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Abstract

This paper deals with the problem of determining the economic order quantity under conditions of permissible delay

in payments. The delay in payments depends on the quantity ordered. When the order quantity is less than the quantity

at which the delay in payments is permitted, the payment for the item must be made immediately. Otherwise, the fixed

trade credit period is permitted. The minimization of the total variable cost per unit of time is taken as the objective

function. An algorithm to determine the economic order quantity is developed. The results obtained in this paper

generalize some already published results.

r 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The classical EOQ model assumes that the
retailer’s capital is unconstrained and the retailer
must be paid for the items as soon as the items
were received. However, the supplier may offer the
retailer a delay period, that is the trade credit
period, in settling the accounts. The effect of
supplier credit policies on optimal order quantity
has received the attention of many researchers; see
Aggarwal and Jaggi (1995), Chang and Dye
(2001), Chang et al. (2001), Chen and Chuang
g author. Tel.: +886-2-7376342; fax: +886-2-

ss: kjchung@im.ntust.edu.tw (K.-J. Chung).
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.2003.12.006
(1999), Chu et al. (1998), Chung (1998a, b, 2000),
Goyal (1985), Jamal et al. (1997, 2000), Khouja
and Mehrez (1996), Liao et al. (2000), Sarker et al.
(2000a,b) and Shah and Shah (1998). Recently,
Arcelus et al. (2003) modeled the retailer’s profit-
maximizing retail promotion strategy, when con-
fronted with a vendor’s trade promotion offer of
credit and/or price discount on the purchase of
regular or perishable merchandise. Abad and Jaggi
(2003) developed a joint approach to determine for
the seller the optimal unit price and the length
of the credit period when end demand is price
sensitive. Chung and Huang (2003) investigated
this issue within EPQ framework and developed
an efficient solution procedure to determine the
optimal cycle time for the retailer. Salameh et al.
d.
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(2003) extended this issue to continuous review
inventory model.

In 1996, Khouja and Mehrez investigated the
effect of supplier credit policies on the optimal
order quantity within the economic order quantity
framework. The supplier credit policies fall into
two categories: (1) supplier credit policies where
credit terms are independent of the order quantity
and (2) supplier credit policies where credit terms
are linked to the order quantity. In the latter case,
suppliers use favorable credit terms to encourage
customers to order large quantities. In other
words, the favorable credit terms apply only at
large order quantities and are used in place of
quantity discounts. Four supplier credit policies
are introduced in Khouja and Mehrez (1996). The
credit terms of the first two policies are indepen-
dent of the order quantity. The last two credit
policies link credit terms to the order quantity. The
purpose of this paper is to discuss a few different
credit policies and extend the work of Khouja and
Mehrez (1996).
2. Model formulation

In this section, we want to develop the inventory
model under permissible delay in payments to take
the order quantity into account. When the order
quantity is less than the fixed quantity at which the
delay in payments is permitted ðQoW Þ; the
payment for the items must be made immediately.
Otherwise, the fixed trade credit period M is
permitted. In addition, this paper tries to consider
some alternations to move capital to match the
policy of enterprise. We assume that the retailer
will borrow 100% purchasing cost from the bank
to pay off the account and the retailer does not
return money to the bank until the end of the
inventory cycle when the retailer needs cash to pay
off the account. The following notation and
assumptions will be used throughout.

2.1. Notation
Q
 order quantity

D
 annual demand

W
 the fixed quantity at which the delay in

payments is permitted
A
 cost of placing one order

c
 unit purchasing price per item

s
 unit selling price per item

h
 unit stock holding cost per item per year

excluding interest charges

Ie
 interest rate that can be earned per $ per year

Ip
 interest rate charged per $ investment in

inventory per year

M
 trade credit period in years

T
 the cycle time in years

T�
 the optimal cycle time of TVCðTÞ
2.2. Assumptions
(1)
 Demand rate is known and constant.

(2)
 Shortages are not allowed.

(3)
 Time period is infinite.

(4)
 Replenishments are instantaneous with a

known and constant lead time.

(5)
 When the retailer must pay the amount of

purchasing cost to the supplier, the retailer
will borrow 100% purchasing cost from the
bank to pay off the account with rate Ip:
When TXM; the retailer returns money to
the bank at the end of the inventory cycle.
However, when TpM ; the retailer returns
money to the bank at T ¼ M:
(6)
 If the credit period is shorter than the cycle
length, the retailer can sell the items,
accumulate sales revenue and earn interest
with rate Ie throughout the inventory cycle.
(7)
 sXc and IpXIe:
The total annual variable cost consists of the
following elements. Two situations may arise. (I)
W=DpM and (II) W=D > M:

(I) Suppose that W=DpM :
(1) Annual ordering cost ¼ A

T
:

(2) Annual stock holding cost ðexcluding inter-
est chargesÞ ¼ DTh

2
:

(3) There are three cases to occur in interest
payable per year.

