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STABILITY ENHANCEMENT BRAKING CONTROLLER
FOR COMBINATION VEHICLES

Chun-Chih Chiu

Mechanical Engineering Department

Chin-Yi Institute of Technology

ABSTRACT

This paper describes a stability enhancement braking control strategy for com-
bination vehicle(ie. tow-vehicle and trailer combinations). The key point to develop
this controller is a vehicle model in which the tire forces are represented as bilinear
functions of wheelslip and slipangle. This tire force representation is valid for tire
forces below saturation levels. It captures the essential trade-off between cornering
forces and braking (or accelerating) forces. Moreover, when the bilinear equations
are substituted into the equations of motion, the resulting vehicle model is bilinear.
This is important because a large family of control strategies are available for bi-
linear systems. These control strategies are based on a Lyapunov Theory. Many
forms of controllers can be derived. In this paper a stability enhancement braking
controller is derived. Simulation results are presented to demonstrate the performane

of the proposed controller.

Key Words: Braking control, Bilinear tire model, Vehicle model, Combination vehi-

cle.
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INTRODUCTION

Many papers have been written on the dynamics of combination vehicles (ie.,
tow-vehicle/trailer combinations), for example, Jindra (1963) [1], Ellis (1969) [2], and
Bundorf (1967) [3]. Papers have also been written on computer simulations of combination
vehicle braking systems, for example MacAdam (1985) [4]. But, the emphasis in these
papers has been on analysis or simulation accuracy, whereas the empbhasis in this paper is on
control system developmient. ' '

Control system development requires simplified models, yet models that retain the
essential dynamics of the system to be controlled. In this regard two departures are taken in
this paper that distinguish it from previous work. The dynamics equations are vectorized and
the tire forces are approximated as bilinear functions of wheelslip and slipangle. The
vectorization leads to compact and general equations that apply to many types of vehicle
systems and possible controllers. The bilinear approximation leads to tractable equations that
still retain the essential trade-off between cornering forces and longitudinal traction forces,
namely, that increasing wheelslip decreases cornering force potential and increasing slipangle
decreases braking force potential. The vehicle model built from these bilinear equations
recognizes this trade-off, and controllers based on it act accordingly. Traditional linear
vehicle models can not accomplish this. Moreover, the bilinear equations retain much of the

simplicity and tractability of linear equations. They can be manipulated and can be adapt to
many real situations.

This paper begins by introducing the bilinear tire model. Plots are given that show the
accuracy of the model, and an appendix is provided that discusses model calibration. Then
the vehicle equations-of-motion, which are built on the bilinear tire model, are given in their
final form. A complete derivation of these is provided in an appendix. These equations turn
out to be linear with respect to wheelslip, which is critical in the subsequent derivation of the
control strategy. Next, a Lyapunov Function is used to derived a stability constraint that
provides a basis for the following control law. Using this constraint the stability enhancement
braking controller is derived. Simulation results are provided to demonstrate the effectiveness
of the braking controller. The paper ends with conclusions and extensive appendices.

BILINEAR TIRE MODEL

This section introduces the bilinear tire model. It fits tire forces over the region of
relatively low slips, beyond those slips where the tire begins to slide. But this is sufficient for
control modelling because the controller is designed to keep the tires from sliding. The model
is useful because it has the minimum complexity required to capture the trade-off between
longitudinal and lateral tire forces. The effectiveness of the model is explored graphically.
Appendix A provides more detailed information.

The bilinear tire force equations are (using the subscripts 1 and 2 to designate the
longitudinal and lateral tire forces respectively)
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F1i=1i(51i-h1i|(xi|)n; (N
Fa = o(52; = hai|Ai|)n; 2

where A is the wheelslip, o is the slipangle, and n is the normal load. The subscript i refers to
wheel i. The s's and h's are coefficients which are chosen to fit the particular tire force data.
Methods for selecting these coefficients are given in the appendix.

Notice that for a fixed wheelslip, the longitudinal tire force is diminished by the
presence of slipangle, and for a fixed slipangle, the lateral tire force is diminished by the
presence of wheelslip. This is the essential trade-off between longitudinal and lateral tire
forces. Each equation is linear in one type of slip (either wheelslip or slipangle) while the
other is held constant; this is the definition of a bilinear equation. Therefore, these equations
can accurately model tire forces over regions of slip where the tire force remains linear in
one slip when the other is held constant. This condition holds when the tire is operating at
slip levels below those slip levels where the tire begin to "saturate”, or "flatten out", and do
not increase with increasing slip.

