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Abstract--The effect of micromixing on steady-state multiplicity is not displayed by the universal reaction 
model (URM) since this URM has considered any chemical species having the same mixing time constant. 
The modified universal reaction model (MURM) is derived for overcoming the above limitation. The design 
equations are first derived. Furthermore, the MURM is employed for studying the effect of micromixing on 
the multiplicity for autocatalytic, isothermal reactions of the type A + B --, (q + I)B + product with the 
overall rate expression being - y, = k C~C~ in a CSTR. The effects of micromixing on necessary and 
sufficient, conditions for multiplicity are presented. 

I. INTRODUCTION utilized the random coalescence model, the general- 
Predicting a priority has become quite important for ized recycled model and the IEM (interaction by ex- 
the design and the control of a chemical reactor since change with the mean) model to discuss multiplicity 
steady-state multiplicity occurred. The use of the con- under various chemical reaction systems. Puhl and 
tinuous-flow stirred tank reactor (CSTR) has had an Nicolis (1986) applied Zwietering's model (1984) to- 
impact on the study of various bifurcation phe- wards discussing the micromixing effect on the com- 
nomena occurring in chemical reacting systems, plex chemical reaction systems. The reactor perfor- 
Uppal et al. (1976) and Balakotaiah and Luss (1983) mance was indicated from all these results to be con- 
studied a nonequilibrium chemistry in a CSTR with siderably affected by the micromixing. Hannon and 
single inflow and showed that bifurcation phenomena Horsthemke (1986) used a coalescence-dispersion 
occurred under nonisothermal conditions. As to iso- model of the CSTR to study the effect ofpremixed and 
thermal conditions, many autocatalytic reactions are unpremixed reactant feeds. They showed that the re- 
known to exhibit multiple states in a CSTR. Gray and gion of bistability is smaller for segregated feed 
Scott (1983) studied an isothermal CSTR and showed streams than for a fully premixed feed stream. How- 
that, in addition to the usual bistability behavior, ever, the complex mathematical treatment in the cal- 
there existed a second hysteresis region. Recently, Kay culation steps is a limitation in previous papers. 
et al. (1989) applied the techniques of singularity The steady-state IEM model of micromixing with 
theory, which is a very powerful tool for obtaining singular perturbation has recently been utilized by 
analytical results for regions of multiple steady-state Fox (1989) for analyzing the steady-state multiplicity 
responses in the parameter space. However, most of the Nicolis-Puhl reaction. Furthermore, Fox and 
studies have concentrated on the ideal mixing in Villermaux (1990a, b), Fox et al. (1990) and Fox (1991) 
a CSTR, The above findings can therefore not be utilized the unsteady-state IEM model for exploring 
applied in a nonideal mixing CSTR. the dynamic behavior by the perturbation method 

Lo and Cholette (1983) and Liou and Chien and numerical simulation, Recently, the study of the 
(1990a, b, 1991) recently discussed the effect of macro- effect of micromixing on the chlorite reaction using 
mixing on the multiplicity in a CSTR via Chollete's the unsteady-state IEM model has been presented by 
model. As to the effect of micromixing, Dudukovic Fox et al. (1994). They showed that the above reac- 
(1977a, b) employed three distinct one-parameter tions are quite sensitive to relatively small changes in 
models to study multiplicity in a CSTR with the rate the micromixing parameter and derived a polynomial 
expressed as - Y, = kC , / (1  + KCo)  2. Marconi and expansion of the IEM model to investigate the dy- 
Vatistas (1980) and Vatistas and Marconi (1985) namic behavior of the system using bifurcation 
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theory. Based on the above results, the solution of the q o ¢o0 q b Cbo 
IEM model still needs an initial guess of mean con- ~ / ~ / 
centration. 

