lnformqtion
Processing
Letters

ELSEVIER

Information Processing Letters 56 (1995) 83-87

An O(log n) parallel algorithm for constructing a spanning tree
on permutation graphs ~

Yue-Li Wang “, Hon-Chan Chen, Chen-Yu Lee

National Taiwan Institute of Technology, Taipei, Taiwan, ROC

Received 10 August 1994; revised 17 February 1995
Communicated by K. Tkeda

Abstract

Let G =(V, E)bc a graph with n vertices and 1 edges. The problem of constructing a spanning tree is to find a
connected subgraph of G with n vertices and (n - 1) edges. For a weighted graph, the minimum spanning tree
problem can be solved in O(log m) time with O(m) processors on the CRCW PRAM, and for an unweighed graph,
the spanning trce problem can be solved in O(log n) time with O(n + m) processors on the CRCW PRAM. In this
paper, we shall propose an O(log n) time parallel algorithm with O(n /log n) processors on the EREW PRAM for
constructing a spanning tree on an unweighted permutation graph.

Keywords.: Parallel algorithms; Spanning tree; Permutation graphs; Graph theory; EREW computational model

1. Introduction

Let G=(V, E) be a graph, w(e) be the
weighting function of the edges of G, where V/
and E are the vertex and edge sets, respectively.
Every connected graph G contains a spanning
subgraph that is a tree, called a spanning tree [6].
Typically, there are many different spanning trees
in a connected graph, and for a spanning trec
there are some properties which are described as
follows:

The following are equivalent on a graph 7 =
(V, E), where n is the number of vertices and m
is the number of edges.

This work was supported by the National Science Council.
Republic of China, under contract NSC-84-2213-E-011-008.
 Corresponding author. Email: ylwangtres.antit.edu tw.

(1) The graph T is a tree.

(2) The graph T is connected and m =n — 1.

(3) Every pair of distinct vertices of T is joined
by a unique path.

(4) The graph T is acyclic and m=n — 1.

If there is a weight for each edge of G, then
the minimum spanning tree problem (MST) is to
find a spanning tree with the property that the
sum of the weights of all the edges is the mini-
mum among those spanning trees of G. Algo-
rithms for the minimum spanning tree problem
date back to the early work of Kruskal [9] and
Prim [12]. In the last two decades, the complexity
of these sequential algorithms has been reduced.
Yao [15] provided an O(m log log n) algorithm
tor a network with n vertices and m edges.
Fredman and Tarjan [3] improved upon this

0020-0190 /95 /$09.50 © 1995 Elsevier Scicnce B.V. All rights reserved

SSDI0020-0190(95)00125-5

84 Y-l Wang et ul. / Information Processing Letters 56 (1995) 83-87

bound with an O(mB(m, n)) procedure (8{m, n)
=min{i [log"’n < m /n) where log*(n) is the iter-
ated logarithm). Gabow et al. [4] gave a further
improvement. Good descriptions of MST algo-
rithms appear in [1] and [14]. The well-known
parallel algorithm to solve minimum spanning
tree problem for a weighted graph takes O(log m1)
time with O(m) processors on the CRCW PRAM
(Concurrent-Read-Concurrent-Write Parallel
Random Access Machine) computational model
[13]. Moreover, for an undirected unweighted
graph, the problem of constructing a spanning
tree can be solved in O(log n) time with O(n + m)
processors on CRCW PRAM by the algorithm
for eliminating cycles [8].

In this paper we consider the problem of con-
structing a spanning tree for a permutation graph.
For simplicity, we only consider the case of a
connected permutation graph with »n vertices and
m edges. We present a parallel algorithm which
runs in Olog n) time with O(n/log n) proces-
sors, and our approach uses the EREW PRAM
(Exclusive-Read-Exclusive-Write Parallel Ran-
dom Access Machine) computational model.

