
Pergamon Chemical Engineering Science, VoL 50, No. 22, pp. 3645 3650, 1995 
Copyright © 1995 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 
0009 2509/95 $9.50 + 0.00 

0009-2509 (95)00194-8 

STEADY-STATE MULTIPLICITY FOR AUTOCATALYTIC 
REACTIONS IN A NONIDEAL MIXING OF CSTR WITH TWO 

UNPREMIXED FEEDS 

YU-SHU CHIEN 
Department of Chemical Engineering, National Chin Yi Technical College, Taichung, Taiwan 4111 I, 

R.O.C. 

and 

CHING-TIEN LIOU* 
Department of Chemical Engineering, National Taiwan Institute of Technology, Taipei, Taiwan 10672, 

R.O.C. 

(First received 10 January 1995; revised manuscript received 12 May 1995; accepted 25 May 1995) 

Abstract-The necessary and sufficient conditions for multiplicity are derived for isothermal autocatalytic 
reactions in a nonideal mixing of CSTR with two unpremixed feeds. Cholette's model is utilized in this 
paper. The ratio of the fraction of the feed for A to B entering the zone of perfect mixing, (nJna) , is indicated 
to determine significantly the multiplicity and uniqueness region. When the (nJno) is larger (smaller) than I, 
the multiplicity region decreases (increases), and the conversion in active space increases (decreases). When 
(nb/n,) is equal to 1, the multiplicity region and the conversion in active space are the same as those in the 
ideal mixing. If operating in a unique region in the ideal mixing, the system may show multiplicity when 
(nb/n~) < I. On the other hand, if operating in a multiplicity region in the ideal mixing, the system may show 
uniqueness when (nJna) > 1. 

1. INTRODUCTION and a simplified Four Environment model for the 

The presence of multiple steady states under the non- sake of studying the macromixing and micromixing 
linear model and the physical process has received effect on the steady-state multiplicity in a CSTR 
a considerable amount of attention in reaction engin- where the reaction rate is - ?~ = kCa/(1 + KCa) 2. 
eering literature. Since van Heerden (1953) published Furthermore, Liou and Chien (1991) also employed 
his work, a considerable amount of research has been Cholette's model in finding an exact multiplicity cri- 
directed at analyzing the multiplicity of chemical reac- teria for input multiplicity in a CSTR. However, all of 
ting systems. A number of comprehensive reviews of the above studies concentrated on the CSTR with one 
steady-state multiplicity in various systems have been feed. Recently, Li (1994) showed that additional bifur- 
presented (Morbidelli et al., 1986; Razon and Schmitz, cations may occur in an ideal CSTR if an additional 
1987). inflow of reactants is introduced. 

Among the various reactors, continuous-flow Actually, the CSTR with two unpremixed feeds is 
stirred tank reactors (CSTRS) have been used exten- more often encountered in the chemical industry than 
sively to study the dynamic behavior of non-linear that with one feed. Hannon and Horsthemke (1987) 
chemical systems according to bifurcation theory and used a coalescence-dispersion model of the CSTR to 
singularity theory (Balakotaiah and Luss, 1983; Gray study the effect ofpremixed and unpremixed reactant 
and Scott, 1983; Kay et al., 1989). However, these feeds. They showed that the region of bistability is 
syslems ha ve generally been based on the ideal mixing smaller for segregated feed streams than for a fully 
in the reactor. Thus, their results are not useful in the premixed feed stream. Lintz and Weber (1980, 
imperfectly mixing CSTR. 1987a, b) showed that the conversion depends not 

During the past decade, Lo and Cholette (1983) only on the stirring rate but also on the feed stream 
investigated the multiplicity of a conversion in a cas- configuration, i.e., premixed or unpremixed condition. 
cade of imperfectly mixing CSTR's. Liou and Chien However, the necessary and sufficient conditions for 
(1990a) applied Cholette's model towards analyzing the multiplicity and uniqueness in terms of parametrs 
the maximum steady states in the two CSTRs in series, were not deduced by them. Exact multiplicity criteria 
Liou and Chien (1990b) used both Cholette's model for autocatalytic reactions were previously published 

by Lin (1979, 1981). However, those criteria could 
only be applied in an ideal CSTR. The criteria for 

