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Abstract

This paper tries to incorporate both Huang�s model [Y.F. Huang, Optimal retailer�s ordering policies in
the EOQ model under trade credit financing, J. Oper. Res. Soc. 54 (2003) 1011–1015] and Teng�s model
[J.T. Teng, On the economic order quantity under conditions of permissible delay in payments, J. Oper.
Res. Soc. 53 (2002) 915–918] by considering the retailer�s storage space limited to reflect the real-life situ-
ations. That is, we want to investigate the retailer�s inventory policy under two levels of trade credit and
limited storage space. Furthermore, we adopt Teng�s viewpoint [J.T. Teng, On the economic order quantity
under conditions of permissible delay in payments, J. Oper. Res. Soc. 53 (2002) 915–918] that the retailer�s
unit selling price and the purchasing price per unit are not necessarily equal. Then, an algebraic approach is
provided and three easy-to-use theorems are developed to efficiently determine the optimal cycle time. Some
previously published results of other researchers can be deduced as special cases. Finally, a numerical exam-
ple is given to illustrate these theorems and managerial insights are drawn.
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1. Introduction

Typically, inventory planning takes into account only data from the operations concerns.
Therefore, the interdependencies among the operations, financing and marketing concerns are
neglected. In most business transactions, the supplier would allow a specified credit period
(say, 30 days) to the retailer for payment without penalty to stimulate the demand of his/her
products. This credit term in financial management is denoted as ‘‘net 30’’. Teng [1] indicated
that the trade credit produces two benefits to the supplier: (1) it should attract new customers
who consider it to be a type of price reduction; and (2) it should cause a reduction in sales out-
standing, since some established customers will pay more promptly in order to take advantage
of trade credit more frequently. Over the years, a number of researchers have appeared in the
literature that treat inventory problems with varying conditions under trade credit intended to
link financing, marketing as well as operations concerns. Some of the prominent papers are
discussed below.

Goyal [2] established a single-item inventory model under permissible delay in payments.
Chung [3] developed an alternative approach to determine the economic order quantity under
condition of permissible delay in payments. Aggarwal and Jaggi [4] considered the inventory
model with an exponential deterioration rate under the condition of permissible delay in pay-
ments. Liao et al. [5] and Sarker et al. [6] investigated this topic in the presence of inflation.
Jamal et al. [7] and Chang and Dye [8] extended this issue with allowable shortage. Chang
et al. [9] extended this issue with linear trend demand. Hwang and Shinn [10] modeled an inven-
tory system for retailer�s pricing and lot sizing policy for exponentially deteriorating products
under the condition of permissible delay in payment. Jamal et al. [11] and Sarker et al. [12] ad-
dressed the optimal payment time under permissible delay in payment with deterioration. Teng
[1] assumed that the selling price is not equal to the purchasing price to modify Goyal�s model
[2]. Chung and Huang [13] examined this problem within the EPQ framework and developed an
efficient procedure to determine the retailer�s optimal ordering policy. Huang and Chung [14]
extended Goyal�s model [2] to cash discount policy for early payment. Arcelus et al. [15] modeled
the retailer�s profit-maximizing retail promotion strategy, when confronted with a vendor�s trade
promotion offer of credit and/or price discount on the purchase of regular or perishable mer-
chandise. Abad and Jaggi [16] developed a joint approach to determine for the seller the optimal
unit price and the length of the credit period when end demand is price sensitive. Salameh et al.
[17] extended this issue to continuous review inventory model. Shinn and Hwang [18] determined
the retailer�s optimal price and order size simultaneously under the condition of order-size-
dependent delay in payments. They assumed that the length of the credit period is a function
of the retailer�s order size, and also the demand rate is a function of the selling price. Chang
et al. [19] and Chung and Liao [20] deal with the problem of determining the economic order
quantity for exponentially deteriorating items under permissible delay in payments depending
on the ordering quantity.

All previously published models discussed trade credit assumed that the supplier would offer the
retailer trade credit but the retailer would not offer the trade credit to his/her customer. That is
one level of trade credit. Recently, Huang [21] modified this assumption to assume that the retailer
will adopt the trade credit policy to stimulate his/her customer demand to develop the retailer�s
replenishment model. That is two levels of trade credit. This new viewpoint is more matched
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real-life situations in the supply chain model. For example, the Toyota Company can require his
supplier offered the trade credit to him and he must also offer the trade credit to his dealership.
Then, the Toyota Company can offer shorter delay period to his dealership than his supplier of-
fered to him. In this transaction, the Toyota Company can obtain maximum advantages. But
Huang [21] implicitly assumed that the unit selling price and the purchasing price per unit of
the retailer are equal. However, as we know, the unit selling price for the retailer is usually signif-
icantly higher than the purchasing price per unit in order to obtain profit. Consequently, the view-
point of Huang [21] can be extended.