Let the sequence P=[p,, p>,....p,] be a
permutation of the numbers 1, 2,...,n. Then the
permutation graph of P, G(P)Y= GV, E), is de-
fined as follows:

V=1{1,2,...,n},
E=<(i, NG=i)(p ' =p,)< o}.

p; ' is the position in the sequence where the

number ¢ can be found. In a more pictorial way,
we write the numbers 1, 2,....,n horizontally from
left to right. In this matching diagram the ling
connecting the two i’s intersects the line connect-
ing the two j’s if and only if (i, j)is in £ [2,5,11].

Fig. 1 shows a permutation graph and its corre-
sponding permutation diagram.

The remaining part of this paper is organized
as follows. In Section 2, we introduce an algo-
rithm which can be parallelized to construct a
spanning tree of a permutation graph. And the
correctness of this algorithm will be validated in
Section 3. Finally, the conclusion of this paper is
presented in Section 4.

2. An algorithm for constructing a spanning tree

In this section we show an algorithm for con-
structing a spanning tree of a permutation graph.
The algorithm can be parallelized by applying
parallel prefix computation [10]. In the following,
we use (u, v) to denote an edge incident to two
distinct vertices u« and v. Algorithm A which is
uscd to construct a spanning tree is presented as
follows.

Algorithm A

Input. A sequence P=1[p,, ps,...,p,] of a per-
mutation graph G.

Output: A spanning tree 7~ of G.
Method:

Step 1. Let T° be a graph with n vertices
(1, 2,...,n) and no edges.

Step 2. Scan the sequence P from p, to p,. Let
[, be the minimum element in {p,,
Poutr--sDibi=n,n—1,...,1

Step 3. Scan the sequence P from p, to p,. Let

r, be the maximum element in {p,,

]

Pase- P i=1,2,...,n.

(b)

Figo TGy A permutation graph. (b)Y Its corresponding permutation diagram,

Y.-I.. Wang et al. / Information Processing Letters 56 (1995) 83-87 85

i 12 3 4 5 6 7 8 9 10
p 2007110 3 |5 4 (10][9] 6 8
) i 1 1 3 14| 4 |elj6| 6 8
r 2.7 7 7 7 7 10 10 10 10

Fig. 2. Illustration of Step 4.

Step 4. Fori=1ton,if p.#{,then T" =T U

(pla l,)
Step 5. Fori=1ton~1,if I,#/,,,, then T =
T'U(ri, L))

We use the graph of Fig. 1 as an example to
illustrate Algorithm A step by step.

Step 1. Initially, T" contains n vertices and no
edges.

Step 2. The sequence of [, i=1,2,....n, is
[1,1,1,3,4,4,6,6,6.8].

Step 3. The sequence of r, (=1,2,...,n, 1s
{2,7,7,7,7,7,10,10,10,10}.

Step 4. There are five edges, (2,1), (7,1), (5.4),
(10,6), and (9,6), which are included into
T (see Fig. 2).

Step 5. There are four edges, (7,3), (7.4), (7,6)
and (10,8) of 7, which are obtained in
this step (see Fig. 3).

Finally, we obtain a spanning tree T~ which
contains nine edges, (2,1), (7,1), (5,4), (10,6), (9,6),
(7,3), (7,4), (7,6) and (10,8). We show the span-
ning tree pictorially in Fig. 4.

Since each step of Algorithm A takes O(n)
time in sequential, the time-complexity of Algo-
rithm A is O(n). However, we have known that
the parallel prefix computation can be done in
O(log n) time with O(n /log n) processors on the
EREW PRAM for n-object lists [7,10], Steps 2
and 3 can be done in O(log n) time with O(n/

i 1 2 34 o6 7T 8 49 10
P 2 6 8
! 1 6

r 2 10

Fig. 3. IHustration of Step 5.

Fig. 4. The spanning tree obtained by Algorithm A of the
graph in Fig. 1(a).

log n) processors as well. And in parallel the
other steps take O(log n) time with O(n/log n)
processors each. Thus, the parallel time-complex-
ity of Algorithm A is O(log n) time with
O(n/log n) processors on the EREW PRAM.
Besides, linear space is needed in this algorithm.