These flaws can be overcome by the universal re- (vc~,~)q%co~ .- A2 Co~ B2 .cb~ (~-c~b) %,cb~ 
action model (URM) which was developed by ~__-_-_- , 2-_:z_~_-_.<~. 
Miyawaki et al. (1975). The merits of the URM in- ',~' ",, / . 
clude its corresponding physical meaning, ease of use : l ~9-~) ,, ~l a~ ~-) . 
and no loss of accuracy. Liou et al. (1983) discussed ~ i A~ cem ! B, ' '  
how the nonideal mixing effects conversion in several ~ , c~ ,  ,, 
types of chemical reactors. Furthermore, Liou and : ",, cb~:. / 
Shei (1984) demonstrated that the mass exchange co- ~, 
efficients are not a constant according to the experi- '~ "~V ~ / i i9 
ment of Takao et al. (1978). However, the shortcoming (1- o~ma) q°,c°s (1- O'mb) q b, C 
lies in the fact that in previous papers each chemical i ~ce~q Co~,Cb~ 

species has the same mixing time constant. Therefore, 
the URM cannot be applied towards understanding 
the phenomenon of steady-state multiplicity with mi- 
cromixing. _ _ 

Here, the modified universal reaction model q,ca,Cb 
(MURM) is proposed. Each of the chemical species is Fig. 1. Schematic representation of the modified universe 
considered to have its own mixing time constant. The reaction model. 
MURM can also be simplified to the URM once the 
values of the mixing time constant become the same. 
Furthermore, the MURM is employed to investigate vessel, ~= is assumed to have a constant value 
the effect of micromixing on multiplicity for auto- throughout the vessel and to change with time. 
catalytic, isothermal reactions of the type A + B ~ The magnitude of the diffusion rate from the seg- 
(r /+ 1)B + product with the overall rate expression regated region to the molecular-mixed region can be 

- -  ~ _  P • being ?o kCa Cb in a CSTR. The necessary and determined for chemical species A and B, (0 V ~ / & )  

sufficient conditions for multiplicity in nonideal mix- and (O V~/Ot) ,  by eqs (la) and l(b), respectively: 
ing indeed differ from those in ideal mixing, as demon- 

C 3 V~/Ot  = -- KaA2 V~ ( la)  
strated from the observed results. 

O Vsb/Ot = -- KbB2  Vb (lb) 

where K .  and K~ are the inversion of the mixing time 
2. M/CROMIXING MODELS 

constants for A and B components. The diffusion 
The case is first considered in which two miscible rates are different for chemical species A and B since 

solutions containing chemical species (labelled A and each of the species has its own mixing time constant 
B, respectively) are mixed by turbulence and simulta- and volume of the completely segregated region. This 
neously react with each other. The two solutions are concept and the definition of ~,~ are the primary 
divided into several lumps of a small scale. These differences between the URM and the MURM. 
lumps are twisted and divided into a much smaller The following equations under the above assump- 
scale by turbulence, with the solutions finally being tions are derived; 
mixed to a molecular scale and then reacted with each 
other. Al=~m~,  A 2 = l - ~ , ~  

(2) A distribution concentration-volume in a lump of B1 = ~ ,  B2 = 1 - ~t,~ 
the MURM is shown in Fig. 1. The MURM, as well as 
the URM, is assumed to be the same volume for every and 
cell in an isotropic stirred vessel. Unpremixed chem- , , .  V = A1 Vo + B~ Vb = ~ Vo + ~,,b Vb 
ical species A and B feed in the completely segregated 
regions A2 and B2. A partial fraction of chemical where V is the volume of a lump, Va and Vb are the 
species A and B, which are located in segregated volumes of chemical components A and B in a lump, 
regions, directly flow out of the reactor simulta- and ~,~ and a n  are the degrees of micromixing for 
neously, and the others diffuse into the molecular- chemical species A and B, respectively. 
mixed regions A~ and B1, respectively. The reaction is By taking the volume balance in the A2 Va region 
assumed to occur only in the molecular-mixed region. (the density is assumed to be constant), 
The outlet flow is composed of flow coming from the dAz Vo 
molecular-mixed region and the segregated region, d t  = q° + (OV~/Ot)  - A 2 q a .  (3) 

The degree of micromixing, a,,, is defined as the 
relative volume ratio of the summation of the A~ Va At the steady state, 
and B1 Vb to the total mixing system. This definition is 
true in the light of the fact that the molecular-mixed A2 = (1 -- a ~ )  = 1/(1 + KoTo) (4) 
regions are homogeneous. In an isotropic stirred where ~° = Vo/q°.  
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By taking the volume balance in the B2Vb region, Substituting eqs (7) and (12) into eq. (15) yields 

dB2Vb vdC. ,~  (OV~ OV~b~ 
d - - - ~ = q b + ( O V s ~ / O t ) - B 2 q , .  (5) ~,~ - - ~  = \ -~- - -  + - - ~ - / C o , .  

