el

LSEVIER

X

ELS

Information Processing Letters 63 (1997) 13-18

Information
Processing
Letters

A linear time algorithm for finding depth-first spanning trees on
trapezoid graphs

Hon-Chan Chen, Yue-Li Wang *

Department of Information Management, National Taiwan Institute of Technology, Taipei, Taiwan, ROC

Received 14 October 1996; revised 18 April 1997
Communicated by T. Asano

Abstract

Let G be a connected graph of n vertices and m edges. The problem of finding a depth-first spanning tree of G is to find
a subgraph of G connecting the n vertices with n — | edges by depth-first search. In this paper, we propose an O(rn) time
algorithm for solving this problem on trapezoid graphs. Our algorithm can also find depth-first spanning trees of permutation
graphs in linear time, improving the recent algorithm on permutation graphs which takes O(n log log n) time. © 1997

Elsevier Science B.V.

Keywords: Depth-first search; Spanning tree; Trapezoid graphs; Permutation graphs

1. Introduction

Let G =(V, E) be a connected graph with vertex
set V and edge set E, where |V | =nand | E| = m.
A spanning tree of G is a spanning subgraph of G
which is a tree and connects the n vertices. Typi-
cally, there are many different spanning trees in a
graph. A depth-first spanning tree is a spanning tree
which is found by depth-first search (DFS) [16]. In
DFS, we select and visit a vertex a, then visit a
vertex b adjacent to a, continuing with a vertex of ¢
adjacent to & (but different from a), followed by an
unvisited 4 adjacent to ¢, and so forth. As we go
deeper and deeper into the graph, we will eventually

" Corresponding author. Mailing address: Department of Infor-
mation Management, National Taiwan Institute of Technology,
43, Section 4, Kee-Lung Road, Taipei, Taiwan 106, Republic of
China, Email: ylwang@cs.ntit.edu.tw.

visit a vertex y with no unvisited neighbors; when
this happens, we return to the vertex x immediately
preceding y in the search and revisit x. When all
vertices are visited, we stop the search. The edge
(x,y) is placed into the depth-first spanning tree if
vertex y was visited for the first time immediately
following a visit to x. In this case, x is called the
parent of y and y is a child of x.

In this paper, we will find depth-first spanning
trees on trapezoid graphs. A trapezoid i is defined by
four corner points [q;, b, ¢;, d;] such that a; and b,
are on the top channel and ¢; and d, are on the
bottom channel of the trapezoid diagram. A graph
G =(V, E) is a trapezoid graph if it can be repre-
sented by a trapezoid diagram such that each trape-
zoid corresponds to a vertex in V and (i, j)€E if
and only if trapezoids i and j intersect in the
trapezoid diagram [4]. Fig. 1 presents a trapezoid
graph with its trapezoid diagram. In the diagram,

0020-0190,/97 /$17.00 © 1997 Elsevier Science B.V. All rights reserved.

PII S0020-0190(97)00088-4

14 H.-C. Chen, Y.-L. Wang / Information Processing Letters 63 (1997) 13-18

there are 10 trapezoids, and the four corner points of
trapezoid ¢ are a;, b, ¢; and d;, i=1,2,...,10.
The class of trapezoid graphs includes two well-
known classes of intersection graphs: the permuta-
tion graphs and the interval graphs [5]. The permuta-
tion graphs are obtained in the case where a;= b,
and c;=d,; for all i, and the interval graphs are
obtained in the case where a; = ¢; and b, = d; for all
i

Trapezoid graphs can be recognized in O(n?)
time by Ma and Spinrad’s algorithm [11]. Applying
their algorithm, trapezoid diagrams can also be con-
structed. It is easy to show that a trapezoid diagram
can be reconstructed into another one corresponding
to the same trapezoid graph such that each trapezoid
has four distinct comer points and no two trapezoids
share common corner points. Therefore, for simplic-
ity, we assume that the corner points on our trape-

zoid diagram are all distinct, and they are given
consecutive positions 1, 2,...,2n from left to right
on both channels. We also assume that trapezoids are
labelled in increasing order of their b comer points
for ease of description. That is, for two trapezoids i
and j, i <jif b; lies to the left of b,. For example,
in Fig. 1(b), trapezoid 6 is before trapezoid 7 since
by is at position 14 and b, is at position 15 on the
top channel.

