A Tubular Reactor of Axia Dispersion and Micromixing 69

A Tubular Reactor of
Axial Dispersion and Micromixing

Y u-Shu Chien

Department of Chemica Engineering

Abstract

In this paper, we extend the MURM (Modified Universe Reaction Model) of a CSTR to a tubular
reactor with axial dispersion. Furthermore, we use this mixing model to study the effort of the

micromixing on the steady state multiplicity for an autocatalytical reaction of tubular reactor.

1. Introduction

The exact multiplicity criteria for autocatalytic reactions in a perfectly nixed CSTR was been
published [2,3]. However, these criteria can only be applied toward the situation in which CSTR is
perfect mixing. Recently, the effect of macromixing and micromixing of two unpremixed feeds on the
necessary and sufficient conditions for multiplicity in a CSTR have been studied by Chien and Liou [1]
by using the modified Cholett’ smodel and Liou and Chien [4] by MURM (M odified Universal Reaction
Model), respectively.

The original idea of MURM from URM(Universe Reaction Model) was developed by Miiyawaki et al.
[7]. The merit of the URM includes its corresponding physical meaning, ease of use and no loss of
accuracy. Furthermore, URM do not needs an initial guess of mean concentration by using the 1IEM
(Interaction by exchange with the mean) model. However, the shortcoming of URM liesin the fact that it
considers each chemical species has the same mixing time constant, therefore, the URM cannot be
applied towards understanding the phenomena of steady-state multiplicity with micromixing. MURM
considers that each of the chemical species having its own mixing time constant. The MURM can also
be simplified to the URM once the val ues of the mixing time constants become the same.

On the other hand, the derivation from ideality occurs due to axial mixing caused by various factors
such as velocity profile, eddy and molecular diffusion, presence of packing, etc. The axial dispersion
model isawidely used approximation of flow and mixing phenomena of atubular reactor.

This note combines MURM and axial dispersion model in atubular reactor. Basic equations obtained
are solved analytically under Danckwert’ boundary condition. Our model not only considers axial
dispersion but also consider the effect of incomplete mixing between two reactive feeds of A and B ina
tubular reactor. By virtue of our deriving model, we find that the micromixing indeed influence the

unique criteria of an isothermal autocatalytical reaction of atubular reactor.
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2. Mixing model

A schematic diagram of MURM of an axial dispersion tubular reactor with two feeds areillustrated in
Fig. 1. The MURM was derived from URM by Miyawaki et al. [7] and was used to discuss that the effect
of the micromixing of two unpremixed feeds on the necessary and sufficient conditions for multiplicity of
an isothermal autocatalytical reaction in aCSTR [4]. Here, we extend the concept of the MURM to a
tubular reactor with axial dispersion model.

The caseisfirst considered in which two miscible solutions containing chemical species (labelled A
and B, respectively) are mixed by turbulence and simultaneously react with each other. The two
solutions are divided into several lumps of asmall scale. These lumps are twisted and divided amuch
smaller scale by turbulence, with the solutions finally being mixed to a molecular scale and then reacted
with each other.

In Fig. 1, a distribution concentration-areain alump of our model by modified MURM, is assumed for

each cross section in atubular reactor. In athicknessd Z (the cross section area A is constant), the
area of the cross section isdivided into three regions. There are two completely segregated regions for

componentsA andB, A/A, and B,A , respectively, and another molecular mixed region isthe
combinationof AA, and B,A, . Thechemical reaction isassumed to occur only in the

molecul ar-mixed region. The degree of micromixing, a A , is defined asthe relative arearatio of the
summationof AA and B,A, tothe cross section system This definition istruein the light of the

fact that the molecular-mixed regions are homogeneous. We definethat a ., a,,, and a , arethe

mixing degree for componentsA, B and overall in the cross section area. At steady state, the relations

of

AA+A)=A

A(B +By) = A,

A2=1- ama’Ailzama @

B, =1-a,,B; =a,
a,A=AA+BA =1- 1-a,)A - 1-a,,)A
existin d Z (the cross section area A is constant).

Considering Fig. 1, each one of the complete segregated regions of components A and B is
decreasing with increasing the axial direction. On the contrary, the mixing degree a .., a,,,, and a ,
increase along with the axial direction. There are two input fluxes for component A, one is the chemical
species A by convection (V,A,A,C,.) and the other is the axial dispersion [D,A A (TC../12)],
feed in completely segregated regions PﬁAa at the position Z. (V, is the average velocity and Da

isthe axial dispersion coefficient) On the other hand, three fluxes flow out of A, A, for component A

at the position Z +d z, oneisthe chemical speciesA by convection (V,A A [C, + (TC,./12)dz]),
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another is the axial dispersion (D,AA{1/1Z[C, + (1C,./112)dz]} and the other is the mass
diffusionrate [ (TV, /dt)C xs 1.
The magnitude of the diffusion rate from the segregated region (AZAa) to the molecular-mixed
region (a mA) can be determined for the chemical speciesA,
vV, /dt =- K,A/Adz (2a)
where Ka isthe inversion of the mixing time constant for the component A.