Such trade credit policy is one kind of encouragement for the retailer to order large quantities
because a delay of payments indirectly reduces inventory cost. Hence, the retailer may purchase
more goods than that can be stored in his/her own warehouse (OW). These excess quantities are
stored in a rented warehouse (RW). The proposed model is applicable for the business of small
and medium sized retailers since their storage capacity are small and limited. Especially, Taiwan
has traditionally relied on its small and medium sized firms to compete in international markets
since the 1970s. Therefore, this proposed model is more applicable for the special industrial envi-
ronment in Taiwan. In general, the inventory holding charges in RW are higher than those in OW.
When the demand occurs, it first is replenished from the RW which storages those exceeding
items. This is done to reduce the inventory costs. It is further assumed that the transportation
costs between warehouses are negligible. Several researchers have studied in this area such as
Benkherouf [22], Bhunia and Maiti [23], Goswami and Chaudhuri [24], Pakkala and Achary
[25], Sarma [26] and Wu [27].

Therefore, this paper tries to incorporate both Huang�s model [21] and Teng�s model [1] by
considering the retailer�s storage space limited. That is, we want to investigate the retailer�s
inventory policy under two levels of trade credit and limited storage space. Furthermore, we
adopt Teng�s viewpoint [1] that the retailer�s unit selling price and the purchasing price per unit
are not necessarily equal. In addition, we try to use the more easily algebraic approach to find
the optimal solution in this paper. In recent papers, Cárdenas-Barrón [28] and Grubbström
and Erdem [29] showed that the formulae for the EOQ and EPQ with backlogging could be
derived without differential calculus. Yang and Wee [30] developed algebraically the optimal
replenishment policy of the integrated vendor–buyer inventory system without using differential
calculus. Wu and Ouyang [31] modify Yang and Wee [30] to allow shortages using algebraic
method.

Consequently, this paper deals with the retailer�s inventory replenishment problem under
two levels of trade credit and limited storage space derived without derivatives. In addition, we
develop the easy-to-use procedures to efficiently find the optimal cycle time for the retailer under
minimizing annual total relevant cost. Finally, a numerical example is given to illustrate these
results and managerial insights are drawn.
2. Model formulation

In this section, we want to develop the retailer�s inventory model under two levels of trade credit
and limited storage space. For convenience, most notation and assumptions similar to Huang [21]
will be used in this paper.
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2.1. Notation

A ordering cost per order
c purchasing price per item
D demand rate per year
h OW stock-holding cost per item per year
Ie interest earned per $ per year
Ip interest charged per $ in stocks per year by the supplier
k RW stock-holding cost per item per year
M the retailer�s trade credit period offered by supplier in years
N the customer�s trade credit period offered by retailer in years

s selling price per item
DT � W

if DT > W T >
W

� �8>><

tw the rented warehouse time in years, tw ¼ D D

0 if DT 6 W T 6
W
D

� �>>:T the cycle time in years
W retailer�s OW storage capacity

TRC(T) the annual total relevant cost, which is a function of T
T* the optimal cycle time of TRC(T)

2.2. Assumptions

(1) Demand rate is known and constant.

(2) Shortages are not allowed.
(3) Time horizon is infinite.
(4) Replenishments are instantaneous.
(5) sP c, k P h, Ip P Ie and MP N.
(6) If the order quantity is larger than retailer�s OW storage capacity W, the retailer will rent the

warehouse to storage these exceeding items. And the RW storage capacity is unlimited. When
the demand occurs, it first is replenished from the RW which storages those exceeding items.

(7) During the time the account is not settled, generated sales revenue is deposited in an interest-
bearing account. When TPM, the account is settled at T =M, the retailer pays off all units
sold and keeps his/her profits, and starts paying for the higher interest charges on the items
in stock with rate Ip. When T 6 M, the account is settled at T =M and the retailer does not
need to pay any interest charge.

(8) The retailer can accumulate revenue and earn interest after his/her customer pays for the
amount of purchasing cost to the retailer until the end of the trade credit period offered
by the supplier. That is, the retailer can accumulate revenue and earn interest during the per-
iod N to M with rate Ie under the condition of trade credit.
2.3. The model

The total annual relevant cost consists of the following elements. Three situations may arise. (I)
MP NPW/D, (II) MP W/DP N and (III) W/DPM P N.
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Case I: Suppose that MP NPW/D.

(1) Annual ordering cost =
A
T
.

(2) According to assumption (6), annual stock-holding cost (excluding interest charges) can be
obtained as follows:
(i) W/D < T.