There are a wide variety of papers discussing the
depth-first spanning tree problem [1,2,6,7,10,13—15].
In [16], Tarjan described the technique of DFS in
detail. The time complexity of DFS in general graphs
is O(n + m), where n is the number of vertices and
m the number of edges. Trapezoid graphs were first
studied in [3,4]. Dagan et al., in [4], introduced a
coloring algorithm for trapezoid graphs. In [11], Ma
and Spinrad presented an O(n?) time algorithm for

position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

;‘;’,ﬁfs’ a b a4 a b b oa a b oa; bsa a b b obya, bag b,
~~~~~ B B e e e e L i e T e e L ammts sve o
S R T . ; . . (R P

corner

pOintS C2 Cl d2 C3 d3 cﬁ dl c4 d4 C7 CS d() d7 C9 d5 CS d‘) CIO d8 10

posiion 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 19 20

Fig. 1. (a) A trapezoid graph, (b) The corresponding trapezoid diagram.



H.-C. Chen, Y.-L. Wang / Information Processing Letters 63 (1997) 13-18 15

recognizing this class of graphs. Recently, Liang
gave some sequential algorithms for dominating and
breadth-first spanning tree problems on trapezoid
graphs [8,9].

In this paper, we assume trapezoid diagrams are
given. We propose a linear time algorithm for find-
ing depth-first spanning trees on connected trapezoid
graphs. Since the class of permutation graphs is a
subclass of trapezoid graphs, depth-first spanning
trees on permutation graphs can be found in O(n)
time by our algorithm, improving the recent algo-
rithm on permutation graphs which takes O(n log
log n) time [12]. The remaining part of this paper is
organized as follows. In Section 2, we introduce our
algorithm of finding a depth-first spanning tree. The
correctness of our algorithm is shown in Section 3.
Finally, in Section 4, we give the conclusion of this

paper.

2. An algorithm for finding a depth-first spanning
tree

Before describing our algorithm, we introduce
some notations which will be used later. Let G be a
trapezoid graph of n vertices. We will proceed our
algorithm on the corresponding trapezoid diagram of
G. Denote by pos(-) the position of some corner
point. For example, in Fig. 1(b), pos(b,) = 6 on the
top channel and pos(d;) =5 on the bottom channel.
On the contrary, a position corresponds to a corner
point as well as to a trapezoid. We denote by V(-)
(respectively, V,(-)) the corresponding trapezoid of
some position on the top (respectively, the bottom)
channel. For instance, V,(7) is trapezoid 6 and V(7)
is trapezoid 1 since the corner point at position 7 on
the top channel is a, while d| is at position 7 on the
bottom channel. Index top (respectively, bortom)
indicates the latest scanned corner point on the top
(respectively, bottom) channel. When a vertex v of
G is visited, set flag{v) = TRUE; otherwise,
flag(v) = FALSE.

Our algorithm of finding a depth-first spanning
tree is presented as follows. In the algorithm, par-
ent(v) stands for the parent of v in the depth-first
spanning tree, and (7, j) stands for the edge incident
to { and j.

Algorithm A

Input: A trapezoid diagram with n trapezoids

Output: A depth-first spanning tree 7 starting from
vertex 1.

Method:

Step 1. {Initialize all conditions.}
T=4§,
for i:=11to n do

flag(i) == FALSE;
parent(1) == 0;
=1,
top =1,
bortom = 1;
flag(i) = TRUE;
Step 2. {Scan corner points on the top channel to
find an unvisited neighbor.}
while flag(V{1op)) = TRUE and
top < pos(b,) do
top == top + 1,
Step 3. {Scan corner points on the bottom channel to
find an unvisited neighbor.)
while flag(V (bottom)) = TRUE and
bortom < pos(d;) do
bortom = bottom + 1,
Step 4. {If vertex { has no unvisited neighbors, go
back to its parent.}
if top > pos(b,) and bottom > pos(d,) then
begin
while rop > pos(b,) and bottom > pos(d;)
and [+ 0 do
i == parent(i);
if { # O then
goto Step 2;
end;
Step 5. {Find the next vertex to visit or stop the
algorithm.}
if /i # 0 then
begin
if rop < pos(b,) and bottom < pos(d,) then
u = min{V,(top), V(bottom)}
else if rop < pos(b;) and
bottom > pos(d;) then
u =V, (10p)
else if top = pos(b;) and
bottom < pos(d,) then
u ==V, (bortom);
parent(u) = i,
T=TuU(i, u)



16 H.-C. Chen, Y.-L. Wang / Information Processing Letters 63 (1997) 13—-18

Fig. 2. The resulting depth-first spanning tree starting from vertex
1.

i=u
flag(i) := TRUE,;
goto Step 2;
end
else
output T';

End of Algorithm A

We use the graph of Fig. 1(b) as an example to
