mod P’. Since the value

e 1

=1,j#i

r]> X r," mod P’

is computed by all r members, without knowing the indivi-
dual secret key o/, the forger cannot obtain a correct
signature s;". Moreover, as in Harn’s scheme, the signature
value s; is based on a linear equation with two unknown
parameters, the security of their scheme is based on the
modified ElGamal’s signature scheme. On the other hand,
the security of our scheme is based on the difficulty of
solving the discrete logarithm problem as described
previously. The security of the proposed method will be
improved.

4. A (t,n) threshold signature scheme without the
assistance of a mutually trusted center

In this section, we will develop a new (#,n) threshold
signature scheme without the assistance of a mutually
trusted center. Again, assume that there are » members in
the group, the set of group members is denoted as A, the
subset of any ¢ legitimate members of A is denoted as B.
Since there is no trusted center, more parameters and com-
plicated computations are required. The scheme is also com-
posed of three phases as follows:

1. Parameter selection and secret keys generation phase.
Here, the parameters H, P, P', Q, g, « are defined as in
the previous section. Each member, say u; randomly
selects a public value x; € [1,Q — 1] and a secret func-
tion fi(x) with degree t+ — 1. Member u; keeps the value
o secret and computes a corresponding public key
y;=g*" mod P. Then, the group public key y is deter-
mined by all members [18]. All members need to be
connected in any order ring and generate the group pub-
lic key y as follows: y = g“/ mod P. Instead
of the trusted center, the member u; should compute a
secret key v; and a corresponding public key y;; for each
other member u;, where

= o/ mod P, y; =g"" mod P and y; # vy if j # k

2. Individual signature generation and verification phase.
Assume there are t members representing the group to
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sign a message m. Member u; selects a random number
d;, and computes a secret value r; = o mod P’. Then he
uses the secret key o/ @, the random number d; and the
secret values o/, where j € A and j & B, to sign the
message m:

e
I

0—x
]}(«\',‘) 1—[ d
@ % n PN (- NETR A

JEA,jEB

X H{(m) X o’

mod P’ (4.1)

As in the previous section, each member u; considers the
individual signature s; as a message and uses his secret key
o and public key y"‘n to sign the message s; by
ElGamal’s signature scheme [15]. First, member u;
selects a random number k;, where (k,,P’) = 1, and com-
putes two numbers z,s;, where z;=g" modP,
s; =k s, —Pz)mod P'.  Then, the messages
{m,r.s;2,,8;"} are transmitted to a designated clerk who is
only responsible for collecting and evaluating information.
Note that the clerk here is different from a mutually trusted
center since he does not select any parameter for users.
Here, the individual signature s; is a partial signature of
the message m. On receiving the messages {m,r;,s;,z;,5;" },
the clerk uses the public key y; to check whether the follow-
ing equation is true:

s 2o ms’
g' =y/z; modP

If the equation holds, the individual signature s; of the
message m received from u; has been verified. Moreover,
the clerk randomly selects a member u; and uses subset B’s ¢
pairs of public values (y;,x;) to construct a Lagrange poly-
nomial A,(y) as in Lemma 3.1, where

t t v,
hj(y)=zxi l"[ Y=V

i=1 =10 Yii — il

=b,_1y'_l + +b1y+b0

(4.2)

Similarly, & ,(y) will be used to authenticate the signers in the

next phase.

3. Group signature generation and verification phase. When
t individual signatures are received and verified by the
clerk in the second phase, the group signature of the
message m can be computed as {R,S}, where

R=[]r mod P, $=]]s modp’

ieB i€B
Any verifier can use the group public key y and the group
signature {R,S} of the message m to authenticate the validity
of the signature. The verification equation is given as follows

gS 2 y(H(m))’R mod P

If the equation holds, the group signature {R.,S} is valid.

Similarly, to find the signers, we can substitute the public
value y; to hi(y) as in Eq. (4.2). If h(y;;) = x;, then the signer
with public value y; belongs to the set B. Otherwise, the
member with public value y; is not one of the original
signers.

Theorem 4.1. If g° = "R ;mod P, then the group
signature {R,S} of the message m is authentic.

Proof. In the second phase, the individual signatures s; of
the message m satisfy the equations

Si

O—Xl
f,(xi) n
o0 x l_l o eI XiTX
JEA,jEB

X H(m) X o

mod P’

By multiplying the above equations for i = 1,2,....t, we

have
0—x
f]‘(«"i) n !

: !

- P Xi — X,
l—[si = l_[ o0 x l_[ o BTN
i=1/ i=1

JEA,jEB

X H(m) X o®) mod P’

0—x
I > sy [T —
it O % JEAIEB e t+i Xi — X

X H(m) X o) mod P’

! 0 — X
l—[ FAORS E filx) | I
A JEA,j&B (€8, 1#i Xi — X1
1=

i

[0
X H(m) X o%) mod P’

- 0—x
o

i=1 JEA,j&B (€8, 1#i Xi —XI

ai=1

t
X < Z di) mod P’
Therefore

[1s > O

s mod P = g“[:]

g = gi:l X(H(m))Y R mod P

= yHR mod P

the group signature {R,S} can be verified, and the proof is
completed.
The equations in Theorem 4.1 do not seem obvious. For a
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better understanding, we give an example. Consider in a
(2,4) threshold signature system, A = {1,234}, B =
{1,2}, each member y,i € B uses Eq. (4.2) to sign the
message m:

0—x 0'—)(2

. 2
s = Sile) ————  folxp)
afl(o). o Xy ‘—XQ.a X — X2

X H(m) X a® | mod P'
O — Xy 00— X2
= [0+ () +£1(x))
o 1 X2 Ay —Xp
X H(m) X o} mod P’
p O—x1 1 0——x1
= W) filx)
52 0/:(0)_ a1X xz—xl,a“ Xy — X
X H(m) X a® | mod P’
0 ~ X O — X
= HO)Y+filen) +f4(x2)
a Xy — X Xy — X)

X H{m) X o) mod P'

Therefore
(03~ Fa100 ~ F3(0) = g0\ (HOm)Y'R
& mod P = (g"‘f' o ) mod P

= yHER mod p

The security analysis of this scheme is similar to that of the
previous section and the difficulty of breaking is based on
the problem of solving the discrete logarithm.

5. Conclusions

We have proposed two new schemes to solve the group-
oriented (r,n) threshold signature problem. The securities of
both schemes rely on the difficulty of solving the discrete
logarithm problem. The first (¢,n) threshold signature
scheme is established with the assistance of a mutually
trusted center, It is proved to be secure and efficient.
Further, by withdrawing the mutually trusted center, the
second (t,n) threshold signature scheme is constructed.
The security is the same as the previous one, and the scheme

seems more suitable for practical applications. The pro-
posed schemes can withstand conspiracy attacks. Besides,
a verifier can also trace back to check who the signers are.
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