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Abstract 

    In this paper, we extend the MURM (Modified Universe Reaction Model) of a CSTR to a tubular 

reactor with axial dispersion. Furthermore, we use this mixing model to study the effort of the 

micromixing on the steady state multiplicity for an autocatalytical reaction of tubular reactor.  

1. Introduction 

   The exact multiplicity criteria for autocatalytic reactions in a perfectly mixed CSTR was been 

published [2,3]. However, these criteria can only be applied toward the situation in which CSTR is 

perfect mixing. Recently, the effect of macromixing and micromixing of two unpremixed feeds on the 

necessary and sufficient conditions for multiplicity in a CSTR have been studied by Chien and Liou [1] 

by using the modified Cholett’s model and Liou and Chien [4] by MURM (Modified Universal Reaction 

Model), respectively.  

   The original idea of MURM from URM(Universe Reaction Model) was developed by Miiyawaki et al. 

[7]. The merit of the URM includes its corresponding physical meaning, ease of use and no loss of 

accuracy. Furthermore, URM do not needs an initial guess of mean concentration by using the IEM 

(Interaction by exchange with the mean) model. However, the shortcoming of URM lies in the fact that it 

considers each chemical species has the same mixing time constant, therefore, the URM cannot be 

applied towards understanding the phenomena of steady-state multiplicity with micromixing. MURM 

considers that each of the chemical species having its own mixing time constant. The MURM can also 

be simplified to the URM once the values of the mixing time constants become the same. 

   On the other hand, the derivation from ideality occurs due to axial mixing caused by various factors 

such as velocity profile, eddy and molecular diffusion, presence of packing, etc. The axial dispersion 

model is a widely used approximation of flow and mixing phenomena of a tubular reactor.  

   This note combines MURM and axial dispersion model in a tubular reactor. Basic equations obtained 

are solved analytically under Danckwert’ boundary condition. Our model not only considers axial 

dispersion but also consider the effect of incomplete mixing between two reactive feeds of A and B in a 

tubular reactor. By virtue of our deriving model, we find that the micromixing indeed influence the 

unique criteria of an isothermal autocatalytical reaction of a tubular reactor.  
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2. Mixing model 

   A schematic diagram of MURM of an axial dispersion tubular reactor with two feeds are illustrated in 

Fig. 1. The MURM was derived from URM by Miyawaki et al. [7] and was used to discuss that the effect 

of the micromixing of two unpremixed feeds on the necessary and sufficient conditions for multiplicity of 

an isothermal autocatalytical reaction in a CSTR [4]. Here, we extend the concept of the MURM to a 

tubular reactor with axial dispersion model. 

   The case is first considered in which two miscible solutions containing chemical species (labelled A 

and B, respectively) are mixed by turbulence and simultaneously react with each other. The two 

solutions are divided into several lumps of a small scale. These lumps are twisted and divided a much 

smaller scale by turbulence, with the solutions finally being mixed to a molecular scale and then reacted 

with each other. 

   In Fig. 1, a distribution concentration-area in a lump of our model by modified MURM, is assumed for 

each cross section in a tubular reactor. In a thicknessδz (the cross section area A is constant), the 

area of the cross section is divided into three regions. There are two completely segregated regions for 

components A and B, aAA2  and BAb2 , respectively, and another molecular mixed region is the 

combination of aAA1  and BAb1 . The chemical reaction is assumed to occur only in the 

molecular-mixed region. The degree of micromixing, αmA, is defined as the relative area ratio of the 

summation of aAA1  and BAb1  to the cross section system This definition is true in the light of the 

fact that the molecular-mixed regions are homogeneous. We define that maα , αmb and αm are the 

mixing degree for components A, B and overall in the cross section area. At steady state, the relations 

of  
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exist in δz (the cross section area A is constant).  