The region of slip levels that produce tire forces below saturation are generally contained
within an ellipse, for example

AP+ (yo)? < Ag? 3)
where Ay is the wheelslip corresponding to maximum longitudinal tire force (when the
slipangle is 0). This region is named the Bilinear Tire-Force Region (BTR). The boundary of
this region can be varied according to the specific type of controller being developed. In
many cases it can be taken as circular instead of elliptic, by letting y equal 1, which
simplifies the resulting equations.

Notice that if y is set to 1, then according to Eq. 3, at zero wheelslip, a? <Ag?. This
implies the slipangle corresponding to the maximum pure cornering force is also equal to A§.
Pure braking forces often saturate at a wheelslip near .15 and pure cornering forces often
saturate at a slipangle near .15 radian (8.5 degrees).

The following set of plots illustrates the effectiveness of the bilinear equations. Each plot
shows the lateral and longitudinal force as functions of wheelslip and slipangle. There are a
series of dotted lines on these plots, and along each dotted line the slipangle is increasing in
increments of .01 radian, starting from the right at 0, and working to the left. Along each
dotted line the wheelslip is constant. The nonlinear tire data was generated from the model
described by Bakker, Nyborg, and Pacejka (1987) [5]. Henceforth this model is referred to as
the BNP model.

The first plot, Fig. 1, shows the tire forces generated by varying wheelslip and slipangle
over the range from 0 to .2. The second plot, Fig. 2, shows the tire forces generated by
varying wheelslip and slipangle over a smaller ranges of slip levels, from 0 to .07 (essentially
the BTR). Both of these plots were generated from the BNP model.

Notice that the set of tire forces generated over the larger field of wheelslip and slipangle
is not much larger than the set generated over the smaller field. The tire forces at higher slip
levels bunch-up and barely extend the set of obtainable forces. Something else happens at
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Nonlinear tire force along lines of constant wheelslip
(wide slip range)
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Fig. 1: Nonlinear tire forces over a wide range of slips.
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Fig. 2: Nonlinear tire forces over unsaturated slip levels.
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high slip levels, namely, the partial derivatives of tire forces with respect to slipangle or
wheelslip becomes small. This will cause the vehicle to respond poortly to steering and
braking inputs. Based on these observations an important premise can be established. These
is little reason to operate at high slip levels, ultimate braking force is not increased by much
and directional stability and control are sharply diminished.

A third plot, Fig. 3, shows the tire forces predicted by bilinear equations over the smaller
field of slips, the same field as covered in Fig. 2. Notice how well the curves on the bilinear
plot match the curves on the nonlinear plot. '

A fourth plot, Fig. 4, shows the percent error involved between the bilinear tire model
and the nonlinear tire model over the unsaturated region (i.e., the BTR). It is derived by
subtracting the predictions of the bilinear model from the values generated from the BNP
model and dividing by the values generated by the BNP model. Notice that the percentage
error is small at high slip levels and is large at low slip levels.

Emergency brake controllers work at high slip levels, therefore it is appropriate that the
bilinear tire model be most accurate at high slip levels for these applications. It is also
possible to fit the bilinear tire equations for other regions. For example, it may be desirable
to fit the region of low slip levels more closely for a stability enhancement controller that
operates at low slip values. Appendix A discusses methods for calibrating the bilinear model
by selecting values for the coefficients in Eq.s 1 and 2.

The parameters of the BNP model are determined by trial and error. The particular
parameters chosen for the current BNP tire model generate tire forces that are not very linear
in wheelslip or slipangle. Even at low slip levels, below saturation,. the tire forces follow a
convex curve as slip increases. Empirical data indicates that actual tire forces are more linear
in wheelslip or slipangle than the current nonlinear model predicts.

EQUATIONS OF MOTION

This section gives the equations of motion of a tow-vehicle/trailer combination in
abstract form. These equations are derived in detail in Appendix B.