In this case, the order quantity is larger than retailer�s OW storage capacity. So the retai-
ler needs to rent the warehouse to storage the exceeding items. Hence
Annual stock-holding cost = annual stock-holding cost of rented warehouse + annual
stock-holding cost of the storage capacity W
¼ ktwðDT � W Þ
2T

þ
h Wtw þ W ðT�twÞ

2

h i
T

¼ kðDT � W Þ2

2DT
þ hW ð2DT � W Þ

2DT
.

(ii) T 6W/D.
In this case, the order quantity is not larger than retailer�s storage capacity. So the retai-
ler will not necessary to rent warehouse to storage items. Hence
Annual stock-holding cost = DTh

2
.

(3) According to assumption (7), cost of interest charges for the items kept in stock per year can
be obtained as follows:
(i) M 6 T, as shown in Fig. 1.

Cost of interest charges for the items kept in stock per year =
cIpDðT�MÞ2

2T .
(ii) T 6M, as shown in Fig. 2.

In this case, no interest charges are paid for the items kept in stock.
Time

tw M T

DT

W

Inventory level

Fig. 1. The inventory level and the total accumulation of interest payable when M 6 T.



tw T M

Time

DT

W

Inventory level

Fig. 2. The inventory level when W/D < T 6M.

$

N M 
Time

T

sDT

Fig. 3. The total accumulation of interest earned when M 6 T.
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(4) According to assumption (8), interest earned per year can be obtained as follows:
(i) M 6 T, as shown in Fig. 3.

Annual interest earned = sIe
ðDNþDMÞðM�NÞ

2

h i
=T ¼ sIeDðM2 � N 2Þ=2T .

(ii) N 6 T 6M, as shown in Fig. 4.

Annual interest earned = sIe
ðDNþDT ÞðT�NÞ

2
þ DT ðM � T Þ

h i
=T ¼ sIeDð2MT � N 2 � T 2Þ=2T .

(iii) 0 < T 6 N, as shown in Fig. 5.
Annual interest earned = sIeDT(M � N)/T.

From the above arguments, the annual total relevant cost for the retailer can be expressed as
TRC(T) = ordering cost + stock-holding cost + interest payable � interest earned.



$

sDT

Time
N T M

Fig. 4. The total accumulation of interest when N 6 T 6M.

$

sDT

Time
T N M

Fig. 5. The total accumulation of interest when T 6 N.
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We show that the annual total relevant cost, TRC(T), is given by
TRCðT Þ ¼

TRC1ðT Þ if T P M ; ðaÞ
TRC2ðT Þ if N 6 T 6 M ; ðbÞ
TRC3ðT Þ if W =D < T 6 N ; ðcÞ
TRC4ðT Þ if 0 < T 6 W =D; ðdÞ

8>>><
>>>:

ð1Þ
where
TRC1ðT Þ ¼
A
T
þ kðDT � W Þ2

2DT
þ hW ð2DT � W Þ

2DT
þ cIpDðT �MÞ2

2T
� sIeDðM2 � N 2Þ

2T
; ð2Þ

TRC2ðT Þ ¼
A
T
þ kðDT � W Þ2

2DT
þ hW ð2DT � W Þ

2DT
� sIeDð2MT � N 2 � T 2Þ

2T
; ð3Þ

TRC3ðT Þ ¼
A
T
þ kðDT � W Þ2

2DT
þ hW ð2DT � W Þ

2DT
� sIeDðM � NÞ ð4Þ
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and
TRC4ðT Þ ¼
A
T
þ DTh

2
� sIeDðM � NÞ. ð5Þ
Since TRC1(M) = TRC2(M), TRC2(N) = TRC3(N) and TRC3(W/D) = TRC4(W/D), TRC(T) is
continuous and well defined on T > 0. All TRC1(T), TRC2(T), TRC3(T), TRC4(T) and TRC(T)
are defined on T > 0.

Case II: Suppose that MPW/DP N.
If M PW/DP N, Eqs. 1(a)–(d) will be modified as
TRCðT Þ ¼

TRC1ðT Þ if T P M ; ðaÞ
TRC2ðT Þ if W =D < T 6 M ; ðbÞ
TRC5ðT Þ if N 6 T 6 W =D; ðcÞ
TRC4ðT Þ if 0 < T 6 N . ðdÞ

8>>><
>>>:

ð6Þ
When N 6 T 6W/D, the annual total relevant cost, TRC5(T), consists of the following elements:

(1) Annual ordering cost = A
T .

(2) In this case, the order quantity is not larger than retailer�s storage capacity. So the retailer
will not necessary to rent warehouse to storage items. Hence
Annual stock-holding cost = DTh

2
.

(3) In this case, no interest charges are paid for the items kept in stock.
(4) Annual interest earned = sIeD(2MT � N2 � T2)/2T.