3. The correctness of algorithm A

In this section, we prove the correctness of
Algorithm A. In the following lemmas, we as-
sume that the permutation graph G =(V, E) has
more than one vertex and is connected.

Lemmas 3.1 and 3.2 prove that the edges ob-
tained at Steps 4 and 5 are the edges of a
permutation graph G.

Lemma 3.1. If p,#1,i=1,2,...,n, then (p,, 1)
is an edge of G.

Proof. Since p; #/;, and /,=min (;.,,p), p; > I
=1[,,,. Furthermore, since /;=1/, ,, we obtain
Py <p;', where p;;'=i and p;;'>i+ 1. Thus,
(p,—1Xp,' —p;")<0. By the definition of a
permutation graph, (p;, ;) must be an edge of G.
0O

Lemma 3.2. Every (r;, [,), 1 <i<n, is an edge
of G.

Proof. For proving (r,, /;, ;) is an edge, we have
to show r; >, ,. By Algorithm A, r; is the maxi-
mum element in {p,, p,,...,p;} and /,,, is the
minimum element in {p,,,, p; 5, ..., p,). We
shall prove the following two cases are impossi-
ble.

86 Y.-L.. Wang et al. / Information Processing Letters 56 (1995) 83-87

Case 1: r; <l 4. This means there exists no
element in {p,, p,,..., p; greater than any ele-
ment in {p,,, p;yy.---» P} Since (p, —p Hx —
y}>0for 1 <x<iand i +1 <y <n, there is no
edge incident to both p, and p,, where p €
{py, Po.-.,pd and p,€{py, Pivas- s P
Thus, G is not connected and this case contra-
dicts our assumption.

Case 2:r; =1, . Since r, = max{p,, ps,..., D;),
Ligy=min{p,, ,, pis.....p)and p,#p; if i #],
this condition cannot hold.

Therefore, r;>{,,, and (r, ~1,, Xp '~
Pri) <0, where p.'<i and pgli.i+ 1. We
conclude that if G is a connected permutation
graph, every (r;, /;,), 1 <i<n, is an edge of G.
0

Before we prove that the tree 77 found by
Algorithm A is a spanning tree, we need the
following definitions. Two different vertices p,
and p; belong to the same subtree component if
[;=1,. For p,;, if there cxists no other vertex P,
which has /; =1/, then p, is a single vertex subtree
component. By the definition of /;, every subtree
component contains consecutive p,’s. Using Fig. 1
as an example, Fig. 5 illustrates our definitions.
{2,7,1}, {3}, {5,4}, {10,9,6} and {8} are subtree
components while {3} and {8} are single vertex
subtree components.

Lemma 3.3. Let S={p,, p,.,,-..,p,} be a subtree
component. Then T = (S, E) forms a subtree of G,
where E ={(p,,)i <x <j}.

Proof. Since S is a subtree component, [, =/,
= -+ =1, By the definition of /;, we know p, =1,
and p, >/, for i<x <j. By Lemma 3.1, every
(p,, 1) is an edge of G. This means that 7=
(S, E) forms a subtree of G. O

i 12 3 4 5 & 7T 8 9 10
p[2 7 [5 4]0 9] [E
L1 113 4 4 6 6 o6 8
P27 7 7 7 7 0 10 1o

Fig. 5. Subtree components

Theorem 3.4 Algorithm A finds a spanning tree of
a permutation graph.