*Corresponding author, steady-state multiplicity coming from the literature, 
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qa,Cao qb~bo y = naqaCao - nqCa (6) 

( l -n  ~l, C Do Both concentrations of A and B in active space can be 
r ~ C o o  j • [ Jnbck, Cbc expressed in terms of their feed concentration and 

conversion of A. i ) ,  , 

_xj~r_, r ,  naqa Can(1 -- Y) (7) C'a = nq 

( 1 - m ) V  ' 1 
~nq,ca. C~, = --(nbqbCbo + tlnaqaCao Y). (8) 

' C b' nq 

] Cl-nb~,CDo Equat ion (4) can be written in the following dimen- 
( 1-J-la ~ Coo 

sionless form: 
q.co.c~ y 

Fig. 1. Schematic representation of Cholette's model with ~ = (1 -- Y)P(/{ + Y)" (9) 
two unpremixed feeds. 

where 

therefore, have their l imitations for designing and /7= (m/n)(na/n)P+'-lO (10) 

controll ing a CSTR. 0 = (kV/q)~l'(qaCao/q) p+'-~ (11) 
The pr imary purposes of this paper  lie in (1) estab- 

lishing exact multiplicity and uniqueness criteria for /~ = (nblna)R (12) 
an imperfectly mixing CSTR with two unpremixed and 
feeds for autocatalytic reactions, and (2) studying the 
effect of by-passing and dead space on multiplicity via R = qb Cbo/~lq~ C,o (13) 
Cholette 's model. 

3. ANALYSIS OF MULTIPLE STEADY-STATES 
2. MIXING MODEL AND SYSTEM EQUATIONS (a) Tangency approach 

A schematic d iagram of Cholette 's  model  is illus- Note  that  eq. (9) has a form similar to that  obtained 
trated in Fig. 1. The parameter  m is the fraction of the by Lin (1979). Following the same procedure as stated 
total  volume which is perfect mixed. The parameters  by Lin (the details for derivation are provided in 
na and nb are the fractions of the feed A and B entering Appendix), the following necessary conditions and 
the zone of perfect mixing, respectively, sufficient condit ion for multiplicity (uniqueness) are 

Thus, the overall fraction of the feed entering the obtained. 
perfect mixing system, the parameter  n, can be ob- 
tained by the total  mass balance in the CSTR of Fig. Necessary conditions for multiplicity 
1 (if density change can be ignored). The necessary conditions for the system to have 

multiple solutions are 
q~ n~ + qt, n b =  n. (1) 
q q r > l ~ p  

An autocatalyt ic  reaction occurring in the CSTR is p + r - 1 - / {  > 0 
considered as - / ~ ( p  - 1) + r - 1 > 0 (14) 

A + B ~ ( r / +  1) B + P r o d u c t  (2) I - l + / ~ ( p - 1 ) - r ]  2 - 4 ( p + r -  1 ) / ~ > 0 .  

with an overall rate expression given by The steady-state solution is unique for those system 

- 7a = kC "p C~ ~ (p > 0, r > 0) (3) parameters  which do not  satisfy the above criteria. 

where r / is  the stoichiometric coefficient and k is the Sufficient condition for multiplicity 
apparent  reaction rate constant, p and r are apparent  The sufficient condit ion is 
reaction orders. 

The steady-state equations of the reactor are ff~ < / 7  </72 (15) 

n~qaC,o - nqC'~ = mVkC'~PC;," (4) where 

nbqbCbo + ~l(n~q~C~o -- nqC'~) = nqC'b (5) /71 and /72 = 17 (16) 

Define the conversion of A in active space, (1 - Y)P(R + Y)" 

and 

17= -- [:1 + / ~ ( p  -- 1) -- r]  + {El + / ~ ( p  - i) - r] 2 - 4(p + r -- 1)/~} '/2 (17) 
2(p + r -- 1) 
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Necessary and sufficient conditions for the system It is also noted that eqs (26) and (24) are exactly the 
to have multiplicity are obviously the combinat ion of same as eqs (16) and (17). Therefore, from the above 
both criteria (14) and (15). The violation of the condi- analysis, the conditions (necessary and sufficient) for 
tions (14) and (15) would guarantee the uniqueness of the system to have the multiple steady states which 
the system, are developed by the tangency approach and singular- 

(b) Singula(ity theory approach ity theory approach are exactly the same. However, 
The steady-state equation of eq. (9) can be written the modern technique of singularity theory seems to 

as be more powerful. 