Combining above elements, we get
TRC5ðT Þ ¼
A
T
þ DTh

2
� sIeDð2MT � N 2 � T 2Þ

2T
. ð7Þ
Since TRC1(M) = TRC2(M), TRC2(W/D) = TRC5(W/D) and TRC5(N) = TRC4(N), TRC(T) is
continuous and well defined on T > 0. All TRC1(T), TRC2(T), TRC5(T), TRC4(T) and TRC(T)
are defined on T > 0.

Case III: Suppose that W/DP MP N.
If W/DPMP N, Eqs. 1(a)–(d) will be modified as
TRCðT Þ ¼

TRC1ðT Þ if T > W =D; ðaÞ
TRC6ðT Þ if M 6 T 6 W =D; ðbÞ
TRC5ðT Þ if N 6 T 6 M ; ðcÞ
TRC4ðT Þ if 0 < T 6 N . ðdÞ

8>>><
>>>:

ð8Þ
When M 6 T 6W/D, the annual total relevant cost, TRC6(T), consists of the following elements:

(1) Annual ordering cost = A
T .

(2) In this case, the order quantity is not larger than retailer�s storage capacity. So the retailer
will not necessary to rent warehouse to storage items. Hence
Annual stock-holding cost = DTh

2
.
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(3) Cost of interest charges for the items kept in stock per year = cIpDðT�MÞ2
2T .

(4) Annual interest earned = sIeD(M2 � N2)/2T.
Combining above elements, we get
TRC6ðT Þ ¼
A
T
þ DTh

2
þ cIpDðT �MÞ2

2T
� sIeDðM2 � N 2Þ

2T
. ð9Þ
Since TRC1(W/D) = TRC6(W/D), TRC6(M) = TRC5(M) and TRC5(N) = TRC4(N), TRC(T) is
continuous and well defined on T > 0. All TRC1(T), TRC6(T), TRC5(T), TRC4(T) and TRC(T)
are defined on T > 0.
3. Determination of the optimal cycle time T*

In this section, we shall determine optimal cycle time for the above three situations under mini-
mizing annual total relevant cost using algebraic method.

Case I: Suppose that MP NPW/D.
Then, we can rewrite
TRC1ðT Þ ¼
2Aþ W 2

D ðk � hÞ þ D½M2ðcIp � sIeÞ þ N 2sIe�
2T

þ DT ðk þ cIpÞ
2

� ½W ðk � hÞ þ cDMIp�

¼ Dðk þ cIpÞ
2T

T �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Aþ W 2

D ðk � hÞ þ D½M2ðcIp � sIeÞ þ N 2sIe�
Dðk þ cIpÞ

s2
4

3
5

2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðk þ cIpÞ 2Aþ W 2

D
ðk � hÞ þ DðM2ðcIp � sIeÞ þ N 2sIeÞ

� �s(

� ½W ðk � hÞ þ cDMIp�
)
. ð10Þ
From Eq. (10) the minimum of TRC1(T) is obtained when the quadratic non-negative term,
depending on T, is equal to zero. The optimum value T �

1 is
T �
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Aþ W 2

D ðk � hÞ þ D½M2ðcIp � sIeÞ þ N 2sIe�
Dðk þ cIpÞ

s
if 2Aþ W 2

D
ðk � hÞ

þ D½M2ðcIp � sIeÞ þ N 2sIe� > 0. ð11Þ
Therefore, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffis(

TRC1ðT �

1Þ ¼ Dðk þ cIpÞ 2AþW 2

D
ðk � hÞ þ DðM2ðcIp � sIeÞ þ N 2sIeÞ

� �

�½W ðk � hÞ þ cDMIp�
)
. ð12Þ
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Similarly, we can derive TRC2(T) without derivatives as follows:
TRC2ðT Þ ¼
2Aþ W 2

D ðk � hÞ þ sDN 2Ie
2T

þ DT ðk þ sIeÞ
2

� ½W ðk � hÞ þ sDMIe�

¼ Dðk þ sIeÞ
2T

T �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Aþ W 2

D ðk � hÞ þ sDN 2I e
Dðk þ sIeÞ

s2
4

3
5

2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðk þ sIeÞ 2Aþ W 2

D
ðk � hÞ þ sDN 2Ie

� �s
� ½W ðk � hÞ þ sDMIe�

( )
. ð13Þ
From Eq. (13) the minimum of TRC2(T) is obtained when the quadratic non-negative term,
depending on T, is equal to zero. The optimum value T �

2 is
T �
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Aþ W 2

D ðk � hÞ þ sDN 2Ie
Dðk þ sIeÞ

s
. ð14Þ
Therefore,
TRC2ðT �
2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðk þ sIeÞ 2AþW 2