Using the bilinear tire force equations leads to equations of motion that have the form

u=flu,x,dn,tp)+Uu,x,dn,tph (4)
and
x=A(u,n,t,pyx+B(n,t,p)d+ D(u,x,d,n,t, p)+ g(u,x,d, n, 1, p) (%)
where
u- the longitudinal velocity
x- a state vector comprising: v, the tractor side-slip velocity, r, the tractor yaw rate, T,
the trailer yaw rate, and 6, the hitch angle
d- a vector comprising the steering angles of the wheels of the vehicles
n- a vector comprising the normal loads on the wheels of the vehicles
t - a vector comprising the tire properties of the wheels of the vehicles
P- a vector comprising the parameters of the vehicles

__6..
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Bilinear model along lines of constant wheelslip
(unsaturated siip levels)
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Fig. 3: Bilinear tire force model over unsaturated slip levels.
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A - a vector comprising the wheelslips of the wheels of the vehicles
The matrices A, B, D, and U and the vector functions f and g are defined in Appendix B.

What is important about these equations is that they are linear with respect to A. This
enables application of a class of controllers for Linear-in-Control Systems, see Kalman and
Bertram (1960) [6] and Kimbrough (1987) [7]. Another important aspect of these equations
is that they are general enough to represent single vehicles or articulated vehicles, and the

same approach can be used to design controllers for a broad spectrum of vehicle
configurations. ’

LYAPUNOV STABILITY
The controller described below is based on Lyapunov Theory. It is designed to regulate
the ratio-of-reduction of a "disturbance energy" Lyapunov function for the tow-vehicle trailer
system. The disturbance energy is defined as the integral (into the future) of the
weighted-square of the trajectory errors of the system. Trajectory errors are defined as the
difference between the actual stability variables and the states of a reference model. A
reference model of the form
Xref = A, (U)X rer+ B,d (6)
is used to generate a reference trajectory. The A, and B, in this equation are typically chosen
to closely represent the A and B in Eq. 5. A, is varied with vehicle speed. The x_; represents
the expected trajectory of the vehicle under the conditions that brakes are not applied and
there are no external disturbances. Note that formulas for A and B are given in the appendix
and these can be used to generate A (u) and B..
Next, the trajectory error is defined as
P ™
One can obtain a Lyapunov function from this of the form
2Tp(u)z (8)
where P(u) satisfies the Lyapunov Matrix Equation

PA,(u)+Afw)P=-R ; (R,A,) observable (9)

Now it is shown that this Lyapunov function has special significance. Also, it is true that (see
Kalman (1960))

zTP(u)z = [T 2I(0)Rz-(0)do (10)
where z(0) in the trajectory of the system

z,(6) = A, (u(1))z,(c) z(f)=z 1n
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Therefore, the Lyapunov function is the in&gal from t (meaning the "current time" at which
the calculation is made) to the distant future of the weighted square of z. And z, has the
initial value of the trajectory error (at the "current time" ) and evolves accordmg to the
reference matrix A (u(t)) (using the u at the "current time"). Since A, is always stable the
trajectory of z_decays to zero.

z, describes the progression of the trajectory error under the conditions that the vehicle
model is accurate, that the vehicle does not apply brakes, and that external disturbances do
not occur. To see this begin with the definition of z, and usmg Eq sSand 6

z=A,(u)z+(A(u,n,t,p) -—A,(u))x +(B(n,t,p)—B,)d+D(u,x,d,n, t,p)h+g(u,x,d,n,t, p) (12)
and if there is no model mismatch then
z=A,(u)z+D(u,x,d,n,t,p)h+g(u,x,d, n,t,p) ‘ (13)

Furthermore, if the brakes are not applied and there is no model mismatch then the last
two terms on the right-hand-side are zero. Hence,

z=A,(u)z o (14)

Comparing this to Eq. 11 reveals that z, represents the course of the trajectory error, if: 1) the
reference model is accurate, 2) there is no wheelslip, 3) there are no external disturbances,
and 4) the vehicle speed remains constant. And, if this is true, it follows that the Lyapunov
function can be interpreted as the integral of the weighted-square of the traj ectory error of the
vehicle system.

Obviously these conditions are not true, but this interpretation of z_is still useful. How
so? The reference model can be made accurate to within 20%. The integral is into the infinite
future, but it obtains 80% of it value over the first half second. Moreover, the control is
recalculated many times a second and constantly resets to the existing vehicle speed.

Therefore a relationship between the Lyapunov function and the trajectory error exists.
Although it is approximate it provides a connection between the elements of the weight
matrix R and the system performance. The elements of R are the relative weights placed on
the elements of z,. Since z approximates the actual trajectory errors, we can think of R as
placing weights on the trajectory errors. This is used to direct the priorities of the controller
described below.