Case I: 0oToW=D; shown in Fig. 1.
In this case, the retailer must pay the amount of

purchasing cost as soon as the items were received
since QoW : According to assumption (5), the
retailer will borrow 100% purchasing cost, cDT ;
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Fig. 1. The total accumulation of interest payable when

0oToW=D:
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Fig. 2. The total accumulation of interest payable when MpT :
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Fig. 3. The total accumulation of interest earned when

0oToW=D or MpT :
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Fig. 4. The total accumulation of interest earned when TpM:
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from the bank to pay off the account with rate Ip
and return money to the bank at the end of the
inventory cycle. So, the loan period is T :

Interest payable per cycle ¼ cIpDT2:
Interest payable per year ¼ cIpDT :
Case II: W=DpTpM :
In this case, the fixed trade credit period M is

permitted since QXW : And the retailer do not
need to loan anything from the bank at the end of
credit period because the cycle length is not longer
than the credit period. So, Interest payable per
year ¼ 0:

Case III: MpT ; shown in Fig. 2.
In this case, the fixed trade credit period M is

permitted since QXW : According to assumption
(5), the retailer will borrow 100% purchasing
cost, cDT ; from the bank to pay off the account
with rate Ip and return money to the bank at the
end of the inventory cycle. So the loan period is
ðT � MÞ:

Interest payable per cycle ¼ cIpDTðT � MÞ:
Interest payable per year ¼ cIpDðT � MÞ:
(4) There are three cases to occur in interest

earned per year.
Case I: 0oToW=D; shown in Fig. 3.
According to assumption (6), the retailer can sell

the items and earn interest with rate Ie throughout
the inventory cycle.

Interest earned per cycle ¼ sIe
R T

0 Dt dt ¼ DT2sIe
2

:
Interest earned per year ¼ DTsIe

2
:

Case II: W=DpTpM ; shown in Fig. 4.
In this case, the retailer can sell the items and

earn interest with rate Ie until the end of the trade
credit period M:
Interest earned per cycle ¼ sIe½DT2

2
þ DTðM �

TÞ� ¼ DTsIeðM � T
2
Þ:

Interest earned per year ¼ DsIeðM � T
2
Þ:

Case III: MpT ; shown in Fig. 3.
In this case, the interest earned is similar to

case I.
Interest earned per cycle ¼ sIe

R T

0 Dt dt ¼ DT2sIe
2

:

Interest earned per year ¼ DTsIe
2

:
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From the above, the total annual variable cost
function for the retailer can be expressed as

TVCðTÞ ¼ ordering costþ stock-holding cost

þ interest payable� interest earned:

We show that the annual total variable cost
function, TVCðTÞ; is given by

TVCðTÞ ¼ TVC1ðTÞ if 0oToW=D; ð1aÞ

TVCðTÞ ¼ TVC2ðTÞ if W=DpTpM ; ð1bÞ

TVCðTÞ ¼ TVC3ðTÞ if MpT ; ð1cÞ

where

TVC1ðTÞ ¼
A

T
þ

DTh

2
þ cIpDT �

DTsIe

2
; ð2Þ

TVC2ðTÞ ¼
A

T
þ

DTh

2
� DsIe M �

T

2

� �
ð3Þ

and

TVC3ðTÞ ¼
A

T
þ

DTh

2
þ cIpDðT � MÞ �

DTsIe

2
:

ð4Þ

All TVC1ðTÞ; TVC2ðTÞ and TVC3ðTÞ are defined
on T > 0: TVC1ðW=DÞ > TVC2ðW=DÞ and
TVC2ðMÞ ¼ TVC3ðMÞ: Hence TVCðTÞ is well-
defined and continuous except T ¼ W=D: We
also find TVC1ðTÞ > TVC3ðTÞ for all T > 0:
Eqs. (2)–(4) yield

TVC0
1ðTÞ ¼

�A

T2
þ

Dðh þ 2cIp � sIeÞ
2

; ð5Þ

TVC00
1ðTÞ ¼

2A

T3
> 0; ð6Þ

TVC0
2ðTÞ ¼

�A

T2
þ

Dðh þ sIeÞ
2

; ð7Þ

TVC00
2ðTÞ ¼

2A

T3
> 0; ð8Þ

TVC0
3ðTÞ ¼

�A

T2
þ

Dðh þ 2cIp � sIeÞ
2

ð9Þ

and

TVC00
3ðTÞ ¼

2A

T3
> 0: ð10Þ
Eqs. (6), (8) and (10) imply that TVC1ðTÞ;
TVC2ðTÞ and TVC3ðTÞ are convex on T > 0:

(II) Suppose that W=D > M :
If W=D > M ; Eqs. 1(a–c) will be modified as

follows:

TVCðTÞ ¼ TVC1ðTÞ if 0oToW=D; ð11aÞ

TVCðTÞ ¼ TVC3ðTÞ if W=DpT : ð11bÞ

TVCðTÞ is continuous except T ¼ W=D:
3. Decision rule of the optimal cycle time when

MXW=D

Recall

T�
1 ¼ T�

3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A

Dðh þ 2cIp � sIeÞ

s

if h þ 2cIp � sIe > 0 ð12Þ

and

T�
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A

Dðh þ sIeÞ

s
: ð13Þ

Then TVC0
1ðT

�
1 Þ ¼ TVC0

2ðT
�
2 Þ ¼ TVC0

3ðT
�
3 Þ ¼ 0:

We also have the following result.