D
ðk � hÞ þ sDN 2Ie

� �s
� ½W ðk � hÞ þ sDMIe�

( )
. ð15Þ
Likewise, we can derive TRC3(T) algebraically as follows:
TRC3ðT Þ ¼
2Aþ W 2

D ðk � hÞ
2T

þ kDT
2

� ½W ðk � hÞ þ sDIeðM � NÞ�

¼ kD
2T

T �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Aþ W 2

D ðk � hÞ
kD

s2
4

3
5

2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kD 2AþW 2

D
ðk � hÞ

� �s
� ½W ðk � hÞ þ sDIeðM � NÞ�

( )
. ð16Þ
From Eq. (16) the minimum of TRC3(T) is obtained when the quadratic non-negative term,
depending on T, is equal to zero. The optimum value T �

3 is
T �
3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Aþ W 2

D ðk � hÞ
kD

s
. ð17Þ
Therefore,
TRC3ðT �
3Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kD 2Aþ W 2

D
ðk � hÞ

� �s
� ½W ðk � hÞ þ sDIeðM � NÞ�

( )
. ð18Þ



428 Y.-F. Huang / Applied Mathematical Modelling 30 (2006) 418–436
At last, we can derive TRC4(T) algebraically as follows:
TRC4ðT Þ ¼
A
T
þ DTh

2
� sIeDðM � NÞ ¼ Dh

2T
T �

ffiffiffiffiffiffi
2A
Dh

r" #2

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2ADh

p
� sDIeðM � NÞ

h i
. ð19Þ
From Eq. (19) the minimum of TRC4(T) is obtained when the quadratic non-negative term,
depending on T, is equal to zero. The optimum value T �

4 is
T �
4 ¼

ffiffiffiffiffiffi
2A
Dh

r
. ð20Þ
Therefore,
TRC4ðT �
4Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2ADh

p
� sDIeðM � NÞ

h i
. ð21Þ
Eq. (11) gives the optimal value of T* for the case when TPM so that T �
1 P M . We substitute

Eq. (11) into T �
1 P M , then we can obtain that
T �
1 P M if and only if � 2A� W 2

D
ðk � hÞ þ DM2ðk þ sIeÞ � sDN 2I e 6 0.
Similarly, Eq. (14) gives the optimal value of T* for the case when N 6 T 6 M so that
N 6 T �

2 6 M . We substitute Eq. (14) into N 6 T �
2 6 M , then we can obtain that
T �
2 6 M if and only if � 2A�W 2

D
ðk � hÞ þ DM2ðk þ sIeÞ � sDN 2Ie P 0
and
N 6 T �
2 if and only if � 2A� W 2

D
ðk � hÞ þ DN 2k 6 0.
Likewise, Eq. (17) gives the optimal value of T* for the case when W/D < T 6 N so that
W =D < T �

3 6 N . We substitute Eq. (17) into W =D < T �
3 6 N , then we can obtain that
T �
3 6 N if and only if � 2A� W 2

D
ðk � hÞ þ DN 2k P 0
and
W =D < T �
3 if and only if � 2Aþ W 2

D
h < 0.
Finally, Eq. (20) gives the optimal value of T* for the case when T 6W/D so that T �
4 6 W =D.

We substitute Eq. (20) into T �
4 6 W =D, then we can obtain that
T �
4 6 W =D if and only if � 2Aþ W 2

D
h P 0.
Furthermore, we let
D1 ¼ �2A� W 2

D
ðk � hÞ þ DM2ðk þ sIeÞ � sDN 2I e; ð22Þ

D2 ¼ �2A� W 2

D
ðk � hÞ þ DN 2k ð23Þ
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and
D3 ¼ �2Aþ W 2

D
h. ð24Þ
Eqs. (22)–(24) imply that D1 P D2 P D3. From above arguments, we can obtain following results.

Theorem 1. Suppose that MP NPW/D, then

(A) If D3 P 0, then TRCðT �Þ ¼ TRCðT �
4Þ and T � ¼ T �

4.
(B) If D2 P 0 and D3 < 0, then TRCðT �Þ ¼ TRCðT �

3Þ and T � ¼ T �
3.

(C) If D1 > 0 and D2 < 0, then TRCðT �Þ ¼ TRCðT �
2Þ and T � ¼ T �

2.
(D) If D1 6 0, then TRCðT �Þ ¼ TRCðT �

1Þ and T � ¼ T �
1.

Case II: Suppose that MPW/DP N.

If M PW/DP N, we know TRC(T) as follows from Eqs. 6(a)–(d):
TRCðT Þ ¼

TRC1ðT Þ if T P M ;

TRC2ðT Þ if W =D < T 6 M ;

TRC5ðT Þ if N 6 T 6 W =D;

TRC4ðT Þ if 0 < T 6 N .