STABILITY ENHANCEMENT BRAKE CONTROL

The principle of this control law is based on the Lyapunov function just described. The P
matrix obtained from Lyapunov Matrix Equation is positive definite and symmetric.
Therefore constant value contours of the Lyapunov function z'Pz form ellipsoidal surfaces.
A point z represents the current trajectory- error. Originating at z is a vector that is
perpendicular to the contour; this represents the gradient of the Lyapunov function. The
gradient can be found at each point via the formula 2Pz (which is found by simply taking the
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gradient of z'Pz). Also originating at z is multiple component vector that constitutes the
trajectory of the system, it has the form '

2=A,(u)z+D(u,x,d,n,t,p)A+m(u,x,d,n,t,p) (15)
where

m(u,x,d,n,t,p) = (A(u,n,t,p) — A.())x+(B(n, t,p) — B,)d +g(u,x,d, n,t,p) | (16)

m contains the nonlinear and model-mismatch terms. Under many conditions vehicles are
almost linear, say below .3g. Furthermore, if the reference model A, and B, are selected
accurately, then the magnitude of m can be small. In any case the magnitude of m can be
bounded. This is important, because the bound can be included in the stability constraints
described below and this can be used to make the resulting controller "robust".

Our current focus is on the effect that D(u,x,d,n,t,p)A has on the rate-of-reduction of the

Lyapunov function. Since the rate-of-reduction along the system trajectory is found by the
following equation

22"Pz=22TP[A,(u)z+ D(u,x,d,n,t,p)\ + m(u,x,d, n, 1, 12} (an
then, the effect of applying A is
2z"PD(u,x,d, n,t, P)A (18)
Since A can be controlled, it is possible to control the effect of this term.

A brake controller is designed to enhance the stability of the vehicle system under
conditions where the driver is not demanding hard braking or acceleration. The idea is to use
the brakes to help stabilize the vehicle in the event that a significant trajectory disturbance
occurs, such as one induced by wind, excessive speed, or other factors. Once disturbed a
trailer can begin to swing behind the tow-vehicle and the driver may not be able to dampen
the motion. The controller described here applies the system brakes in such a way as to help
the combination vehicle recover to its intended trajectory. This idea has been pursued by
Presley, Datwyler, and Lorraine (1974) [8], but with the notion of applying both of the trailer
brakes simultaneously. The method described here is more effective than this; it operates the
brakes independently and with precise timing and is able to obtain greater benefits. It
determines at which wheels and when to apply the brakes for the best effect.

The form of the control law follows easily from the basic Lyapunov principle. From
examination of Eq. 18 it follows the control law

A=-GD'Pz (19)
will have a stabilizing effect (i.e., it will increase the rate-of-reduction of the Lyapunov
function along system trajectories) if G is a positive semi-definite matrix. To see this,

substitute Eq. 19 into Eq. 18 and notice that the effect of the wheelslip becomes

-22"PDGDTPz (20)
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which is negative semi-definite, since G is positive semi-definite. Hence, the use of the

wheelslips prescribed by Eq. 19 will accelerate the advance of the vehicle trajectory error to
zero.

The generality of G allows for many variations of the control law to be derived. One can
select which wheelslips to control or not to control by making G diagonal and placing
nonzero gains only on the diagonal elements corresponding to wheel to be controlled. This
control law also allows constraints on the elements of A, for example magnitude constraints
such as, O<A<A_...

Much insight can be gained by simply examining the control gain matrix, D'P. The
relative magnitudes (when normalized column-wise by the expected ranges of each
component of z) of the elements of the matrix D'P indicate which feedback terms and which
wheelslips have the most effect on reducing the rate-of-reduction of the disturbance energy.
It is possible to determine the dominant feedback variables and to determine at which wheels
the brake control is most effective. These concepts are expored in Kimbrough (1992) [9] for
the example case of a pickup truck pulling a utility trailer.