Derived at the steady state, _ (63Vsa~ 

B 2 = ( 1 - c x m b ) = l / ( l  +K~z~)  (6) \ Ot J Ca°+ct"VT~" 
(16) 

where zb = Vb/qb. From eqs (3) and (5) at the steady state, we have 
By taking the total  mass balance in the ~tm V region, 

arm 
d~. V = _ (63 V~/63t) - (c3Vsb/63t) - ctmV. (7) Ot = A2qa - q~ = - ~,~qa (17) 

dt 
O vsb 

Substituting eqs (3) and (5) into eq. (7) at the steady- 63t = B2qb -- qb = -- ~,,,~qb. (18) 
state produces 

Furthermore,  eqs (17) and (18) are substituted into eq. 
0 = (q~ -- A2q~) + (qb -- B2q~) -- ¢t.q. (8) (16), 

Furthermore,  eqs (4) and (6) are substituted into eq. dCam 1 
(8), - -  = -(fi~Cao -- Cam) + 7~ (19) 

dt r 
q~ q~ 

Ctm = - -  ~.~ + - -  Ct~. (9) where q q 

F rom eq. (9), ~tm is contr ibuted by components  A and 6a = Ct__~_~ q~ 
B. Addit ionally,  the quanti ty of contr ibut ion for each Ctm q 
component  A and B is dependent  on both the product  
of the magni tude of the molecular-mixed region and Fol lowing the above procedures, the component  
the ratio of the flow rate for the component  to the B balance in the ct,, V region is 

overall flow rate. dCb,. 1 
- -  ~-  -- ( f ~ b C b o  - -  Cbra )  ~-  ~a (20) The relations of V a / V  = qo/q and Vb/V = qn/q are dt r 

observed from eqs (2) and (9). Thus, 
where 

z~ = zb = V/q = z (10) 

can be obtained. ~b =----=~t'~b qb 1 - 6a. 
• ~, q 

By taking the component  A balance in the A2 Vo 
region Thus, eqs (19) and (20) are the design equations of 

micromixing in the CSTR. The remaining problem is 
dA2 V~C~ = q~C~o + (63 V~/63t) C~ - A z q . C ~ .  how to determine ~5~, i.e. ~t~ and ~t,,. F rom eqs (4), (6) 

dt  and (9), we have 

(11) K~z 

At the steady state, eqs (3) and (11) can be derived as ct.~ -- 1 + Ka-------~ (21) 

C,,s = Coo. (12) Kaz q~ Kb~ qb 
~tm = - -  + - -  [22) 

The concentrat ion in the completely segregated re- 1 + K,z  q 1 + Kbz q " 
gion is inferred from this equation to be equal to the 

Then, 
feed concentrat ion for chemical species A, and the 
chemical reaction does not  take place in this region. ~ Kbz(1 + K~z)qb]-1 
Following similar treatment,  the component  B bal- 6~ = [-1 + K~(1  + KbZ)qa] (23) 
ance in the B2 Vb region is 

The parameters  of K~ and Kb are the inversion of 
d B2 Vl, Ct, s =  qbCb 0 + (63 V,b/Ot)Cb,--B2qbC~,. the mixing time constants for components  A and 

dt B (t,.,o and t,,,b) which were previously obtained by 
(13) Corrison (1957). 