Simultaneously, the fluxes for the component B in the cross section B,A, also have the same

statements above only the component A is replaced by the component B.

As to the section of the molecular mixed region (a mA ), there are four input fluxes for component
A, oneisthe chemical speciesA by convection (VaamACaS) and another is that of the axial dispersion
a.,A(IC,./12)1, feed in & ,Aat the position Z. The other two output fluxes are the mass

diffusion rates [ (Vg /dt)C ] and [ (TVy/dt)C, I from A/A, and B,A, , respectively. Note that

the diffusion rates are different for chemical speciesA and B since each of the species has its own time

constant and volume of the compl ete segregate region.

Follow the definition of (V,/dt), we obtain
vV, /dt = - K,B,Adz (2b)

where Kb isthe inversion of the mixing time constant for B component. The discussions that how to
obtain K, and K, can be founded in Liou and Chien [4]. On the other hand, there are two fluxes
flow out of amA for component A at the position z +d z, one is the chemical species A by
convection ( va,AC,+(1C./T2)dz] ), another is that of the axia dispersion
(D, A1 /12[C,p, + (1C,,/12)dz]}

By taking the mass balance in the cross section area, AkAa at steady state (the density is

constant)

Qa(l_ a'ma) - [Qa(l_ a'ma) +iqa(l_ ama)dz] - Da%Aa(l_ ama) +

(©)
D—[Aa(l ama)+ Ah(l' ma)dZ] - ( ) 0
Based ontherelaion(V,/V =q,/q = Aa/A) of URM (Miyawaki, 1975), we obtain
Al-a) =A@ a,)=A"0 a,)=A%0 a,) @
A \% o}

Substituting Egs. (2) and (4) into Eq. (3), we obtain



& d d’(l- a,.) _
Eg_ Vo (L ) + Da—+ K, (1- ama)— 0 ©®)
By taking Danckwert’ s boundary condition
Z= O’Va(l- ama) = Va(l_ ama) - Da M
dz ©
- 90-ay)
dz
and using
Z=z/L
v,L/D, = Pe, 7
L/v, =t,
Egs. (5) and (6) are rearranged as
1 d’(l-a.) d
——m . (1-a_)+Kt.(1-a =0. 8
Pea d22 ( ma) —a a( ma) ( )
and
Z=0l-a,,=(-a,)- ii( )
©)
d
Z=1—(-a,)=0
dz
If weconsider a4 =0, the solution of Egs. (7) to (9) is
4P,
l-a,,= > = > (10)
1+P,) exp[P,A+P,/2]- (1- P)"exp[P,(1- P./2]
where
P, =@Q+4K,t, /Pe,) (11
Consider two limiting situations
(1) Pe, ® ¥
Eg. (10) can be reduce to
1-a,, =exp(- Kt,)=A (129)
and
A = 1- eXp(- Kat a) = A (12b)
The aboveresults are the same as that of the tubular reactor [6].
(2 Pe® 0
Eg. (10) can be reduce to
l-a,,=1UA+Kt,)=A (139)

and
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A, =KL /(A+KL,)=A (13b)

The above results are the same as that of the CSTR (Liou and Chien, 1995).

Follow the same procedures, we also get the similar results for component B. In additional, we take

mass balance for the cross section, A @, at steady state to obtain

2
L d azm - d, Kl Am— % Kyt bambi =0 14
Pe, dz dz q q
and
1d
z=0a,,=a,- — An
Pe, dz )
z—lda B
dz

Based ontherelations(V,/V =q,/q=A,/A) and a,,A= AA + BA of URM[7], weobtain
a,=(q/9a,,+t(q/9a,, ad t =(L/v,) =t =t isalimitation.
We take the mass balance of component Ain AA,

& d?(1- -
[N D d<(1 ama)Cas_v dl-a,,)C

E+K (1-a)C :-0 16
q a d22 a dZ ( ) as ( )
Using Eq. (5), Eg. (16) iswritten as
C dC..0
1-a D - £+=0 1
( ma)g a d 2 a dZ B (7)
The solutionis
C,=Ci(-v,/D,)+C,Exp(v,/D,)z (18)

One of boundary condition z=L,dC_/dz=0 mae C, = 0 inEq. (18), another boundary

condition z=0,v,(C,,- C,) = Da% meke C, = (- D, /V,)C,, in Eq. (18). Thus, we get
Z

Cas = Cao (19)
Similarity, we take the mass balance of component Bin B,B, to obtain

C,.=Cy (20
We take the mass balance of componentA in @,V region and obtain

d%a,C da, C
D m—am _ m~am y K (1- a
m ng m dZ ( ma)

Casi +ratea, =0 (21)
q

Use dimensionless variable and Eq. (8), we obtain
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dC
amDm dzzam - agVy

dCam + Ka(l_ ama)casi
dz q

. (22)
- E‘f(a(l- ama)i+ K, (1- amb))i%:am +ratea, =0
q g

We use the mean concentration in the cross-section areato solve our problem.