SIMULATION PARAMETERS

This section presents the parameters of a simulation program used to test the
effectiveness of the proposed controller. The simulation program considers a combination

vehicle consisting of a tractor pulling a semi-trailer. The parameters of the vehicle system
are:

tractor mass: 5,600 kg trailer mass: 29,000 kg

tractor width: 2.4 meter trailer wheel base: 10 meter
tractor wheel base: 4.2 meter

distance from tractor c.g. to front axle: .675 meter

distance from tractor c.g. to rear axle: 3.52 meter

distance from trailer c.g. to rear axle: 5 meter

tractor c.g. height: 1.1 meter trailer c.g. height: 2.0 meter
fifth wheel offset: .45 meter fifth wheel helght 1.3 meter
tractor yaw moment of inertia: 12,000 kgm’

trailer yaw moment of inertia: 277,000 kgm’

front wheel rotational moment of inertia: 25 kgm®

tractor rear wheel rotational moment of inertia: 50 kgm®

trailer rear wheel rotational moment of inertia: 25 kgm’

The reference model (i.e., A, and B,) parameters:
comermg stiffness of tractor: (-153,000 -153,000 -398,000 -398 OOO) Nt/rad
cornering stiffness of trailer: (-473,666 -473,666) Nt/rad

The simulation model is a yaw plane model. Roll motion and pitch motion are neglected,
but load transfer is calculated by quasistatically balancing moments and passing the
calculated loads through a low-pass filter with a comer frequency near 2 Hz. The hitch height
is considered in the moment calculations. The tractor roll couple distribution is set at 10%



12 PaBEE+=4

front axle and 90% rear axle. The trailer roll couple distribution is set at 67% fifthwheel and
33% rear axle. ’

The tire forces are computed via the nonlinear model of Bakker, Nyborg, and Pacejka
(1987). The coefficients of the tire model are set the same for all wheels, but the following
treatment was employed: The coefficients were chosen for a normal load of 1 kilo-Newton,
(kN). The coefficients of the tire model controlling the effects of normal load were selected
such that maximum friction was .87 at 1 kN, and this dropped to .75 at 2 kN, and it increased
to 1. at .5 kN. Then, when the calculation of tire force was made, the actual normal load was
normalized by dividing it by its norminal normal load. The tire forces are then calculated
using this number as if it where in kN's. Once the calculation is made for the normalized load
it is mukttiplied by the normal load (in kN's). With this approach the wheels have the same
slipangles at low levels of lateral acceleration, but as the lateral acceleration increases, the
rear wheels of the tractor (where most the roll couple is resisted) begin to have a greater
slipangle than the other wheel sets.

Tire forces do not change instantly with changes in wheelslip or slipangle. They lag. To
account for this the simulation program uses tire force filters. The longitudinal tire forces are
filtered so that a 90 degree rotation of the wheel is required for them to develop completely.
The lateral tire forces are filtered so that a .1 second delay is required for them to develop
completely.

The wheel rotational dynamics are modelled. The air-brake system was modelled as a
second order system with a corner frequency of 28 radians/second. The transfer function used
to relate pressure commands to actual pressures was

PacmaI/Pcommndzl/(S/28+l)2 (21)

where P, and P_ . are the actual and commanded brake pressures. New anti-lock brake
systems can achieve this type of response. The commanded brake pressure was determined
by a wheelslip regulator, based upon the commanded wheelslip and the measured wheelslip.
Many estimators are included in the slip regulator.

The vehicle is tested in open-loop maneuvers without the participation of a driver model.
It seems reasonable that a vehicle that is more stable on its own accord will be more stable
under driver control, especially if the controller does not introduce higher order dynamics.

SIMULATION RESULTS

The performance of the stability enhancement controller is simulated. The results
represent realistic performance expectations because the wheel dynamics and the brake
system dynamics are included. Also the estimators required to estimate the feedback
variables are simulated. The assumed sensors include: 1) steering wheel position, 2) tractor
and trailer yaw rate, 3) wheel speed sensors on each wheel, 4) longitudinal and lateral
accelerometers on the tractor, 5) brake pressure sensors, 6) hitch angle sensor.
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The combination vehicle begins the simulation with a disturbed initial condition that
approximates the mode shape of the swing mode. The initial condition was (.004 m/s, -.024
rad/s, -.022 rad/s, .067 rad) corresponding to tractor side-slip velocity, tractor yaw rate,
trailer yaw rate, and the hitch angle. The initial speed is 27.8 m/s (100kph). Only the trailer
brakes are applied to enhance stability. Accordingly the G matrix is all zeroes, except for its
lower two diagonals which were .05. The weight matrix R is a diagonal matrix with 1, 10,
10, 1 on its diagonal. These weights apply to the tractor side-slip velocity error, the tractor
yaw rate error, the trailer yaw rate error, and the hitch angle error respectively. The yaw rate
errors are weighted most heavily and the controller places priority on controlling these.