illustrate Algorithm A. After the initialization in Step
1, we consider trapezoid 1. Scanning the top channel
and the bottom channel, we find trapezoid 2 inter-
sects trapezoid 1. Let vertex 1 be the parent of vertex
2, and let (1, 2) be an edge of T. Now consider
vertex 2. Continuing the scanning on both channels,
we find trapezoid 3 intersects trapezoid 2. Let vertex
2 be the parent of vertex 3, and insert edge (2, 3)
into 7. Continuing the scanning, we find that no
unvisited trapezoids intersect trapezoid 3. At the
moment, 2o back to the parent of vertex 3; i.e. vertex
2. Since all corner points before pos(b,) and pos(d,)
were scanned, no unvisited trapezoids intersect trape-
zoid 2. Therefore, we still go back to the parent of
vertex 2; i.e. vertex 1. Continuing the scanning, we
find trapezoid 6 intersects trapezoid 1. Thus, let
vertex | be the parent of vertex 6, and let (1, 6) be
an edge of 7. After Algorithm A terminates, 7 is a
depth-first spanning tree of G as shown in Fig. 2.

3. The correctness of Algorithm A

In this section, we will prove the correctness of
Algorithm A. Let G be a connected trapezoid graph

of n vertices. When we visit a vertex i of G in the
execution of our algorithm (no matter i is first
visited or not), i is, at the moment, called the
currently visited vertex. The vertex which is visited
immediately after visiting the currently visited vertex
is called the next visited vertex. Remember that top
(respectively, bottom) always indicates the latest
scanned corner point on the top (respectively, bot-
tom) channel. For completing the correctness, we
will show that

(i) the graph T constructed by Algorithm A is in

depth-first search,
(i) T is a tree connecting n vertices, and
(iii)  Algorithm A takes O(n) time.
The following property of trapezoid graphs is

useful for our proofs.

Property. Let i and j, i <j, be two vertices of G.
Then, i is adjacent to j if and only if pos(b,) >
pos(a;) or pos(d,) > pos(c;) in the trapezoid dia-
gram.

Lemma 1. Ler i, | <i< n, be the currently visited
vertex in the execution of Algorithm A. If top <
pos(b,) in Step 5, then V(top) is an unvisited neigh-
bor of i in G. Similarly, if bottom < pos(d,) in Step
5, then V (bortom) is an unuvisited neighbor of i in
G.

Proof. We shall only prove the case where rop <
pos(b,). The other case, bottom < pos(d,), can be
proved similarly. Since top < pos(b;) in Step 5,
flag(V,(top)) must be FALSE in Step 2. If V,(1op) >
i, then V(top) is an unvisited neighbor of i since
top = pos(ay,,,,) < pos(b) < pos(b, ). If
V,(top) < i, then V,(top) is also an unvisited neigh-
bor of i. If it is not a neighbor, then pos(by,,,, ) <
pos(a,) and pos(d, ) < pos(c,). But i is visited.
This implies that V,(1op) is also visited since by, ,,,,
or dy,,, have been scanned. A contradiction. Thus,
if top < pos(b,), then V(rop) is an unvisited neigh-
borof iin G. O

If rop <pos(b,) and bottom < pos(d,) for cur-
rently visited vertex /. | <i < n, in Step 5 of Algo-
rithm A, then both V,(1op) and V (botrom) are unvis-
ited neighbors of i in G. Either V,(top) or V (bot-
tom) can be the next visited vertex. In this case, we



H.-C. Chen, Y.-L. Wang / Information Processing Letters 63 (1997) 13-18 17

select u = min{V,(top), V(botrom)} as the next vis-
ited vertex for simplicity.

Corollary 2. If top > pos(b,) and bottom > pos(d,)
for currently visited vertex i in Step 4 of Algorithm
A, 1 <i< n, theni has no unvisited neighbors in G,
and the next visited vertex is parent(i).

Lemma 3. The graph T constructed by Algorithm A
is in deprh-first search.

Proof. The main idea of DFS is that if currently
visited vertex i has unvisited neighbors in G, then
one of the unvisited neighbors will be the next
visited vertex. Otherwise, if all the neighbors of ¢
were visited, then parent(i) is the next visited ver-
tex. In the execution of Algorithm A, we have to
consider four cases:

Case 1. top < pos(b,) and bottom < pos(d,),

Case 2. top < pos(b,) and bottom > pos(d,),

Case 3. top = pos(b,) and bottom < pos(d,);

Case 4. top = pos(b,) and bottom > pos(d,).

If it is in one of the first three cases, by Step 5 of
Algorithm A and Lemma 1, either V,(top) or V(bot-
tom) is the next visited vertex which is an unvisited
neighbor of i in G. Then, we insert edge (i, ) into
T, where u is the next visited vertex. If it is in Case
4, by Corollary 2, parent(i)} is the next visited vertex