At the steady state, eqs (5) and (13) are combined to t,,,. = ½ [3(5/Tt)2/3(L2/e)l/3 + (v~/e) 1/2 ]n N .. . .  ] 

get (24) 

Cb~ = Cbo. (14) and 

By taking the component  A balance in the ~t., V 
region, t.,,b = ½ [3(5/~z)z/3(L2 /e)l/3 + (Vb/'q) 112 In N,c,b] 

dotmVCam __ (63Vsa~ (25) 
dt = \ 63t ] C,~ - ot.qCom + ~m Vy~. where L, is the length scale of segregation, e is the rate 

(15) of turbulent  energy dissipation per unit of mass, v is 
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the kinematic viscosity and N,c is the Schmidt num- Substituting eqs (28) and (29) into eq. (26) yields 
ber. 

In eqs (24) and (25), the first term on the right-hand Ym = (1 -- Ym)P(2/~ + Ym)" (31) 
side is the turbulent  mixing time, and the second term 0 
is the molecular mixing time for each component,  where 
Hence the mass diffusion rate in the segregated region 

(C~malC~mJ 0 for each component  is different. The mixing time 0`= , ,p+,-1 
constants for components A and B are consequently 0 = (k V/q ) r l ' ( qa  C~o /q ) r+  r -1  

different from each other. 
It is important  to note that 6a depends not only on P = (1 / r l ) (qbCbo/qaCao)  (32) 

Koz and KbZ but  also on qb/q~.  For  the case that and 
K~ = Kb, then the M U R M  is reduced to the URM. It 
is implied that the diffusion rate from the completely 2 = Ctmb/Ctm~. (33) 
segregated region to the molecular-mixed region for 
chemical species A and B cannot be discriminated. In 
the MURM,  the above constraint does not exist. So 4. CONDITIONS FOR MULTIPLE STEADY STATES 
the M U R M  can be used to study the effect of micro- The stationary-state condition can be written, from 
mixing on multiplicity, eq. (31), as 

F = (1 - Ym)P(2P + Ym)" -- Y m / f f  = O. (34) 
3. APPLICATION TO AUTOCATALYTIC 

REACTIONS Since d F / d O  does not vanish, when applying the 

The reaction system is considered as A + B ~ singularity theory, it violates the condition for the 
(r /+ I)B + product, and the reaction rate is appearance of isola and growth to mushroom, so isola 

p • - ?o = k Co Cb, where q is a stoichiometric coefficient, and mushroom patterns are not  possible. The condi- 
Once the feed contains two unpremixed feeds A and tions for the appearance of a hysteresis loop can be 
B, the steady-state performance in the molecular- written as F = 0 and d F / d Y m  = 0. Differentiating 
mixed region becomes F with respect to Y,. yields 

( 1 -  Ym)P-I(2/5 + Ym) r - I  [ r - - J ,  P p - - ( p + r )  Ym] 1 
0 = - ( 6 a C a o  - Cam) - kCaraCbmP " (26) 

- I / 0 ` = 0 .  (35) 

and Eliminating 0` from eqs (34) and (35) obtains 

1 P ' - 1) y2 + [1 + 2 P ( p  - 1) r]  Y,,  + ) . P  = O. 0 = - - [ ( 1  - -  ¢~a)Cbo -- Cbm ] + ?lkCamCbra. (p + r 

(27) (36) 

The roots of eq. (36), denoted as 17, are 

Y =  - [ I + 2 P ( P - 1 ) - r ] + { [ 1 - r + 2 P ( P - 1 ) ]  2 - 4 2 P ( p + r - 1 ) }  0.5 
(37) 

2(p + r - 1) 

The relation of C ~  and Cb. can be written as Since F must be real and 0 < P < 1, the necessary 

Cb., = (1 -- 3.)Cbo + rl(6~C~o --  C o . ) .  (28) conditions for 17 to exist are 