F = (l -- Y)P(/~ + y)r _ Y/l~ = 0 (18) Examples 

Following Gray and Scott (1990), since dF/dO does (1) For  the case of p = 2 and r = l, condition (14) 
not  vanish, isola and mushroom patterns are not does not satisfy because of/~ > 0; therefore, the 
possible. A hysteresis loop appears in the steady-state steady-state solution is unique. 
diagram under conditions (2) For the case of p = l and r = 2, then from 

condition (14), the necessary condition for mul- 
d F  

F = 0  and ~ - ~ = 0 .  (19) tiplicity is / ~<1 /8 .  Therefore, (a) when 
l~ = 1/4, the system is unique, (b) when/~ = 1/9, 

Differentiating F with respect to Y yields then from the sufficient condition, the system 
has multiple steady states for 81/32 < 0 < 324/ 

(1 - Y)P- ~(R + Y) ' -  1 [r - pR - (p + r) Y] 125, and the system is unique for 0 < 81/32, or 

- 1/~)= 0. (20) 0 > 324/125. 

The necessary condition, for the solution to exist, is 

r > p/~ (21) 4. NUMERICAL SIMULATION 

Eliminating 0 from eqs (18) and (20) one obtains A system with a particular set of(p,r,R,O) can be 
easily verified for its multiplicity or uniqueness by 

( P + r - 1 ) Y 2 + [ I + R ( p - I ) - r ]  ¥ + ~ = 0  examining the criteria. 
(22) Figure 2 shows that the ratio (nb/n,) affects the 

multiplicity (uniqueness) region in the (p,r) plane 
since the two roots in eq. (22) are both between 0 and when R = 0.1. The region above the curve indicates 
1, their product and sum must satisfy that the multiple steady states occur. Therefore, from 

K Fig, 2, we see that the degree of mixing, (nb/n,), has 
0 < - -  < 1 a strong effect on the multiplicity. For  example, if the p + r - 1  

reaction system is (p,r)= (2,2) i.e. at point I, the 
0 < - [1 + / ( ( p  - I) - r] < 2 .  system is unique in the ideal mixing (nb/na = 1.0). 

p + r - 1 However, the system has multiple steady states in the 
nonideal mixing when nb/n, = 0.4. On the other hand, 

The above conditions can be simplified as if the reacting system is (p, r) = (I, 2), i.e. at point II, it 

p + r - l - / ~  > 0, - ,ff(p - 1) + r - 1 > 0. (23) is in a multiplicity region in the ideal mixing. How- 

The roots of eq. (22) are 

= - [ 1  + / ~ ( p - 1 ) - r ] + { [ 1  + / ~ ( p - 1 ) - r ]  2 - 4 ( p + r - 1 ) / ~ }  °5 (24) 

2(p + r - 1) 

since ~" must be real, the additional condition is 

[1 + /~(p - -1)  -- r] 2 - 4 ( p + r - 1 ) R > 0 .  (25) 3.0 
1. n ~ / u .  = 0 4  
" ( n ~ / n ,  1 0  It is noted that conditions (21), (23) and (25) are ;: (nb/n.I ~:, 

exactly the same as that obtained by the tangency z~ ~-~  i 
approach, i.e. condition (14). Therefore, the necessary .... .~ - - 
conditions for multiplicity are condition (14) also. ~ I 

In order to find the boundaries of 0, denoted as 0~ ~, z o " ~ ~ I / 

and 02, eq. (24) is substituted into eq. (18), and 0~ and ~ - 
0 z a r e g i v e n b y  1.5 ~ / ' / ~ _  ~ - '~  - ~ 

0~ and 02 P (26) ~ ' ~  ....... 
( 1  - Y)~(R + Y)" I 

where l 7 is determined by eq. (24). Therefore, the o.o o.5 ~o ~.~ z.o z, ~, 
sufficient condit ion for multiplicity is P 

Fig. 2. The effect of (nb/n.) on the multiplicity region in the 
O~ < 0 < 02. (27) (p,r) plane, when R = 0.l. 
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--  / / / ever, the system becomes unique when nb/na = 1.5 in 
s0" ~. (n~/n.) : 0.4 / /  the nonideal mixing. 