A set of plots convey the results. Fig. 5 shows that the brake stabilized vehicle only
slows down about 1 m/s; not a lot of speed is lost. Fig. 6 shows the slip levels employed.

Notice the low bandwidth required. This plot also illustrates the action of the wheelslip
regulators.

The next two plots show the yaw response and lateral acceleration of the tractor. Fig. 7
shows that the tractor yaw rate is better damped with the stability enhancement controller
operating. Fig. 8 shows that the tractor lateral acceleration is also better damped with the
satbility enhancement operating. Fig.s 9, 10, and 11 show the trailer yaw rate and lateral
acceleration and the hitch angle. These Fig.s also indicate that there is an improvement in
damping with the controller operating. This is important because it reduces the likelihood
that an accident will occur if the vehicle is disturbed.

CONCLUSIONS

The proposed brake controller shows potential. The simulations indicate that significant
improvements are possible.. Moreover, these improvements are achievable with existing
anti-lock airbrake system; they have adequate response rates. Other requirements are extra
sensors and computational hareware. This extra cost may already be justifiable for trucks
carrying hazardous cargo. And as the cost of sensors and computers continues to decline the
possible applications for these systems will increase.

The stability enhancement controller increases the damping of the vehicle system. It can
be installed at minimal cost because, beyond the sensors in an anti-lock brake system, it
requires only a hitch angle sensor, a steering wheel sensor, and a trailer yaw rate sensor. Its
simplicity arises because it only activates the trailer brakes. This controller was originally
developed for passenger vehicles pulling trailers. It was designed to reduce accidents where
the trailer begins to swing excessively behind the tow vehicle and knocks it out of control.

Other simulation have been conducted to test this controller, Kimbrough et al. (1990,
1991, 1992) [9, 10, 11, 12]. The results from these simulations show that the steady robust
performance can be obtained, in spite of missing and uncertain information and the delays
introduced by brake system and tire dynamics. The effects of external disturbances are
reduced by over 30% and steerability is improved. The standard test scenario is a
lane-change maneuver (under driver model control) on a checkered mu surface, see
Kimbrough (1991) [12}. The Linear Program controller completes the maneuver while
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maintaining stability, whereas other brake strategies, such as peak-seeking and fixed-slip,
fail.
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APPENDIX A

This appendix provides details of a bilinear tire model. The basic bilinear tire force
equations are



RS AREERE O RKEEHSIHE 19
=As1~hila))n and F,= a(Sz —ha2|A|)n

where F, and F, are the braking (acceleratmg) and cornering tire forces and n is the vertical
load on the tires . We also use the convention

A=1-®r./u for braking

A=u/®r,~1 for accelerating
where © is the wheel rotational speed, r,, is the wheel rooling radius, and u is the vehicles
longitudinal speed. Since A is defined as positive for braking it turns out that s, and h, are
negative. We also use the convention

a=W+rhu-d

where v is the vehicle side-slip velocity, r is the vehicle yaw rate, 1 is the longitudinal
distance from the C.G. to the wheel contact patch, and d is the steering angle of the wheel.
With this definition it turns out that's, and h, are also negative.

This formulation of tire forces is valid for wheelslips and slip-angles below saturation.
This region is called the Bilinear Tire-Force Region, (BTR), and as shown above it
essentially covers the range of possible tire forces. To simplify developments the BTR will
be taken as the interior of a circle whose boundary is

A2 +o2 =22
or Al+a?=op?
where
A - the value of wheelslip corresponding to peak longitudinal forcce (when o=0)
0.y - the value of slipangle corresponding to peak cornering force (when A=0)

Ordinarily the BTR is an ellipse but the notation will be simplified if we treat it as a
circle. Moreover, for many tires, the BTR is only slightly elliptic. For example, on good
roads many tires saturates in wheelslip around A=.15 and saturate in slipangle around o=.15
radians.