Define Y,. to be the conversion in the molecular- P + r -  1 - ~ / 5  > 0 
(38) 

mixed region for component  A as r - 1 - 2P (p  - 1) > 0 

--  (c~V~/Ot )C~o --  qo~,~C,.,, and y , ,=  
- (OvMot) C~o 

[1 - r + 2 P ( p  - 1)] z - 4 ; t P ( p  + r - 1) > O. 
1 C~. ,  

= 1 - - - - -  In order to find the boundaries of 0, denoted as 
Ja Cao 0`1 and ff2, eq. (37) is substituted into eq. (34), 

o r  

Cam = 3~C~o(1 - Yra). (29) 17 

Additionally, the conversion for the component  A of 0`1,0`2 = (1 - 17)P(2/5 + 17)'" (39) 
the overall system is 

Therefore, the sufficient condition for multiplicity is 
qoCoo - -  q~Cao(l - C~mo) - -  qCamo~ra 

Y° = q~ Coo 0̀ 1 < 0` < 02. (40) 

The relation of Yo and Y,. is The necessary and sufficient conditions for the sys- 
tem to have multiplicity are obviously a combinat ion 

Y~ = Y,. ct.~. (30) of conditions (38) and (40). The violation of any of the 
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conditions in conditions (38) and (40) would guaran- easily obatained. On  the other hand, if ~ and ,l are 
tee the uniqueness of the system, given (2 ~ 1), then the corresponding KoT and Kbt  can 

be computed by 

c t - , ~  
5. N U M E R I C A L  C A L C U L A T I O N  A N D  K o T  = - -  (43) 

G R A P H I C A L  R E P R E S E N T A T I O N  ~ ('~ - -  1) 

The parameters ~ and 2 are defined here for the and 
sake of convenience. Define ~t - 2 

= K b t / K ~ t  (41) Kbt  = A ~ - I "  (44) 

and A system with a particular set of (p, r, P, t7) can be 

Kbt (1 + Kot) easily verified for its multiplicity or uniqueness by 
2 = g~,b/ot,,,,, = K°t  (1 + Kb'g)" (42) examining the criteria. Figures 2 and 3 show the effect 

of ~t and 2 on the bifurcation curve in the (r, # )  plane 
Note  that, once K°t  and K~T are given, a and 2 can be when p = 1, and the (r, p) plane when # = 0.1, respec- 

10 

1. X = 0 .556 ,  a = 0.5 
2. A = 0 .900 ,  ~ = 0.5 5 /  

8 .3. X = 1 .000,  a = 1.0 
4. A = 1 .048,  ot = 2.0 
5. X = 1 . 6 6 6 ,  a = 2 . 0  

.° i 
4 

2 

0 I I I l l l l l l l l l l l  I l l l l l l [ l i l l l l l l l l l l  [ 11  j l r l l [ r l l l l l I t l l l [ [ [ l l  

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 
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Fig. 2. The effect of 2 on the bifurcation curves in the (r,/~) plane while p = 1. 
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Fig. 3. The effect of 2 on the multiplicity region in the (p, r) plane while # = 0.1. 
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tively. The multiple steady states occur in the regions cation curve for 2 = 1.5 (the bifurcation curve for 
above the bifurcation curve. On  the other hand, the 2 = 1.5 is omitted in Fig. 3). Multiplicity apparently 
unique steady state arises in the region below the occurs once 2 < 1.05, and uniqueness occurs once 
bifurcation curve. F r o m  Figs 2 and 3, when ;~ is ,l > 1.5. 
increasing (decreasing), the region of multiplicity is Figure 5 shows the case where (p , r ) - - (1 ,  1.86) 
decreasing (increasing). Additionally, the region of when ct = 0.9, P = 0.1, and qb/qo = 1 (K,z is variable). 
multiplicity for ct > 1 (ct < 1) is always smaller (larger) The multiple steady state occurs for ;~ < 0.931 
than that of the ideal mixing. (K,z < 0.5) and the unique steady state occurs for 

Figure 4 indicates the effect of A on Y= as a function 2 > 0.99 (K,z > 10). Under  the conditions that 
of 0 for the reaction system (p,r) -- (1,2) once ct = 2, K,z  = 10, fi  = 0.1, and qb/q, = 1 (~t is variable), as 
/~ = 0.1 and qb/q, = 1. Multiplicity occurs once shown in Fig. 6, the multiple steady state occurs for 
). < 1.048. And the unique steady state occurs when 2 < 0.917 (ct < 0.5), and the unique steady state occurs 
;¢ = 1.5 and 2 = 1.666. This situation can also be con- for 2 > 1 (ct > 1). Figure 7 shows the exact multiplicity 
firmed by Fig. 3. Figure 4 corresponds to the system regions in the (0, r) plane with p = 1, /~ = 0.1 and 
operating at point I in Fig. 3. Point  I is situated above qb/qo = 1. The multiplicity region is observed to have 
the bifurcation curve for 2 = 1.05 and below the bifur- shifted to the right (left) once 2 increases (decreases). 