   Considering Fig. 1, each one of the complete segregated regions of components A and B is 

decreasing with increasing the axial direction. On the contrary, the mixing degree maα , αmb, and αm 

increase along with the axial direction. There are two input fluxes for component A, one is the chemical 

species A by convection ( asaa CAAv 2 ) and the other is the axial dispersion [ )(2 zCAAD asaa ∂∂ ], 

feed in completely segregated regions aAA2  at the position z. ( av  is the average velocity and aD  

is the axial dispersion coefficient) On the other hand, three fluxes flow out of aAA2  for component A 

at the position z z+ δ , one is the chemical species A by convection ( ])([2 zzCCAAv asasaa δ∂∂+ ), 



A Tubular Reactor of Axial Dispersion and Micromixing 

 

71

 

another is the axial dispersion ( ]})([{2 zzCCzAAD asasaa δ∂∂∂∂ + and the other is the mass 

diffusion rate [ ASsa CdtV )(∂ ].  

    The magnitude of the diffusion rate from the segregated region ( aAA2 ) to the molecular-mixed 

region (αmA) can be determined for the chemical species A, 

       zAAKdtV aaasa δ∂ −=                                              (2a) 

where aK  is the inversion of the mixing time constant for the component A. 

    Simultaneously, the fluxes for the component B in the cross section BAb2  also have the same 

statements above only the component A is replaced by the component B. 

    As to the section of the molecular mixed region (αmA), there are four input fluxes for component 

A, one is the chemical species A by convection ( asma ACv α ) and another is that of the axial dispersion 

[ )( zCAD asma ∂∂α ], feed in αmAat the position z. The other two output fluxes are the mass 

diffusion rates [ assa CdtV )(∂ ] and [ bssb CdtV )(∂ ] from aAA2  and BAb2 , respectively. Note that 

the diffusion rates are different for chemical species A and B since each of the species has its own time 

constant and volume of the complete segregate region. 

    Follow the definition of ( dtVsa∂ ), we obtain  

           zABKdtV bbsb δ∂ 2−=                                          (2b) 

where Kb is the inversion of the mixing time constant for B component. The discussions that how to 

obtain aK  and Kb can be founded in Liou and Chien [4]. On the other hand, there are two fluxes 

flow out of αmA for component A at the position z z+ δ , one is the chemical species A by 

convection ( ])([ zzCCAv asasma δ∂∂α + ), another is that of the axial dispersion 

( ]})([{ zzCCzAD amammm δ∂∂∂∂α +  

    By taking the mass balance in the cross section area, aAA2  at steady state (the density is 

constant) 
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Based on the relation )///( AAqqVV aaa ==  of URM (Miyawaki, 1975), we obtain 
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Substituting Eqs. (2) and (4) into Eq. (3), we obtain 
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By taking Danckwert’s boundary condition 
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and using  

      

aa

eaa

vL
PeDLv

LzZ

τ=
=

=

/
/

/
                                                     (7) 

Eqs. (5) and (6) are rearranged as  
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If we consider αma0= 0, the solution of Eqs. (7) to (9) is  
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where  

      )/41( aaaa PeKP τ+=                                               (11) 

Consider two limiting situations  

(1) ∞→aPe  

     Eq. (10) can be reduce to  

           2)exp(1 AK aama =−=− τα                                     (12a) 

and 

           1)exp(1 AK aama =−−= τα                                      (12b) 

The above results are the same as that of the tubular reactor [6]. 

(2)  Pea→0 

     Eq. (10) can be reduce to  

          2)1/(11 AK aama =+=− τα                                       (13a) 

and 
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         1)1/( AKK aaaama =+= ττα                                       (13b) 

The above results are the same as that of the CSTR (Liou and Chien, 1995). 

   Follow the same procedures, we also get the similar results for component B. In additional, we take 

mass balance for the cross section, Am mα  at steady state to obtain  
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and  
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Based on the relations )///( AAqqVV aaa ==  and bam ABAAA 11 +=α  of URM [7], we obtain 

mbbmaam qqqq ααα )/()/( +=  and bamvL τττ === )/(  is a limitation. 