8>>><
>>>:
From Eq. (7), we can derive TRC5(T) without derivatives as follows:
TRC5ðT Þ ¼
2Aþ sDN 2I e

2T
þ DT ðhþ sIeÞ

2
� sDMIe

¼ Dðhþ sIeÞ
2T

T �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Aþ sDN 2Ie
Dðhþ sIeÞ

s" #2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðhþ sIeÞð2Aþ sDN 2IeÞ

q
� sDMIe

� �
. ð25Þ
From Eq. (25) the minimum of TRC5(T) is obtained when the quadratic non-negative term,
depending on T, is equal to zero. The optimum value T �

5 is
T �
5 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Aþ sDN 2I e
Dðhþ sIeÞ

s
. ð26Þ
Therefore,
TRC5ðT �
5Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðhþ sIeÞð2Aþ sDN 2I eÞ

q
� sDMIe

� �
. ð27Þ
Similar to the above procedure in Case I. We substitute Eq. (11) into T �
1 P M , then we can obtain

that
T �
1 P M if and only if � 2A� W 2

D
ðk � hÞ þ DM2ðk þ sIeÞ � sDN 2I e 6 0.
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Substituting Eq. (14) into W =D < T �
2 6 M , then we can obtain that
T �
2 6 M if and only if � 2A�W 2

D
ðk � hÞ þ DM2ðk þ sIeÞ � sDN 2Ie P 0
and
W =D < T �
2 if and only if � 2Aþ W 2

D
ðhþ sIeÞ � sDN 2Ie < 0.
Substituting Eq. (26) into N 6 T �
5 6 W =D, then we can obtain that
T 5� 6 W =D if and only if � 2Aþ W 2

D
ðhþ sIeÞ � sDN 2I e P 0
and
N 6 T �
5 if and only if � 2Aþ DN 2h 6 0.
Substituting Eq. (20) into T �
4 6 N , then we can obtain that
T �
4 6 N if and only if � 2Aþ DN 2h P 0.
Furthermore, we let
D4 ¼ �2Aþ W 2

D
ðhþ sIeÞ � sDN 2Ie ð28Þ
and
D5 ¼ �2Aþ DN 2h. ð29Þ

Eqs. (22), (28) and (29) imply that D1 P D4 P D5. From above arguments, we can obtain follow-
ing results.

Theorem 2. Suppose that MPW/D P N, then

(A) If D5 P 0, then TRCðT �Þ ¼ TRCðT �
4Þ and T � ¼ T �

4.
(B) If D4 P 0 and D5 < 0, then TRCðT �Þ ¼ TRCðT �

5Þ and T � ¼ T �
5.

(C) If D1 > 0 and D4 < 0, then TRCðT �Þ ¼ TRCðT �
2Þ and T � ¼ T �

2.
(D) If D1 6 0, then TRCðT �Þ ¼ TRCðT �

1Þ and T � ¼ T �
1.

Case III: Suppose that W/DP MP N.
If W/DP MP N, we know TRC(T) as follows from Eqs. 8(a)–(d).
TRCðT Þ ¼

TRC1ðT Þ if T > W =D;

TRC6ðT Þ if M 6 T 6 W =D;

TRC5ðT Þ if N 6 T 6 M ;

TRC4ðT Þ if 0 < T 6 N .

8>>><
>>>:
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From Eq. (9), we can derive TRC6(T) without derivatives as follows:
TRC6ðT Þ ¼
2Aþ D½M2ðcIp � sIeÞ þ N 2sIe�

2T
þ DT ðhþ cIpÞ

2
� cDMIp

¼ Dðhþ cIpÞ
2T

T �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Aþ D½M2ðcIp � sIeÞ þ N 2sIe�

Dðhþ cIpÞ

s" #2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðhþ cIpÞ½2Aþ DðM2ðcIp � sIeÞ þ N 2sIeÞ�

q
� cDMIp

� �
. ð30Þ
From Eq. (30) the minimum of TRC6(T) is obtained when the quadratic non-negative term,
depending on T, is equal to zero. The optimum value T �

6 is
T �
6 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Aþ D½M2ðcIp � sIeÞ þ N 2sIe�

Dðhþ cIpÞ

s
if 2Aþ D½M2ðcIp � sIeÞ þ N 2sIe� > 0. ð31Þ
Therefore,
TRC6ðT �
6Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðhþ cIpÞ½2Aþ DðM2ðcIp � sIeÞ þ N 2sIeÞ�

q
� cDMIp

� �
. ð32Þ
Similar to the above procedures in Case I and Case II. We substitute Eq. (11) into T �
1 > W =D, then

we can obtain that
T �
1 > W =D if and only if � 2Aþ W 2

D
ðhþ cIpÞ � D½M2ðcIp � sIeÞ þ N 2sIe� < 0.
Substituting Eq. (31) into M 6 T �
6 6 W =D, then we can obtain that
T �
6 6 W =D if and only if � 2Aþ W 2