, 

0.6 

0 .4  1. h = 1 .666,  c< = 2 
2. 2,, = 1 .500,  o, = 2 
.5. h = 1 .048,  e¢ = 2 
4. ~k = 1 .010,  c¢ = 2 
5. X = 1 .000,  ~ = 1 

0.2 

0.0 I 1 [ 1 ~ 1 1 1 1 1 [ 1 1 1 1  I 1 ~ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [ 1 1  i i i i i i i i i i i I I i i i i i i  i i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ~  

0 2 4 6 8 10 12 14 
O 

Fig. 4. The effect of )~ on Ym as a function of 0, while p = 1, r = 2,/~ = 0.1, ~ = 2 and qb/q, = 1. 
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0 .30  1 2 

0 .20  1. X = 0 .918 ,  c¢ = 
2. X = 0 .951 ,  c~ = 0.9 \ ~ / / /  
5. X = 0 .990 ,  a = 0.9 ~ I / / /  
4. X = 0 .998 ,  c~ = 0.9 ) ] / ~ "  

0 .15  • = • , = • 

0 .10  

2.20 2.25 2.30 2.35 2.40 
0 

Fig. 5. The effect of). on YM as a function of 0 (Koz is variable), while p = 1, r = 1.86,/~ = 0.1, ~ = 0.9 and 
qb/qo = 1. 
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0.8 f 

0.6 

2 3 

I .  X = 0 .733 ,  a = 0.2 
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0 2 4 6 8 i0 12 14 
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Fig. 6. The effect of). on Y~, as a function of 0 (a is variable), while p = I, r = 1.86,/5 = 0.I, K,~ = I0 and 
q b / q .  = 1. 

10 ~ 

1. X = 0.556, o¢ = 0.5 
2. X = 1 .000 ,  a = 1.0 
3. X = 1 .666,  a = 2.0 

10 2 

I 2 

10 

O, 
I i i i i i i i I I I I I I I I I I I I I [ l l I I l I I l I I l I I I I I I I ] [ I I ] I [ I ] l 

1.5 2.0 2.5 3.0 3.5 4.0 
r 

Fig. 7. The effect of ,~ on the lower boundary 8t and upper boundary 02 for 0 to have multiplicity, while 
p = 1,/~ = 0.1, Ko~ = 0.2 and qb/q , ,  = 1. 

6. CONCLUSION From the above analysis, the conditions for multi- 
The model of the MURM was derived in the pres- plicity show no discrepancy between an ideal mixing 

ent study. The MURM could be easily employed for and a nonideal mixing once g = 1. However, the ne- 
solving the problem of steady-state multiplicity in cessary and sufficient conditions are different from 
a nonideal CSTR. The original URM could not solve each other once ,~ is not equal to 1. The value 3. be- 
the above problem. On the other hand, the other comes larger (smaller) than 1 as a response to the 
micromixing models require much more computation multiplicity region's decrease (increase). The magni- 
time and mathematical treatment. Additionally, the tude of feed species B entering the maximum-mixed 
analytic results could not b¢ obtained from other region becomes more (less) than that of feed species 
micromixing models. An ideal mixing situation could A whenever 3. becomes larger (smaller) than 1. This 
not be achieved in a CSTR in terms of real applica- autocatalytic reaction indicates that the effect on mul- 
tion; therefore, these observed results could be used in tiplicity is more decreased (increased) than that of 
a chemical reactor design, ideal mixing. In the URM, ,1. is equal to 1, and the 
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