    We take the mass balance of component A in aAA2  
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Using Eq. (5), Eq. (16) is written as 
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The solution is  

  zDvExpCDvCC aaaaas )/()/( 21 +−=                                    (18) 

One of boundary condition 0/, == dzdCLz as  make C2 0=  in Eq. (18), another boundary 

condition 
dz

dC
DCCvz as

aasaa =−= )(,0 0  make 01 )/( aaa CVDC −=  in Eq. (18). Thus, we get 

        0aas CC =                                                         (19) 

Similarity, we take the mass balance of component B in BBb2  to obtain  

      C Cbs b= 0                                                        (20) 

We take the mass balance of component A in αmvV  region and obtain 
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Use dimensionless variable and Eq. (8), we obtain  
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We use the mean concentration in the cross-section area to solve our problem. 

   The mass balance for component A in BAb2  region at steady state is  
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If we consider mba DDD == , we sum Eqs. (16), (21) and (23) and use  

    ambbasmaaamm CqqCqCq =−+−+ 0)1()1( ααα                          (24) 

to obtain  
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Respectively.boundary conditions of Eqs. (16), (22) and (23) are 
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By virtue of Eq. (24), Eq. (26) can be written as 
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Follow the same steps for component B, we can obtain   
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  bbmmbbmaabmm CqCqqCq =−+−+ )1(0)1( ααα                            (29) 
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Thus, Eqs, (25) and (28) with boundary conditions (27) and (30) for components A and B, respectively 

are the design equations by combining the axial dispersion and micromixing models of a tubular reactor.  

 

3. The effort of the micromixng on the sufficient condition for  

  uniqueness autocatalytical reaction in a tubular reactor 

  Considering an autocatalytical reaction, A B B productk+  → + +( )η 1  

which rate expression is r
b

p
aa CkC=− γ , take place in a tubular reactor. 

We define  
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where  qCqC aa /00 = . From the stoichemetry of component A and B, the relation  

             )( 00 aabb CCCC −+= η                                       (32)  

where        qCqC bbb /00 = .                                              (33) 

Thus, we apply the axial dispersion and the micromixing models to the above reaction system to obtain 

that the design equation for component A is  
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The boundary conditions are  
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We use the method of Luss [5] ind the sufficiently condition for uniqueness as follows: (The detail 

deriving is omitted.) 
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   We found that the micromixing indeed effect on the sufficiently condition for uniqueness 

because )( aYf  depends on mam αα ,  and mbα . The ideal mixing is hardly attained in practice, we 

hope that our mixing model is important for chemical reactor design. 
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Nomenclature 

A   cross section area 

A    chemical species for A 



A Tubular Reactor of Axial Dispersion and Micromixing 

 

77

 

B    chemical species for B 

C    concentrations, mol/m3  

D    axial dispersion coefficient 

k    reaction rate constant, (mol/ m3 ) rp −−1  

aK    inversion of the mixing time constant of chemical species A, 1−s  

bK    inversion of the mixing time constant of chemical species B, 1−s  

Pe    peclet Number, ( DvL / ) 

p     reaction order 

r      reaction order  

V     volume 

v      fluid velocity 

Y     conversion 

z     the distance of the axial direction 

Greek letters 

mα     degree of complete mixing 

maα    degree of micromixing for A 

mbα    degree of micromixing for B 

aγ−    reaction rate per unit of reactant volume in the region of complete mixing 

λ      define in Eq. (39) 

η      stoicheiometry coefficient 

θ      define in Eq. (38) 

τ      mean residence time 

Superscripts 

     average in the cross-section area A 

Subscripts 

0  feed concentration 

1  complete segregated region   

2  maximum mixedness region 

a     chemical species A 

b      chemical species B 

m     in maximum mixedness region 

s      in completely segregated region 
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具有軸向混合與微觀混合之管式反應器 

錢玉樹 

化學工程系 

 

                               摘    要  

           在本文我們延伸 CSTR的修正單一反應模式 (Modified Universe Reaction Model) 至具

有軸向混合與微觀混合之管式反應器。更進一步，我們使用上述模式研究微觀混合對於自身催化反

應在管式反應器多重穩態之影響。 