D
ðhþ cIpÞ � D½M2ðcIp � sIeÞ þ N 2sIe� P 0
and
M 6 T �
6 if and only if � 2Aþ DM2ðhþ sIeÞ � DN 2sIe 6 0.
Substituting Eq. (26) into N 6 T �
5 6 M , then we can obtain that
T �
5 6 M if and only if � 2Aþ DM2ðhþ sIeÞ � DN 2sIe P 0
and
N 6 T �
5 if and only if � 2Aþ DN 2h 6 0.
Substituting Eq. (20) into T �
4 6 N , then we can obtain that
T �
4 6 N if and only if � 2Aþ DN 2h P 0.
Furthermore, we let
D6 ¼ �2Aþ W 2

D
ðhþ cIpÞ � D½M2ðcIp � sIeÞ þ N 2sIe� ð33Þ
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and
D7 ¼ �2Aþ DM2ðhþ sIeÞ � DN 2sIe. ð34Þ

Eqs. (29), (33) and (34) imply that D6 P D7 P D5. From above arguments, we can obtain follow-
ing results.

Theorem 3. Suppose that W/DP MP N, then

(A) If D5 P 0, then TRCðT �Þ ¼ TRCðT �
4Þ and T � ¼ T �

4.
(B) If D7 P 0 and D5 < 0, then TRCðT �Þ ¼ TRCðT �

3Þ and T � ¼ T �
5.

(C) If D6 P 0 and D7 < 0, then TRCðT �Þ ¼ TRCðT �
6Þ and T � ¼ T �

6.
(D) If D6 < 0, then TRCðT �Þ ¼ TRCðT �

1Þ and T � ¼ T �
1.
4. Special cases

4.1. Huang’s model

When k = h, it means that the RW unit stock-holding cost and the OW unit stock-holding cost
are equal. It implies that the retailer�s OW storage capacity is unlimited. And s = c, it means that
the selling price per item and the purchasing cost per item are equal. Therefore, when k = h and
s = c, we let
TRC7ðT Þ ¼
A
T
þ DTh

2
þ cIpDðT �MÞ2=2T � cIeDðM2 � N 2Þ=2T ; ð35Þ

TRC8ðT Þ ¼
A
T
þ DTh

2
� cIeDð2MT � N 2 � T 2Þ=2T ð36Þ
and
TRC9ðT Þ ¼
A
T
þ DTh

2
� cIeDðM � NÞ. ð37Þ
Eqs. 1(a)–(d), 6(a)–(d), and 8(a)–(d) will be reduced as follows:
TRCðT Þ ¼
TRC7ðT Þ if T P M ; ðaÞ
TRC8ðT Þ if N 6 T 6 M ; ðbÞ
TRC9ðT Þ if 0 < T 6 N . ðcÞ

8><
>: ð38Þ
Eqs. 38(a)–(c) will be consistent with Eqs. 1(a)–(c) in Huang [21], respectively. Hence, Huang [21]
will be a special case of this paper.

4.2. Teng’s model

When N = 0, it means that the supplier would offer the retailer a delay period but the retailer
would not offer the delay period to his/her customer. That is one level of trade credit. Therefore,
when k = h and N = 0, we let
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TRC10ðT Þ ¼
A
T
þ DTh

2
þ cIp

DðT �MÞ2

2

" #,
T � sIe

DM2

2

� ��
T ð39Þ
and
TRC11ðT Þ ¼
A
T
þ DTh

2
� sIe

DT 2

2
þ DT ðM � T Þ

� ��
T . ð40Þ
Eqs. 1(a)–(d), 6(a)–(d) and 8(a)–(d) will be reduced as follows:
TRCðT Þ ¼
TRC10ðT Þ if M 6 T ; ðaÞ
TRC11ðT Þ if 0 < T 6 M . ðbÞ

�
ð41Þ
Eqs. 41(a) and (b) will be consistent with Eqs. (1) and (2) in Teng [1], respectively. Hence, Teng [1]
will be a special case of this paper.