Theorem 1. ðIÞ Suppose that h þ 2cIposIe: Then

T� ¼ N: (When T� ¼ N; it means that the

retailer prefers to keep money and does not return

money to the bank.)
(II) Suppose that h þ 2cIp ¼ sIe: Then
(A)
 If T�
2 XM; then T� ¼ N:
(B)
 If W=DpT�
2 oM ; there are two cases to

occur:

(a)
 If TVC2ðT�

2 Þp� cIpDM; then T� ¼ T�
2 :
(b)
 If TVC2ðT�
2 Þ > �cIpDM; then T� ¼ N:
(C)
 If T�
2 oW=D; there are two cases to occur:
(a)
 If TVC2ðW=DÞp� cIpDM; then T� ¼
W=D:
(b)
 If TVC2ðW=DÞ > �cIpDM; then T� ¼
N:
Proof. (I) If h þ 2cIposIe; Eq. (9) implies that
TVC3ðTÞ is decreasing on T > 0: Hence Eqs. 1(a,
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b, c) reveal that TVCðTÞ is decreasing on TXM :
Since

lim
T-N

TVCðTÞ

¼ lim
T-N

TVC3ðTÞ

¼ �cIpDM þ lim
T-N

DT

2
ðh þ 2cIp � sIeÞ

¼ �N ð14Þ

and

lim
T-0þ

TVCðTÞ

¼ lim
T-0þ

TVC1ðTÞ

¼ lim
T-0þ

A

T
þ

DT

2
ðh þ 2cIp � sIeÞ

� �
¼ N: ð15Þ

Eqs. (14) and (15) imply T� ¼ N:
(II) (A) If h þ 2cIp ¼ sIe and T�

2 XM ; then
TVC1ðTÞ; TVC2ðTÞ and TVC3ðTÞ are decreasing
on ð0;W=DÞ; ½W=D;M� and ½M;NÞ; respectively.
Hence, TVCðTÞ is decreasing on T > 0: Conse-
quently T� ¼ N:

(B) If h þ 2cIp ¼ sIe and W=DpT�
2 oM; then

Eqs. (5), (7) and (9) imply
(i)
 TVC1ðTÞ is decreasing on ð0;W=DÞ:

(ii)
 TVC2ðTÞ is decreasing on ½W=D;T�

2 � and
increasing on ½T�

2 ;M�:

(iii)
 TVC3ðTÞ is decreasing on ½M;NÞ:
Since limT-N TVCðTÞ ¼ limT-N TVC3ðTÞ ¼
�cIpDM and TVC2ðTÞ has the minimum value
at T ¼ T�

2 on ½W=D;M�; we have
(a)
 If TVC2ðT�
2 Þp� cIpDM ; then T� ¼ T�

2 :

(b)
 If TVC2ðT�

2 Þ > �cIpDM ; then T� ¼ N:
(C) If h þ 2cIp ¼ sIe and T�
2 oW=D; then

Eqs. (5), (7) and (9) imply
(i)
 TVC1ðTÞ is decreasing on ð0;W=DÞ:

(ii)
 TVC2ðTÞ is increasing on ½W=D;M�:

(iii)
 TVC3ðTÞ is decreasing on ½M;NÞ:
Since limT-N TVCðTÞ ¼ limT-N TVC3ðTÞ ¼
�cIpDM and TVC2ðTÞ has the minimum value
at T ¼ W=D on ½W=D;M�; we have
(a)
 If TVC2ðW=DÞp� cIpDM ; then T� ¼ W=D:

(b)
 If TVC2ðW=DÞ > �cIpDM ; then T� ¼N: &
Based on Theorem 1, from now on, we assume
h þ 2cIp > sIe: Consequently, T�

1 and T�
3 are well-

defined. By the convexity of TVCiðTÞ ði ¼ 1; 2; 3Þ;
we see

TVC0
1ðTÞ

o0 if ToT�
1 ; ð16aÞ

¼ 0 if T ¼ T�
1 ; ð16bÞ

> 0 if T > T�
1 ; ð16cÞ

8><
>:

TVC0
2ðTÞ

o0 if ToT�
2 ; ð17aÞ

¼ 0 if T ¼ T�
2 ; ð17bÞ

> 0 if T > T�
2 ð17cÞ

8><
>:

and

TVC0
3ðTÞ

o0 if ToT�
3 ; ð18aÞ

¼ 0 if T ¼ T�
3 ; ð18bÞ

> 0 if T > T�
3 : ð18cÞ

8><
>:

Eqs. 16(a–c)–18(a–c) imply that TVCiðTÞ is de-
creasing on ð0;T�

i � and increasing on ½T�
i ;NÞ for

all i ¼ 1; 2; 3: Eqs. (5), (7) and (9) yield that

TVC0
1

W

D

� �
¼

�2A þ W 2=Dðh þ 2cIp � sIeÞ

2ðW=DÞ2
; ð19Þ

TVC0
2

W

D

� �
¼

�2A þ W 2=Dðh þ sIeÞ

2ðW=DÞ2
; ð20Þ

TVC0
2ðMÞ ¼

�2A þ DM2ðh þ sIeÞ
2M2

ð21Þ

and

TVC0
3ðMÞ ¼

�2A þ DM2ðh þ 2cIp � sIeÞ
2M2

: ð22Þ

Furthermore, we let

D1 ¼ �2A þ
W 2

D
ðh þ 2cIp � sIeÞ; ð23Þ

D2 ¼ �2A þ
W 2

D
ðh þ sIeÞ; ð24Þ

D3 ¼ �2A þ DM2ðh þ sIeÞ ð25Þ
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and

D4 ¼ �2A þ DM2ðh þ 2cIp � sIeÞ: ð26Þ

Eqs. (23)–(26) yield that D4XD1 and D3XD2: We
also have

D1 > 0 if and only if T�
1 oW=D; ð27Þ

D2 > 0 if and only if T�
2 oW=D; ð28Þ

D3 > 0 if and only if T�
2 oM ; ð29Þ

D4 > 0 if and only if T�
3 oM : ð30Þ

Therefore, we have the following results.

Theorem 2. Suppose that h þ 2cIp > sIe: Then
(A)
 If D1 > 0; D2X0; D3X0 and D4X0; then

TVCðT�Þ ¼ minfTVCðT�
1 Þ;TVCðW=DÞg:

Hence T� is T�
1 or W=D associated with the

least cost.

(B)
 If D1 > 0; D2o0; D3X0 and D4X0; then

TVCðT�Þ ¼ minfTVCðT�
1 Þ;TVCðT

�
2 Þg:

Hence T� is T�
1 or T�

2 associated with the least

cost.

(C)
 If D1 > 0; D2o0; D3o0 and D4X0; then

TVCðT�Þ ¼ minfTVCðT�
1 Þ;TVCðMÞg:

Hence T� is T�
1 or M associated with the least

cost.

(D)
 If D1p0; D2X0; D3X0 and D4X0; then

TVCðT�Þ ¼ TVCðW=DÞ and T� ¼ W=D:

(E)
 If D1p0; D2X0; D3X0 and D4o0; then

TVCðT�Þ ¼ minfTVCðW=DÞ;TVCðT�
3 Þg:

Hence T� is W=D or T�
3 associated with the

least cost.

(F)
 If D1p0; D2o0; D3X0 and D4X0; then

TVCðT�Þ ¼ TVCðT�
2 Þ and T� ¼ T�

2 :

(G)
 If D1p0; D2o0; D3X0 and D4o0; then

TVCðT�Þ ¼ minfTVCðT�
2 Þ;TVCðT

�
3 Þg:

Hence T� is T�
2 or T�

3 associated with the least

cost.

(H)
 If D1p0; D2o0; D3o0 and D4X0; then

TVCðT�Þ ¼ TVCðMÞ and T� ¼ M:

(I)
 If D1p0; D2o0; D3o0 and D4o0; then

TVCðT�Þ ¼ TVCðT�
3 Þ and T� ¼ T�

3 :
Proof. (A) If D1 > 0; D2X0; D3X0 and D4X0: So
TVC0

1ðW=DÞ > 0; TVC0
2ðW=DÞX0; TVC0

2ðMÞX0
and TVC0
3ðMÞX0: Eqs. (27)–(30) imply that

T�
1 oW=D; T�

2 pW=D; T�
2 pM and T�

3 pM ;
respectively. Furthermore, Eqs. 16(a–c)–18(a–c)
imply that
(i)
 TVC3ðTÞ is increasing on ½M;NÞ:

(ii)
 TVC2ðTÞ is increasing on ½W=D;M�:

(iii)
 TVC1ðTÞ is decreasing on ð0;T�

1 � and increas-
ing on ½T�

1 ;W=DÞ:
Combining (i)–(iii), we conclude that TVCðTÞ
has the minimum value at T ¼ T�

1 on ð0;W=DÞ
and TVCðTÞ has the minimum value at T ¼ W=D

on ½W=D;NÞ: Hence

TVCðT�Þ ¼ minfTVCðT�
1 Þ;TVCðW=DÞg:

Consequently, T� is T�
1 or W=D associated with

the least cost.
(B) If D1 > 0; D2o0; D3X0 and D4X0: So

TVC0
1ðW=DÞ > 0; TVC0

2ðW=DÞo0; TVC0
2ðMÞX0

and TVC0
3ðMÞX0: Eqs. (27)–(30) imply that

T�
1 oW=D; T�

2 > W=D; T�
2 pM and T�

3 pM ;
respectively. Furthermore, Eqs. 16(a–c)–18(a–c)
imply that
(i)
 TVC3ðTÞ is increasing on ½M;NÞ:

(ii)
 TVC2ðTÞ is decreasing on ½W=D;T�

2 � and
increasing on ½T�

2 ;M�:

(iii)
 TVC1ðTÞ is decreasing on ð0;T�

1 � and increas-
ing on ½T�

1 ;W=DÞ:
Combining (i)–(iii), we conclude that TVCðTÞ
has the minimum value at T ¼ T�

1 on ð0;W=DÞ
and TVCðTÞ has the minimum value at T ¼ T�

2 on
½W=D;NÞ: Hence

TVCðT�Þ ¼ minfTVCðT�
1 Þ;TVCðT

�
2 Þg:

Consequently, T� is T�
1 or T�

2 associated with the
least cost.