The mass balance for component A in B,A, region at steady state is

G4 o dz(l_ amb)0 d(l_ amb)o 0_
—cD -V +K,(1-a_,)0==0 23
q b d22 b dZ b( mb) 5 ( )

If weconsider D, =D, = D,,, wesum Egs. (16), (21) and (23) and use

ga Can + qa(l- ama)Cas + qb(l- amb)O = qC_a (24)

m=am

to obtain

d’C, dcC.
D a.vy & +ratea. =0 25
™ dz? ™ dz &8m @)

Respectively.boundary conditions of Egs. (16), (22) and (23) are

da,.C
z=0Va,.Co0 = VB Cps- D,—m—=

a - ma~T—as a dZ

26
da_C (263

:L ma —as —
1

dz

da,C
D am am

z=0Vv,2,C.0 = V.2:.C n
maO 0 dZ

m*m~am ~
(26b)

L. da,C,, _
dz

0

and

z=0,via,,0=v,a_,0- D, dZ—mbO
z (26¢)

2=, %0
dz

By virtue of Eq. (24), Eq. (26) can be written as

z= O,va_ao = va_a- D, dc,
dz

_ @)
dc, _

z=1,
dz

0

Follow the same steps for component B, we can obtain

dzC_b-v OICb+r fe=0 28

D

where
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ga mem + d, (l_ ama)O + 4, (1_ amb)Cbm = qa (29

and

Z= O’Vmg :VmEb - Dmdd_czb
(30)

Z—Ld£:0
dz

Thus, Egs, (25) and (28) with boundary conditions (27) and (30) for componentsA and B, respectively

are the design equations by combining the axial dispersion and micromixing models of atubular reactor.

3. Theeffort of the micromixng on the sufficient condition for

uniqueness autocatalytical reaction in a tubular reactor
Considering an autocatalytical reaction, A + B 3#4® (h+)B+product
which rate expressionis - g, = KCPC! , take placein atubular reactor.
We define
_ C_ c -
Y,=—22_—2 or C,=C_(1-Y,) 3D

a0

where C_ao =g C,,/q. Fromthe stoichemetry of component A and B, the relation
G, =Gy +h(C,o - C,) (2
where g =qC,/q. (33)

Thus, we apply the axial dispersion and the micromixing models to the above reaction system to obtain

that the design equation for component A is

D, dzcz:a -V, dc, - kCiCian =0 (34
dz dz

where

Con = Coo@pa- Yo)/a,, (39

Con = (Cot *hC,0Y,) 2, (30
From Egs. (34), (35), (36), we get

_
e d¥a. 2% geiO @ V(18 + ) = @)
where

q=kCy (39

| =C,,/hC,, (39)
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The boundary conditions are

— 1.dY.
Z:o’Ya:?eC:jza
dy. “
2=
dz

We use the method of Luss [5] ind the sufficiently condition for uniqueness as follows: (The detail

deriving is omitted.)

—diIn f
SJp Y M (41)
0£Y,£a dy,
where
el 6 — —
() =ag, = b, - Y. lda,,+Y) @)
9

We found that the micromixing indeed effect on the sufficiently condition for uniqueness

because f (Y_a) dependson a A ,, and a,, . Theidea mixingishardly attained in practice, we

a

hope that our mixing model isimportant for chemical reactor design.
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Nomenclature
A cross section area

A chemical species for A
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B  chemica species for B

C  concentrations, mol/m®

D axia dispersion coefficient
k  reaction rate constant, (mol/ m3)* P~

K, inversion of the mixing time constant of chemical speciesA, S !

K, inversion of the mixing time constant of chemical species B, st

Pe  peclet Number, (VL/D)

p reaction order

r reaction order
\% volume

\" fluid velocity
Y conversion

z the distance of the axial direction

Greek letters

a, degree of complete mixing
a,, degreeof micromixing for A
a,, degree of micromixingfor B

- g, reaction rate per unit of reactant volume in the region of complete mixing

| define in Eq. (39)

h stoicheiometry coefficient

q define in Eq. (38)
t mean residence time

Superscripts

average in the cross-section area A
Subscripts
0 feed concentration
1 complete segregated region
2 maximum mixedness region
a  chemical species A
b chemical species B
M in maximum mixedness region

S in completely segregated region






A Tubular Reactor of Axia Dispersion and Micromixing 79

CSTR (Modified Universe Reaction Model)