Proof. Suppose S,, S,,...,S; are all of the sub-
tree components of G and have n,, n,,...,n,,
respectively, vertices. 7,, T,,..., T, are their cor-
responding subtrees as defined in Lemma 3.3.
First, we have to prove that n, +n, + - -+ +n, =
n, where n is the number of vertices in G. Since
every p, only has a unique /,, every p; can only
belong to one exact subtree component. It im-
plies that n; +n, + -+ - +n, = n. Second, we have
to show that those k subtrees T,, T5,...,7, can
be combined to form a tree. Let S,={p,
Piv1s--- P}, 1<i<j<n, be a subtree compo-
nent. Since r,_,€{p;, py,...,p;_;} (the maxi-
mum element in {p,, py, .-, D)), rio &
{pi, Pis1,---, p;}. This implies that r,_, is not a
node of subtree 7,. However, [, (=p;) is a vertex
in T,. It means that edge (r,_,, ;) is an edge that
combines 7, with another subtree. By Lemma
3.2, we know (r;, ;) is an edge of G. Also by
the property of trees, the combination of two
trees by one edge still forms a tree. Step 5 of
Algorithm A combines all of subtrees to form a
tree 7. Thus, the number of edges of T~ is

(=D +(n, =)+ +(n, -1 +k—-1
=n-1.

By the definition of a tree, T~ is a spanning tree
of G. O

4. Conclusion

Algorithm A can construct a spanning tree of a
permutation graph. With the similar argument,
we can construct another spanning tree by modi-
fying Steps 4 and 5 of Algorithm A as follows.

Step 4. For i=1ton,if p,#r,then T =T U
(p;, 1))
Step 5. Fori=1ton~-1,if r,#r,,,then T =
T u(r, 1o).
In this paper we present a parallel algorithm
to construct a spanning tree on an unweighted
connected permutation graph with n vertices.

Y.-L. Wang et al. / information Processing Letters 56 (1995) 83-87 87

This problem can be solved in O(log n) time by
the above parallel algorithm with O(n/log n)
processors and linear space, and our approach
used the parallel prefix computation on the
EREW PRAM.

References

[1] P.M. Camerini, G. Galbiati and F. Maffioli, Algorithms
for finding optimum trees: Description, use, and evalua-
tion, Ann. Oper. Res. 13 (1988) 265-397.

[2] S. Even, A. Pnnueli and A. Lempel, Permutation graphs
and transitive graphs, J. ACM 19 (1972) 400-410.

[3] M.L. Fredman and R.E. Tarjan, Fibonacci heaps and
their uses in network optimization algorithms, in: Proc.
25th Ann. IEEE Symp. on FOCS (1984) 338-346.

{4} H.P. Gabow, Z. Galil, T. Spencer and R.E. Tarjan,
Efficient algorithms for finding minimum spanning trees
in undirected and directed graphs, Combinatorica 6 (1986}
109-122.

[5] M.C. Golumbic, Algorithmic Graph Theorv and Perfect
Graphs (Academic Press, New York, 1980).

[6] R. Gould, Graph Theory (Benjamin/Cummings, Menlo
Park, CA, 1988) 65-67.

(7] J. Jala, An Introduction to Parallel Algorithms (Addison-
Wesley, Reading, MA, 1992) 44-47.

[8] P. Klein and C. Stein, A parallel algorithm for eliminat-
ing cycles in undirected graphs, Inform. Process. Lett. 34
(1990) 307-312.

[9} J.B. Kruskal, On the shortest spanning subtree of a graph
and the traveling salesman problem, Proc. Amer. Math.
Soc. 7 (1956) 48-50.

{10) C.P. Kruskal, L. Rudolph and M. Snir, The power of
parallel prefix, JEEE Trans. Comput. 34 (1985) 965-968.

[11] A. Pnueli, A. Lempel and S. Even, Transitive orientation
of graphs and identification of permutation graphs,
Canad. J. Math. 23 (1971) 160-175.

{12} R.C. Prim, Shortest connection networks and some gen-
eralizations, Bell Systems Tech. J. 36 (1957) 1389-1401.

[13] F. Suraweera and P. Bhattacharya, An O(log m) parallel
algorithm for the minimum spanning tree problem, In-
form. Process. Lett. 45 (1993) 159-163.

[14] R.E. Tarjan, Data Structures and Network Algorithms
(SIAM, Philadelphia, PA, 1983).

[15) A. Yao, An O(| E |log log |V |) algorithm for finding mini-
mum spanning trees, Inform. Process. Lett. 4 (1975) 21—
23.