(C) If D1 > 0; D2o0; D3o0 and D4X0: So
TVC0

1ðW=DÞ > 0; TVC0
2ðW=DÞo0; TVC0

2ðMÞo0
and TVC0

3ðMÞX0: Eqs. (27)–(30) imply that
T�
1 oW=D; T�

2 > W=D; T�
2 > M and T�

3 pM ;
respectively. Furthermore, Eqs. 16(a–c)–18(a–c)
imply that
(i)
 TVC3ðTÞ is increasing on ½M;NÞ:

(ii)
 TVC2ðTÞ is decreasing on ½W=D;M�:

(iii)
 TVC1ðTÞ is decreasing on ð0;T�

1 � and increas-
ing on ½T�

1 ;W=DÞ:
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Combining (i)–(iii), we conclude that TVCðTÞ
has the minimum value at T ¼ T�

1 on ð0;W=DÞ
and TVCðTÞ has the minimum value at T ¼ M on
½W=D;NÞ: Hence

TVCðT�Þ ¼ minfTVCðT�
1 Þ;TVCðMÞg:

Consequently, T� is T�
1 or M associated with the

least cost.
(D) If D1p0; D2X0; D3X0 and D4X0: So

TVC0
1ðW=DÞp0; TVC0

2ðW=DÞX0; TVC0
2ðMÞX0

and TVC0
3ðMÞX0: Eqs. (27)–(30) imply that

T�
1 XW=D; T�

2 pW=D; T�
2 pM and T�

3 pM ;
respectively. Furthermore, Eqs. 16(a–c)–18(a–c)
imply that
(i)
 TVC3ðTÞ is increasing on ½M ;NÞ:

(ii)
 TVC2ðTÞ is increasing on ½W=D;M�:

(iii)
 TVC1ðTÞ is decreasing on ð0;W=DÞ:
Combining (i) and (ii) implies that TVCðTÞ has
the minimum value at T ¼ W=D on ½W=D;NÞ:
From (iii) and TVC1ðW=DÞ > TVC2ðW=DÞ; we
conclude that TVCðTÞ has the minimum value at
T ¼ W=D on ð0;NÞ: Hence T� ¼ W=D:

(E) If D1p0; D2X0; D3X0 and D4o0: So
TVC0

1ðW=DÞp0; TVC0
2ðW=DÞX0; TVC0

2ðMÞX0
and TVC0

3ðMÞo0: Eqs. (27)–(30) imply that
T�
1 XW=D; T�

2 pW=D; T�
2 pM and T�

3 > M ;
respectively. Furthermore, Eqs. 16(a–c)–18(a–c)
imply that
(i)
 TVC3ðTÞ is decreasing on ½M;T�
3 � and

increasing on ½T�
3 ;NÞ:
(ii)
 TVC2ðTÞ is increasing on ½W=D;M�:

(iii)
 TVC1ðTÞ is decreasing on ð0;W=DÞ:
Combining (i) and (ii) yields that TVCðTÞ has
the minimum value at T ¼ W=D on ½W=D;M�
and TVCðTÞ has the minimum value at T ¼ T�

3

on ½M;NÞ: From (iii) and TVC1ðW=DÞ >
TVC2ðW=DÞ; we conclude that

TVCðT�Þ ¼ minfTVCðW=DÞ;TVCðT�
3 Þg:

Consequently, T� is W=D or T�
3 associated with

the least cost.
(F) If D1p0; D2o0; D3X0 and D4X0: So

TVC0
1ðW=DÞp0; TVC0

2ðW=DÞo0; TVC0
2ðMÞX0

and TVC0
3ðMÞX0: Eqs. (27)–(30) imply that

T�
1 XW=D; T�

2 > W=D; T�
2 pM and T�

3 pM ;
respectively. Furthermore, Eqs. 16(a–c)–18(a–c)
imply that
(i)
 TVC3ðTÞ is increasing on ½M;NÞ:

(ii)
 TVC2ðTÞ is decreasing on ½W=D;T�

2 � and
increasing on ½T�

2 ;M�:

(iii)
 TVC1ðTÞ is decreasing on ð0;W=DÞ:
Since TVC1ðW=DÞ > TVC2ðW=DÞ; combining
(i)–(iii) implies that TVCðTÞ has the minimum
value at T ¼ T�

2 on ð0;NÞ: Consequently, T� ¼
T�
2 :
(G) If D1p0; D2o0; D3X0 and D4o0: So

TVC0
1ðW=DÞp0; TVC0

2ðW=DÞo0; TVC0
2ðMÞX0

and TVC0
3ðMÞo0: Eqs. (27)–(30) imply that

T�
1 XW=D; T�

2 > W=D; T�
2 pM and T�

3 > M ;
respectively. Furthermore, Eqs. 16(a–c)–18(a–c)
imply that
(i)
 TVC3ðTÞ is decreasing on ½M ;T�
3 � and

increasing on ½T�
3 ;NÞ:
(ii)
 TVC2ðTÞ is decreasing on ½W=D;T�
2 � and

increasing on ½T�
2 ;M�:
(iii)
 TVC1ðTÞ is decreasing on ð0;W=DÞ:
Combining (i)–(iii), we conclude that TVCðTÞ
has the minimum value at T ¼ T�

2 on ð0;M� and
TVCðTÞ has the minimum value at T ¼ T�

3 on
½M ;NÞ: Hence

TVCðT�Þ ¼ minfTVCðT�
2 Þ;TVCðT

�
3 Þg:

Consequently, T� is T�
2 or T�

3 associated with the
least cost.

(H) If D1p0; D2o0; D3o0 and D4X0: So
TVC0

1ðW=DÞp0; TVC0
2ðW=DÞo0; TVC0

2ðMÞo0
and TVC0

3ðMÞX0: Eqs. (27)–(30) imply that
T�
1 XW=D; T�

2 > W=D; T�
2 > M and T�

3 pM ;
respectively. Furthermore, Eqs. 16(a–c)–18(a–c)
imply that
(i)
 TVC3ðTÞ is increasing on ½M;NÞ:

(ii)
 TVC2ðTÞ is decreasing on ½W=D;M�:

(iii)
 TVC1ðTÞ is decreasing on ð0;W=DÞ:
Combining (i)–(iii), we conclude that TVCðTÞ
has the minimum value at T ¼ M on ð0;NÞ:
Consequently, T� ¼ M :

(I) If D1p0; D2o0; D3o0 and D4o0: So
TVC0

1ðW=DÞp0; TVC0
2ðW=DÞo0; TVC0

2ðMÞo0
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and TVC0
3ðMÞo0: Eqs. (27)–(30) imply that

T�
1 XW=D; T�

2 > W=D; T�
2 > M and T�

3 > M ;
respectively. Furthermore, Eq. 16(a–c)–18(a–c)
imply that
(i)
 TVC3ðTÞ is decreasing on ½M;T�
3 � and

increasing on ½T�
3 ;NÞ:
(ii)
 TVC2ðTÞ is decreasing on ½W=D;M�:

(iii)
 TVC1ðTÞ is decreasing on ð0;W=DÞ:
Combining (i)–(iii), we conclude that TVCðTÞ
has the minimum value at T ¼ T�

3 on ð0;NÞ:
Consequently, T� ¼ T�

3 :
Combining the above arguments, we have

completed the proof of Theorem 2. &

4. Decision rule of the optimal cycle time when

MoW=D

When MoW=D; TVCðTÞ can be expressed as
follows:

TVCðTÞ ¼
TVC1ðTÞ if 0oToW=D; ð11aÞ

TVC3ðTÞ if W=DpT : ð11bÞ

(

Then we have the following result.

Theorem 3. ðIÞ Suppose that h þ 2cIposIe: Then

T� ¼ N:
ðIIÞ Suppose that h þ 2cIp ¼ sIe: Then T� ¼ N:

Proof. (I) See Theorem 1-(I).
(II) If h þ 2cIp ¼ sIe; Eqs. (5) and (9) imply that

TVC1ðTÞ and TVC3ðTÞ is decreasing on ð0;W=DÞ
and ½W=D;NÞ: Hence, TVCðTÞ is decreasing on
ð0;NÞ: Consequently, T� ¼ N: &

Eqs. (5) and (9) yield that

TVC0
1

W

D

� �
¼TVC0

3

W

D

� �

¼
�2A þ W 2=Dðh þ 2cIp � sIeÞ

2ðW=DÞ2
:

For convenience, we let D ¼ D1 ¼ �2A þ W 2

D
ðh þ

2cIp � sIeÞ: Then we have the following result.

Theorem 4. Suppose that h þ 2cIp > sIe: Then
(A)
 If D > 0; then

TVCðT�Þ ¼ minfTVCðT�
1 Þ;TVCðW=DÞg:
Hence T� is T�
1 or W=D associated with the

least cost.