and no new edge is added on 7. Thus, the graph T
constructed by Algorithm A is in depth-first search.
O

Lemma 4. The graph T constructed by Algorithm A
is a tree connecting n vertices.

Proof. In Step 5, we always insert an edge (i, u) into
T only when we find an unvisited neighbor u of
currently visited vertex i. It is impossible to insert an
edge incident with two visited vertices to form a
cycle. Thus, T is a tree. Since G is connected and
top and bottom scan all corner points on both chan-
nels, all of the n vertices of G can be visited in
Algorithm A. Therefore, 7 is a tree containing n
vertices. O

Obviously, each edge of T was visited at most
twice. This is because we go through ( parent(i), i)
if i was first visited and go through (i, parent(i)) if
i has no unvisited neighbors in G.

Theorem 5. Algorithm A finds depth-first spanning
trees on trapezoid graphs in O(n) time.

Proof. Lemmas 3 and 4 have shown that the graph T
constructed by Algorithm A is a tree connecting n
vertices in depth-first search. Since edge (i, u) is
added into T only when we find an unvisited neigh-
bor u of currently visited vertex i, (i, u) is an edge
of G. This completes that T is a depth-first spanning
tree of G. We show the complexity of Algorithm A
as follows. Since rop and bottom, respectively, scan
the top and the bottom channels once on the trape-
zoid diagram, Steps 2 and 3 totally take O(n) time.
When we visit a vertex { which has no unvisited
neighbors, we go back to parent(i) on T to continue
our algorithm. Since T has at most n — 1 edges and
each edge was visited at most twice, Step 4 totally
takes O(n) time. Step 5 can totally be done in O(n)
time and Step 1 is also in O(n) time. Therefore,
Algorithm A takes O(n) time. O

4. Conclusion

In this paper, we present an O(»n) time algorithm
for finding depth-first spanning trees on trapezoid
graphs. Since the class of permutation graphs is a
subclass of trapezoid graphs, depth-first spanning
trees on permutation graphs can also be found in
O(n) time by our algorithm. This improves the re-
cent algorithm of finding depth-first spanning trees
on permutation graphs which takes O(n log log n)
time.

References

[1] A. Aggarwal, RJ. Anderson and M.Y. Kao, Parallel depth-
first search in general directed graphs, SIAM J. Comput. 19
(1990) 397-409.

[2] P. Chaudhuri, Finding and updating depth-first spanning
trees of acyclic digraphs in paraliel, Comput. J. 33 (1990)
247-251.

[3) D.G. Coreil and P.A. Kamula, Extensions of permutation
and interval graphs, Congr. Numer. 58 {1987) 267-275.

[4] 1. Dagan, M.C. Golumbic and R.Y. Pinter, Trapezoid graphs
and their coloring, Discrete Appl. Math. 21 (1988) 35-46.



18 H.-C. Chen, Y.-L. Wang / Information Processing Letters 63 (1997) 13-18

[S] M.C. Golumbic, Algorithmic Graph Theory and Perfect
Graphs (Academic Press, New York, 1980).

[6] T. Hagerup, Planar depth-first search in O(log n) parallel
time, SIAM J. Comput. 19 (1990) 678-704.

[7] E. Korach and Z. Ostfeld, On the existence of special depth
first search trees, J. Graph Theory 19 (1995) 535-547.

[8] Y.D. Liang, Dominations in trapezoid graphs, Inform. Pro-
cess. Lert. 52 (1994) 309-315.

[9] Y.D. Liang, Steiner set and connected domination in trape-
zoid graphs, Inform. Process. Lett. 56 (1995) 101-108.

[10] Y. Liang, C. Rhee, S.K. Dhall and S. Lakshmivarahan, NC
algorithms for finding depth-first-search trees in interval
graphs and circular-arc graphs, in: /EEE Proc. SOUTH-
EASTCON 91, Vol. 1, pp. 582-585.

[11] T.H. Ma and J.P. Spinrad, On the 2-chain subgraph cover
and related problems, J. Algorithms 17 (1994) 251-268.

[12] C. Rhee, Y.D. Liang, S.K. Dhall and S. Lakshmivarahan,
Efficient algorithms for finding depth-first and breadth-first
search trees in permutation graphs, Inform. Process. Lert. 49
(1994) 45-50.

[13] H. Salehi-Fathabadi and H. Ahrabian, A new algorithm for
minimum spanning tree using depth-first-search in an undi-
rected graph, Internat. J. Compur. Math. 57 (1995) 157-161.

[14] G.E. Shannon, A linear-processor algorithm for depth-first
search in planar graphs, Inform. Process. Letr. 29 (1988)
119-123. :

[15] M.B. Sharma, S.S. Iyengar and N.K. Mandyam, An efficient
distributed depth-first-search algorithm, Inform. Process.
Lerr. 32 (1989) 183-186.

[16] R.E. Tarjan, Depth-first search and linear graph algorithms,
SIAM J. Comput. 1 (1972) 146-160.