(n~Zn.) 1.0 3: (n~/,.) ~.~ The effect of 0 is illustrated in Fig. 3, in which 
~ ~ - - - - - - - - - - - - -  multiplicity occurs for R = 0.1 and p = 1. For  a given 

t0' ~ value of (nb/na), multiplicity occurs inside the region 
'~. embraced by the two curves 01 and 02. The solution is 
T~ unique outside the region. The value of (rib~ha) causes 

to the multiplicity region to shift as indicated in Fig. 3. 
Figure 4 shows how (nb/na) affects the conversion 

Y as a function of ff for p = 1, r = 2 and R = 0.1. 
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  When (nb/n~) is larger (smaller) than 1, Y is observed 

0.0 ~,0 4,0 6.0 8.0 
to become larger (smaller) than the ideal mixing. It is 
also noted that the parameter (nb/n~) strongly deter- 

Fig. 3. The effect of (nb/no) on the multiplicity region, when 
p = 1, R = 0.1. mines Yat the low value of/~ however, the effect of the 

(nb/n,) on the Y is not significant at the high value 
of 

J.0 Additionally, Fig. 4 shows that the multiple steady 
3 ~ ~ - ~ - - - f - ~  ~ ~/~ o4 states occur for the cases of (nb/n~)= 0.4 and 1.0, and 

0.8 the steady state is unique for the case of (rib~ha) = 1.5. 
This result can be identified in Fig. 2. This system is 

0.6 / /  / i l  i t !  located at the point I l i n  Fig. 2, and, as shown in 
~ ~//~ [i° Fig. 2, the point II is at the upper region for 

0.4 ~ ~ ~  ~ - ~  (nb/n~)=O.4, and 1.0, and under the curve for 
(nb/na) = 1.5. In Fig. 4, the tendency of multiplicity 

0.z for the case of (nb/n~) = 0.4 (multiplicity occurs at the 
range of 0 from 3.41 to 6.50) is markedly more than 

0.0 
t 2 3 4 5 6 7 .8 9 s0 the case of(n~/na) = 1 (multiplicity occurs at the range 

of g from 2.66 to 2.88). It is fact that the curve 

Fig. 4.. The effect of (nb/no) on the Y, when p = 1, r = 2 and (rib~no = 0.4) is actually much lower than the curve 
R = 0.1. (nb/n~ = 1) in Fig. 2. 

Table 1. The necessary conditions for multiplicity with the 5. CONCLUSION 
ideal and the nonideal mixing In general, the previous papers (Lo and Cholette, 

1983; Liou and Chien, 1990a, b, 1991) which discussed 
Ideal mixing Nonideal mixing mixing and multiplicity in CSTRs almost all concen- 

r > RP r > RP trated on CSTRs with one feed. The CSTR with two 
p + r - 1 - R > 0 p + r - 1 - R > 0 unpremixed feeds is actually more often encountered 

- R(p - 1) + r - 1 > 0 - / ~ (p  - 1) + r - 1 > 0 in the chemical industry than that with one feed. This 
[-I + R(p - 1) - -  r ]  2 1-1 +/~(p -- 1) -- r] 2 paper has established exact multiplicity and unique- 
- 4(p + r - 1)R > 0 - 4(p + r - l)lff > 0 hess criteria for an imperfectly mixing CSTR with two 

Table 2. The sufficient condition for multiplicity with the ideal and the nonideal mixing 

Ideal mixing 

0 1 < 0 < 0 2  

where 

Y 
01 and 02 = 

(1 - Y)P(R + Y~" 