(B)
 If Do0; then TVCðT�Þ ¼ TVCðT�

3 Þ and T� ¼
T�
3 :
(C)
 If D ¼ 0; then TVCðT�Þ ¼ TVCðW=DÞ and

T� ¼ W=D:
Proof. (A) If D > 0; then TVC0
1ðW=DÞ ¼

TVC0
3ðW=DÞ > 0: Eqs. 16(a–c), 18(a–c) and (27)

imply that
(i)
 T�
1 ¼ T�

3 oW=D:

(ii)
 TVC3ðTÞ is increasing on ½W=D;NÞ:

(iii)
 TVC1ðTÞ is decreasing on ð0;T�

1 � and increas-
ing on ½T�

1 ;W=DÞ:
Therefore, TVCðTÞ has the minimum value at
T ¼ T�

1 on ð0;W=DÞ and TVCðTÞ has the mini-
mum value at T ¼ W=D on ½W=D;NÞ: Hence

TVCðT�Þ ¼ minfTVCðT�
1 Þ;TVCðW=DÞg:

Consequently, T� is T�
1 or W=D associated with

the least cost.
(B) If Do0; then

TVC0
1ðW=DÞ ¼ TVC0

3ðW=DÞo0:

Eqs. 16(a–c), 18(a–c) and (27) imply that
(i)
 T�
1 ¼ T�

3 > W=D:

(ii)
 TVC3ðTÞ is decreasing on ½W=D;T�

3 � and
increasing on ½T�

3 ;NÞ:

(iii)
 TVC1ðTÞ is decreasing on ð0;W=DÞ:
Combining (i)–(iii), we conclude that TVCðTÞ
has the minimum value at T ¼ T�

3 on ð0;NÞ:
Consequently, T� ¼ T�

3 :
(C) If D ¼ 0; then

TVC0
1ðW=DÞ ¼ TVC0

3ðW=DÞ ¼ 0:

Eqs. 16(a–c), 18(a–c) and (27) imply that
(i)
 T�
1 ¼ T�

3 ¼ W=D:

(ii)
 TVC3ðTÞ is increasing on ½W=D;NÞ:

(iii)
 TVC1ðTÞ is decreasing on ð0;W=DÞ:
Since TVC1ðW=DÞ > TVC3ðW=DÞ; we conclude
that TVCðTÞ has the minimum value at T ¼ W=D

on ð0;NÞ: Consequently, T� ¼ W=D:
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Combining the above arguments, we have
completed the proof of Theorem 4. &
5. The algorithm

In this section, we shall combine Sections 3 and
4 to outline the algorithm to help us to decide the
optimal cycle time and optimal order quantity.

The algorithm

Step 1: If MoW=D; then go to Step 5.
Step 2: If h þ 2cIposIe; then T� ¼ N:
Step 3: If h þ 2cIp ¼ sIe and
(i)
 T�
2 XM; then T� ¼ N:
(ii)
 W=DpT�
2 oM if TVC2ðT�

2 Þp� cIpDM ;
then T� ¼ T�

2 : Otherwise, T� ¼ N:

(iii)
 T�

2 oW=D if TVC2ðW=DÞp� cIpDM; then
T� ¼ W=D: Otherwise, T� ¼ N:
Step 4: If h þ 2cIp > sIe and
(i)
 D1 > 0; D2X0; D3X0 and D4X0; then T� is
T�
1 or W=D associated with the least cost.
(ii)
 D1 > 0; D2o0; D3X0 and D4X0; then T� is
T�
1 or T�

2 associated with the least cost.

(iii)
 D1 > 0; D2o0; D3o0 and D4X0; then T� is

T�
1 or M associated with the least cost.
(iv)
 D1p0; D2X0; D3X0 and D4X0; then T� ¼
W=D:
(v)
 D1p0; D2X0; D3X0 and D4o0; then T� is
W=D or T�

3 associated with the least cost.

(vi)
 D1p0; D2o0; D3X0 and D4X0; then T� ¼

T�
2 :
(vii)
 D1p0; D2o0; D3X0 and D4o0; then T� is
T�
2 or T�

3 associated with the least cost.

(viii)
 D1p0; D2o0; D3o0 and D4X0; then T� ¼

M :

(ix)
 D1p0; D2o0; D3o0 and D4o0; then T� ¼

T�
3 :
Step 5: If h þ 2cIppsIe; then T� ¼ N:
Step 6: If h þ 2cIp > sIe and
(i)
 D > 0; then T� is T�
1 or W=D associated with

the least cost.

(ii)
 Do0; then T� ¼ T�

3 :

(iii)
 D ¼ 0; then T� ¼ W=D:
6. Special cases

When W ¼ 0; Eqs. 1(a–c) can be modified as
follows:

TVCðTÞ ¼
TVC2ðTÞ if 0oTpM ; ð31aÞ

TVC3ðTÞ if MpT : ð31bÞ

(

Then Theorems 1 and 2 can be revised as
Theorems 5 and 6, respectively.

Theorem 5. ðIÞ Suppose that h þ 2cIposIe: Then

T� ¼ N:
ðIIÞ Suppose that h þ 2cIp ¼ sIe: Then
(A)
 If T�
2 XM ; then T� ¼ N:
(B)
 If T�
2 oM ; there are two cases to occur:
(a)
 If TVC2ðT�
2 Þp� cIpDM; then T� ¼ T�

2 :

(b)
 If TVC2ðT�

2 Þ > �cIpDM; then T� ¼ N:
Theorem 6. Suppose that h þ 2cIp > sIe: Then
(A)
 If D4X0 and D3 > 0; then T� ¼ T�
2 :
(B)
 If D4X0 and D3p0; then T� ¼ M:

(C)
 If D4o0 and D3 > 0; then T� is T�

2 or T�
3

associated with the least cost.