It will turn out to be useful to have certain relationships that can be used to estimate the
tire coefficients s and h. The first relationship is

S] = _umax/.sxs
Sy = —um/.8a3 )

This comes from the observation that when there is no slipangle then the tire reaches it
maximum grip when A = Ag. The .8 multiplier was used to obtain a better fit to particular tire
force data used in this paper. It was required because the slop of the tire force curve was not
linear in the "linear region". It exhibited a significant reduction in slop as the slip increased;
it was convex down. Without the multiplier the slop was too shallow at low slip levels and it
led to under estimates of the forces. When fitting data for more linear tires the .8 multiplier
can move towards 1.

To determine the value of h we fit the bilinear equations so that at A,=.8A; and

o,=.80,, the braking force and cornering force are each only 707 of the magnitude they
would have been without simultaneous slip being present, i.c.,
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o (52 —ha|A]) = Ads1 =i |oy]) = =707 M max
which leads to
By =hy = 45T max/AL O

This calibration technique has worked well in the development of brake controllers, but they
may have to be modified as experience is gained with other types of controllers. The use of
graphical computer programs is the best way to fine tune the coefficients. After a few hours
of experimentation a good understanding of the influences of the coefficients can be
developed. ' '

APPENDIX B

This appendix provides the dynamic equations for a tow-vehicle and trailer combination.
Fig. B1 illustrates the basic model. Two coordinate systems are used. The first coordinate
system is attached to the tow-vehicle center-of-gravity (C.G.). The second coordinate system
is attached to the trailer C.G.. A numbering sequence for the wheel of the vehicles is also
shown.

The following variables are defined:
u - tractor longitudinal velocity u - longitudinal velocity of trailer
v - tractor side-slip velocity v - side-slip velocity of trailer
T - tractor yaw rate T - trailer yaw rate
0 - hitch angle

The following parameters are defined:

1, - the longitudinal distance from the tow-vehicle C.G. to its wheel i

t. - the lateral distance from the tow-vehicle C.G. to its wheel i

h - the longitudinal distance from the tow-vehicle C.G. to the trailer coupling

m - the mass of the tow-vehicle

I - the yaw moment of inertia of the tow-vehicle

l; - the longitudinal distance from the trailer C.G. to its wheel i

t, - the lateral distance from the trailer C.G. to its wheel i

h - the longitudinal distance from the trailer C.G. to the trailer coupling

m - the mass of the trailer

I - the yaw moment of inertia of the trailer

Variables and parameters associated with the trailer are underlined. The values of 1, t, and h
(or 1, t, and h) all carry signs. They are positive when directed away from the
center-of-gravity in the positive directions of u and v (or u and v). :

The following steering angles are defined:

d, - the steering angle of the tow-vehicle wheels
d; - the steering angle of the trailer wheels
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Fig. B.1: Model of tractor/trailer combination that shows states and dimensions.



2 DRBHE+=H

We also need to define a notation for tire forces.

F,;- the tire force generated along the longitudinal axis of wheel i (the braking or acceleration
force)

F,, - the tire force generated perpendicular to the longitudinal axis of wheel i (the cornering
force)

The subscripts 1 and 2 are used here because the subscripts x and y refer to the
longitudinal and lateral axis of the tow-vehicle.

With the definitions just given, the equations of motion are:

u(m+m)—imhsin@ =
Y Ficosd; =X Fysind;—cosO(X F,sind,—~XF . cosd,)+sin8(Z F,sind, + L F,cosd))
+(m +m)vr+mhr? — mhr?cos© , ' (B1)

v(m+m)+ imh—imhcos6 =
X Fyusind;+ X Fycosd;+sin®X F,sind, ~ F,cosd,) +cos (X F ;sind, + L F, cosd))

—(m +m)ur+ mhr’sin 0 (B2)

vmh + I+ mh?) — imhhcos 0 =
LFylisind;+ X Fyilicosdi—Z Fyticosd;+ X Fat;sind; + hsin O6(Z F,sind, —XF,cosd,)
+hcosO(Z F, sind,+ X F,.cosd,) — mhur+ mhhr’sin (B3)

—i(mh sin ©) — V(mh cos8) — H{mhh cos ) + I +h’m) = '

-XF,tcosd,+XF,tsind,+XF Isind,+XF,lcosd,—h(ZFE,sind, +X F,cosd,)

+rumh cos © — mhvrsin 8 — r2hhm sin @ (B4)

O=r—r ’ | (B5)
" Eq.s B1-BS can be expressed in the state-space form as

L(8)s =Als) ' (B6)

where L(0) is an invertible 5 by 5 matrix,

-

m+m 0 0 —mhsin® 0 |
0 m+m mh -mhcos® O
L®)= 0 mh I+mh? —mhhcos® 0 (B7)
-mhsin® —mhcos® —mhhcos® [ +mh? 0
0 0 0 0 1]

L

and f(s) is a 5 by 1 vector valued function of the states s, which are (u, v, 1,1, 6).
These equation are now "bilinearized" by substituting in the bilinear tire fore equations.