4.3. Goyal’s model

When k = h, s = c and N = 0, we let
TRC12ðT Þ ¼
A
T
þ DTh

2
þ cIp

DðT �MÞ2

2

" #,
T � cIe

DM2

2

� ��
T ð42Þ
and
TRC13ðT Þ ¼
A
T
þ DTh

2
� cIe

DT 2

2
þ DT ðM � T Þ

� ��
T . ð43Þ
Eqs. 1(a)–(d), 6(a)–(d) and 8(a)–(d) will be reduced as follows:
TRCðT Þ ¼
TRC12ðT Þ if M 6 T ; ðaÞ
TRC13ðT Þ if 0 < T 6 M . ðbÞ

�
ð44Þ
Eqs. 44(a) and (b) will be consistent with Eqs. (1) and (4) in Goyal [2], respectively. Hence, Goyal
[2] will be a special case of this paper.
5. Numerical example

To illustrate the results obtained in this paper, let us apply the proposed method to efficiently
solve the following numerical example. For convenience, the values of the parameters are selected
randomly.

From Table 1, we can observe the optimal cycle time with various parameters of W, k and s,
respectively. The following inferences can be made based on Table 1.

(1) The optimal cycle time will not decrease when retailer�s storage capacity W is increasing. It
means that the retailer will order more quantity since the retailer owns larger storage space to
storage more items.



Table 1
The optimal cycle time with various values of W, k and s

k ($/unit/ year) s = $50/unit s = $100/unit s = $150/unit

D1 D2 D3 T* D1 D2 D3 T* D1 D2 D3 T*

W = 100 units, (W/D = 0.03333 year)
5 <0 <0 <0 T �

1 ¼ 0.10285 >0 <0 <0 T �
2 ¼ 0.08819 >0 <0 <0 T �

2 ¼ 0.08
10 >0 <0 <0 T �

2 ¼ 0.0876 >0 <0 <0 T �
2 ¼ 0.07914 >0 <0 <0 T �

2 ¼ 0.07387
15 >0 <0 <0 T �

2 ¼ 0.07817 >0 <0 <0 T �
2 ¼ 0.07286 >0 <0 <0 T �

2 ¼ 0.06927

W = 250 units, (W/D = 0.08333 year)
D1 D4 D5 T* D1 D4 D5 T* D1 D4 D5 T*

5 <0 <0 <0 T �
1 ¼ 0.10729 >0 <0 <0 T �

2 ¼ 0.092 >0 >0 <0 T �
5 ¼ 0.08309

10 <0 <0 <0 T �
1 ¼ 0.10103 >0 <0 <0 T �

2 ¼ 0.0901 >0 >0 <0 T �
5 ¼ 0.08309

15 >0 <0 <0 T �
2 ¼ 0.09718 >0 <0 <0 T �

2 ¼ 0.08889 >0 >0 <0 T �
5 ¼ 0.08309

W = 400 units (W/D = 0.13333 year)
D6 D7 D5 T* D6 D7 D5 T* D6 D7 D5 T*

5 >0 <0 <0 T �
6 ¼ 0.11127 >0 >0 <0 T �

5 ¼ 0.09309 >0 >0 <0 T �
5 ¼ 0.08309

10 >0 <0 <0 T �
6 ¼ 0.11127 >0 >0 <0 T �

5 ¼ 0.09309 >0 >0 <0 T �
5 ¼ 0.08309

15 >0 <0 <0 T �
6 ¼ 0.11127 >0 >0 <0 T �

5 ¼ 0.09309 >0 >0 <0 T �
5 ¼ 0.08309

Example: Let A = $150/order, c = $50/unit, D = 3000 units/year, h = $3/unit/year, Ip = $0.15/$/year, Ie = $0.12/$/
year, M = 0.1 year, N = 0.05 year.
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(2) When the RW unit stock-holding cost k is increasing, the optimal cycle time will not
increase. The retailer will order less quantity to avoid renting expensive warehouse to storage
these exceeding items.

(3) And last, we can find the optimal cycle time will decrease when the unit selling price s is
increasing. This result implies that the retailer will order less quantity to take the benefits
of the trade credit more frequently.
6. Conclusions

This paper is incorporated both Huang�s model [21] and Teng�s model [1] by considering the
retailer�s storage space limited. We provide three easy-to-use theorems to help the retailer in accu-
rately and quickly determining the optimal cycle time. Then, Huang�s model [21], Teng�s model [1]
and Goyal�s model [2] are deduced as special cases. Finally, a numerical example is given to illus-
trate all theorems developed in this paper and we can obtain a lot of managerial insights: (1) the
retailer will order more quantity when retailer�s storage capacity is larger since the retailer owns
larger storage space to storage more items; (2) the retailer will order less quantity to avoid renting
expensive warehouse to storage these exceeding items when the RW unit stock-holding cost is
expensive; (3) the retailer will order less quantity to take the benefits of the trade credit more fre-
quently when the larger the differences between the unit selling price and the purchasing price per
item.
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The proposed model can be extended in several ways. For instance, we may generalize the
model to allow for shortages, quantity discounts, time value of money, finite time horizon, finite
replenishment rate and others.
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