(D)
 If D4o0 and D3p0; then T� ¼ T�

3 :
7. Comparisons with Goyal’s model

In this section, we assume that W ¼ 0 and s ¼ c:
Then h þ 2cIp > cIe: Hence, Eqs. (12) and (13) can
be rewritten as

T�
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A

Dðh þ cIeÞ

s
ð32Þ

and

T�
3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A

Dðh þ 2cIp � cIeÞ

s
: ð33Þ

Furthermore, Eqs. (25) and (26) can be reduced
to

D3 ¼ �2A þ DM2ðh þ cIeÞ ð34Þ

and

D4 ¼ �2A þ DM2ðh þ 2cIp � cIeÞ: ð35Þ
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Eqs. (32)–(35) yield that D4XD3 and T�
3 pT�

2 :
Then Theorem 2 yields the following result.

Theorem 7. Suppose that W ¼ 0 and s ¼ c: Then
(A)
 If D4XD3 > 0; then T� ¼ T�
2 :
(B)
 If D4XD3 ¼ 0; then T� ¼ M:

(C)
 If D4X0 and D3o0; then T� ¼ M :

(D)
 If D4o0 and D3o0; then T� ¼ T�

3 :
Let T
�
3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2AþDcM2ðIp�IeÞ

DðhþcIpÞ

q
and T

�
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A

DðhþcIeÞ

q
:

Moreover, we let T
�
denote the optimal cycle time

of Goyal’s model (1985).
Theorem 1 in Chung (1998a) determines the

optimal cycle time of Goyal’s model (1985) can be
described as follows:

Theorem 8. ðAÞ If D3 > 0; then T
�
¼ T

�
2 :

ðBÞ If D3o0; then T
�
¼ T

�
3 :

ðCÞ If D3 ¼ 0; then T
�
¼ T

�
2 ¼ T

�
3 ¼ M:

Then we have the following result.

Theorem 9. T�pT
�
: In fact, we have
(A)
 If D4XD3 > 0; then T � ¼ T
�
¼ T �

2 ¼ T
�
2 :

�

(B)
 If D4XD3 ¼ 0; then T� ¼ T ¼ M :

�

(C)
 If D4X0 and D3o0; then T�oT :

�

(D)
 If D4o0 and D3o0; then T�pT :
Proof. (A) If D4XD3 > 0; then both Theorems 7
and 8 imply T� ¼ T�

2 and T
�
¼ T

�
2 : However

T�
2 ¼ T

�
2 : Hence T� ¼ T

�
¼ T�

2 ¼ T
�
2 :

(B) If D4XD3 ¼ 0; then both Theorems 7 and 8
imply T� ¼ M and T

�
¼ M: Hence T� ¼ T

�
¼

M:
(C) If D4X0 and D3o0; then both Theorems 7

and 8 imply T� ¼ M and T
�
¼ T

�
3 : Since

ðT
�
Þ2 � ðT�Þ2 ¼

2A þ DcM2ðIp � IeÞ
Dðh þ cIpÞ

� M2

¼
2A � DM2ðh þ cIeÞ

Dðh þ cIpÞ

¼
�D3

Dðh þ cIpÞ
> 0;

we have T�oT
�
:

(D) If D4o0 and D3o0; then both Theorems 7
and 8 imply T� ¼ T�

3 and T
�
¼ T

�
3 : Since

ðT
�
Þ2 � ðT�Þ2

¼
2A þ DcM2ðIp � IeÞ

Dðh þ cIpÞ
�

2A

Dðh þ 2cIp � cIeÞ

¼
½2A þ DcM2ðIp � IeÞ�ðh þ 2cIp � cIeÞ � 2Aðh þ cIpÞ

Dðh þ cIpÞðh þ 2cIp � cIeÞ

¼
DcM2ðIp � IeÞðh þ 2cIp � cIeÞ þ 2AcðIp � IeÞ

Dðh þ cIpÞðh þ 2cIp � cIeÞ
X0;

we have T�pT
�
:

Combining the above arguments, we have
completed the proof of Theorem 9. &

Theorem 9 explains that the optimal cycle time
when W ¼ 0 and s ¼ c is not longer than that of
Goyal’s model (1985).
8. Summary

This article discusses the economic order quan-
tity under conditions of permissible delay in
payments to take the order quantity into account.
If QoW ; the delay in payments is not permitted.
Otherwise, the fixed trade credit period M is
permitted. There are two cases (i) MXW=D and
(ii) MoW=D to be explored. Theorems 1 and 2
give the solution procedure to find T� when
MXW=D: Theorems 3 and 4 give the solution
procedure to find T� when MoW=D: Then, we
develop an algorithm to help us to decide T�:
Furthermore, Theorems 5 and 6 reveal the
solution procedure to find T� when W ¼ 0:
Finally, when W ¼ 0 and s ¼ c; this article
develops some comparisons with Goyal’s model
(1985) and demonstrate that the optimal cycle time
is not longer than that of Goyal’s model (1985).
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