Fii=Ai(syi—hulaul) (B8)
Fai = ai(s2i — hailAil) (B9)
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By substitution of these equations into Eq.s B1-BS we find that
L(6)$ = M ()AL + M1 (s)A + m(s) (B10)

where M, and M, are matrices and m is a vector. What is important here is that the right hand
side is linear in A and A , the vectors of the wheelslips of the tractor and trailer respectively.

It now becomes desirable to decompose s into u and x, where x is (v, 1, 1, 8 ); u is the
longitudinal velocity and x is the remaining states. The system equations are partitioned as

| (U u Sis) |
ol M eten]

At this point formulas for the components of the matrices are given. The reason for this
is because they have the most simple form at this point. Once the left-hand-side matrix is
inverted and multiplies by the right-hand-side the terms become much more complex.

In the following formulas the summation signs indicate summation over the number of
wheels in the set for the tow-vehicle or in the set for the trailer. Which set is being summed
over is indicated by the presence of underlined variables, which implies the trailer; otherwise
it is the tow-vehicle. The subscripts (except those on the s's and h's) indicate the row and
column of the element being defined.

Uz =[(s1: = huilou ) + oihoidilng

Uy =[Gy =by| o)1 +6d) + b, (d, - O)]n,
f=-Zo5,(d,—0)n,—Zot;sydin;+ (m+m)vr+ m(hr? - hr?)

Dy; = [(s1i—hu|oud; — ouihailn; '

Dy =[(s1i = hulouD(Uidi = t:) — okl + tid)n;

D3i=Dy=0

Qli = [(QH "..h.l,' o, )(d, -0)- gihzi(l + ed,)]ﬂ,

D, =y~ k|, )(d, ~8) - (1 +6d )]m,

Dy, =[5y, ~hy |, D~ B~ 1) ~ 0y L+ 1., ~ ),

D,=0

An=Zsuni/u+Zs,nlu Ay =Xsylini/u+Zs,hn/u—(m+mu
CAn=Xsylini/u+Xs, hnfu A =Es2ilfn,-/u+2_s_2,.h,zgi/u—r_n_hu

Ay =25, —hn/u A3y =X 5, (I, —hhn fu+mhu
Asa =0 Asn=1

Az =Xs,(I.;—hn/u Au=2Xs,n,
A»n=X5,(l,—hhn /u A =Xs,hn,
Az=Xs,(.—h)’n.lu Azyg=Xs,(I,—h)n,

A43 =-1 A44 = O '
Byi=—syun; B ==l

B =—sylin; B, =-5,hn,

By=0 23,' = —é‘z;(l,‘ _h).’}.,‘
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4i

=X0a.5,dn,+mhr’o =T os,tdn, —mh(vr+hr?)0

ci=i=i

gz = (ZOa S,d.n, +mhr26)h+2a S din;  g4a=0

where o; —((v+rl u)—d; and a,=((v+rh+L{l,—B)r)/u)- d +0

Having described the elernents of the matrices we now continue toward thc final form of
the equations. Multiplying the equations by the inverse of the left-hand-side matrix yields

§=LMA+LMA+L'm | | | (B12)

Once again it is desirable to decompose s into u and x, where x is (v, 1, 1, 8). Then, Eq.
B7 can be decomposed into the form

it = Uik + U\ +f(s) | (B13)
x=DiA+DyA+Ax+B1d+B,d+g(s) | (B14)

‘where Eq. B13 is the top row of Eq. B12, and Eq. B14 is the remaining rows of Eq. B12. In
Eq. B14 the terms Ax, B,d, and B,d are the parts of the equations that are linear in x. The
term g(s) collects all the nonlinearities. In the equations in the body of the paper A and A are
grouped together, so are d and d. Therefore the U, D, and B in the paper are just U, and U,
together, D, and D, together, and B, and B, together, respectively.
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