- f l + R ( p - 1 ) - r ] + { [ l + R ( p - l ) - r ]  2 - 4 ( p + r -  1)R} ° 5  y =  
2(p + r - 1) 

Nonideal mixing 

~1 < 0"< 02 
where 

17 
#1 and if2 = 

(1 - 17)P(/~-+ Y)" 

17= -I-1 + / ~ ( p - l ) - r J _ _ _ { [ l + / ~ ( p - 1 ) - r ]  2 - 4 ( p + r - l ) / ~ }  °'~ 
2(p + r - 1) 
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unpremixed feeds for autocatalytic reactions and Gray, P. and Scott, S. K., 1983, Autocatalytical reaction in 
studied the effect of by-passing and dead space on the isothermal continuous stirred tank reactor. Isolas and 

other forms of multistability. Chem. Engng Sci. 38, 27. multiplicity via Cholette's model. Hanon, L. and Horsthemke, W., 1987, Stirring effects and 
The ratio of by-passing for feed A to B, (nb/no), is bistability in the iodate-arsenous acid reaction: premixed 

observed to have markedly determined the necessary vs segregated flows. J. chem. Phys. 86, 140. 
and sufficient conditions. When (nb/na) becomes equal Kay, S. K., Scott, S. K. and Tomlin, A. S., 1989, Quadratic 
to 1 (rib = na ¢ 1) in the nonideal mixing, the multipli- autocatalysis in a non-isothermal CSTR. Chem. Engng Sci. 

44, 1129. 
city region and conversion in active space are the Li, R. S., 1994, Continuous flow stirred tank reactor with two 
same as those obtained in the ideal mixing inflows reactants: a versatile tool for study of bifurcation 
(rib = na = 1). When (nb/na) becomes larger (smaller) in chemical systems. Chem. Engng Sci. 49, 2029. 
than 1, the multiplicity region decreases (increases) Lin, K. F., 1979, Concentration multiplicity and stability for 
and the conversion in active space increases (de- autocatalytic reaction in a continuousstirred tank reactor. 

Can. J. Chem. Engng 57, 476. 
creases). Hence, if operating in a uniqueness region in Lin, K. F., 1981, Multiplicity stability and dynamics for 
the ideal mixing, the system may consequently show isothermal autocatalytic reactions in a CSTR. Chem. 
multiplicity when (nb/na) < 1 in the nonideal mixing. Engng Sci. 36, 1447. 
On the other hand, if operating in a multiplicity re- Litz, H. G. and Weber, W., 1980, The study of mixing in 

a continuous stirred tank reactor using an autocatalytic 
gion in the ideal mixing, the system may show unique- reaction. Chem. Engng Sci. 35, 203. 
ness when (nb/n~) > 1 in the nonideal mixing. Litz, H. G. and Weber, W., 1987a, An experimental study of 

A comparison between the ideal and the nonideal mixing in continuous stirred-tank reactors using an 
mixing is provided in Tables 1 and 2, including the autocatalytical reaction. Part I. Aim and principle of the 
necessary and sufficient conditions for multiplicity, method. Int. Chem. Engng 23, 618. 

Litz, H. G. and Weber, W., 1987b, An experimental study of 
respectively. The observed results become significant mixing in continuous stirred-tank reactors using an 
for application in chemical reactor design once the autocatalytic reaction. Part If. expeimental approach and 
nonideal mixing has taken place in a real reactor, results. Int. Chem. Engng 23, 624. 

Liou, C. T. and Chien, Y. S., 1990a, Steady state multiplicity 
caused by non-deal mixing in two isothermal CSTR's. 
A.I.Ch.E.J. 36, 951. NOTATION Liou, C. T. and Chien, Y. S., 1990b, The effect of macromix- 

C,o, Cbo feed concentrations of A and B ing and micromixing on mdltiplicity in a CSTR. J. Chin. 
C~, C~ concentrations of A and B in the active Inst. chem. engrs 21, 283. 

space Liou, C. T. and Chien, Y. S., 1991, The effect of nonideal 
mixing on multiplicity in a CSTR. Chem. Engn# Sci. 46, 

m the fraction of the total volume in perfect 2113. 

mixing Lo, S. N. and Cholette, A., 1983, Multiplicity of conversion in 
na, nb the fraction of the feed entering the zone a cascade of imperfectly tank reactor. Chem. En.qng Sci. 38, 

of perfect mixing for feed of A, B 367. 
n the overall fraction of the feed entering Morbidelli, M., Varma, A. and Aris, R., 1986, Chemical 

Reaction and Reactor Engineering, Chapt. 14 (Edited by 
the zone of perfect mixing J . J .  Carberry and A. Varma). Chemical Industries 26. 

p reaction orders of A Marcel Dekker, New York. 
R defined in eq. (13) Razeon, L. F. and Schmitz, R. A., 1987, Multiplicity and 
/~ defined in eq. (12) instability in chemical reacting systems a review. Chem. 

qa, qb flow rate for feed of A, B Engng Sci. 42, 1005. 
van, Heerden, 1953. Autothermic processes, properties and 

r reaction orders of B reactor design. Ind. Engng Chem. 45, 1242. 
V reactor volume 
Y the conversion of the active space 

critical conversions corresponding to 

(71 and (72 A P P E N D I X :  T H E  N E C E S S A R Y  C O N D I T I O N  FOR 

MULTIPLICITY BY TANGENCY APPROACH 
Greek letters The steady-state equation [eq. (9)] is 
- - 7 a  reaction rate per unity volume in the y 

active space = = (1 - Y)P(/~ + Y)r 
0 

r/ stoichiometric coefficient 
0 defined in eq. (1 l) Let 
6 defined in eq. (10) Y 
0~, 02 defined in eq. (16) Z, =-~ (AI) 

and 

R E F E R E N C E S  Z 2 = (1 --  Y)P(,q + Y)" (A2) 

Balakotaiah, V. and Luss, D., 1983, Multiplicity features of Steady-state conversion Y is determined from the intersec- 
reacting systems: dependence of the steady-state on the tion of ZI(Y) and Z2(Y). 
residence time. Chem. Engng Sci. 38, 1709. From eq. (A2), the derivative of Z2 with respect to Y is 

Gray, P. and Scott, S. K., 1990, Chemical Oscillations and 
Instabilities: Non-linear Chemcal Kinetics, Chapt. 7. dZ~ = (1 - y)v- ~(/~ + y)~-~ [r - /~p  - Y(p + r)] (A3) 
Clarendon Press, Oxford. d Y 
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Then  we see that  passing through the origin with slope 1/0.. Depending on the 
slope of Z t ,  the two curves may have one, two or three 

dZ2 > 0 intersections. At the tangent point, both the slopes and the 
dY r=o ordinates of the two curves are equal. Then, we obtain 

if and only if (p + r - 1) y2 + [1 + R(p - 1) - r] Y + / ~  = 0. (A7) 

r >/~p.  (A4) 
Since the two roots in eq. (A7) are both between 0 and 1, the 

Thus  reaction rate for autocatalytic reaction would first following conditions can be easily verified: 
increase with conversion only if r >/~p.  Equat ion (A2) also 
leads to p + r - 1 - 1~ > 0 (A8) 

dZ~ = 0 at Y = _ _ r  - ]~p (A5) - / ~ ( p  - 1) + r - 1 > 0. (Ag) 
d Y  p + r  

The roots of eq. (A7) are 

Y =  - [ I + R ( p - I ) - r ] + { [ I + R ( p - 1 ) - r ] 2 - 4 ( p + r - 1 ) R } ° 5  (A10) 
2(p + r - 1) 

Since ~ must  be real, the additional condition for existence 
For p > 0 and r > Rp, it can be readily seen that of two distinct tangents from the origin is therefore 

r - -  
0 < Rp < 1. (A6) [1 + / ~ ( p  - 1) - 7] 2 - 4(p + r - 1)/~ > 0. (All)  

p + r  

Thus,  Z2 has  a max imum at Y = (7 - Rp)/(p + 7). In addi- Thus,  the necessary conditions for the system to have 
tion, Z2(0) > 0 and Z2(1) = 0. The Z1 curve is a straight line multiplicity solutions can be summrizcd in condition (14). 


