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Abstract

System identification is a method for using measured data to create or
improve a mathematical model of the object being tested. From the measured data
however noise is noticed at the beginning of the response. One solution to avoid
this noise problem is to skip the noisy data and then uses the initial conditions as
active parameters, to be found by using the system identification process. In the
first part of this paper describes the development of the equations for setting up
the initial conditions as active parameters, and then the simulated data as well as
response data from actual shear buildings were used to prove the accuracy of both
the algorithm and the computer program , which include the initial conditions as

Active Parameters, are precise.

Part of this paper announced at the 4™ National Conference on Structural Engineering.
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1. Introduction

System Identification is a method for using measured data to create or improve a
mathematical model of object being tested. It has been described as the process of
selecting the form of the mathematical model and then using measured test data,
systematically adjusting the parameters in this method until, based on a predefined criterion,
the best possible correlation is achieved between the predicted and measured response.
(Matzen and McNiven p.190) [1]

Several approaches to system identification have been developed and are described in
literature. ( see for example Hart and Yao [2] and Natke [3] ) Many models and approaches
have been used, for example linear, nonlinear, time domain, frequency domain, modal
parameters and physical parameters. A computer program USID4 has been developed at
North Carolina State University by Dr. V. C. Matzen to find the elements of the mass,
damping and stiffness matrices of linear structures using a modified Gauss-Newton
minimizing algorithm [4] which based on the time domain method. In reference [4] a pull-
back-and-quick-release test is used to generate the measured data. In this type of testing,
however, all of the parameters are not independent and only a subset of them can be
determined uniquely.

By using a torch or a pair of scissors to cut the string to release the structure, the
response accelerations were recorded with the Rapid System Digital storage Oscilloscope.
The program USID4 then uses the measured accelerations to find the element of [M], [C],
and [K]. From the measured acceleration, it is noticed that there is noise (high frequency
response superimposed on the expected response.) at the beginning of the response. One
solution to this noise problem is to skip the noisy data, establish a new origin for the time
scale, and then use initial conditions as parameters to be found by the system identification
process. The primary objective of this study is to use the initial conditions as active
parameters.

In order to accomplish the objective of this study, several steps were followed. The
first was the development of the equations to include the initial conditions as active
parameters. Then the computer program USID4 was modified to include these equations.
After the program was modified , this program was tested by using simulated data as well as
response data from actual shear buildings. In each case, both single degree of freedom and
multi-degree of freedom structures were considered.

Part 2 of this paper provides the basic equations of system identification and the
algorithms for the initial conditions as active parameters. Part 3 uses simulated data to
demonstrate the usefulness and accuracy of the algorithm and the computer program,
including the initial conditions as active parameters. Part 4 gives the conclusions and

recommendations.

2. System Identification

The system identification process has been divided by Berkey [7] into the following

three steps:
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(1) Determination of the form of the model (i.e., selection of the model differential
equations) and isolation of the unknown parameters.

(2) Selection of a criterion function by means of which the goodness of fit of the model
responses to the actual system responses can be evaluated, when both model and
system are forced by the same inputs.

“(3) Selection of an algorithm or strategy for adjustment of the parameters in such a way
that the differences between model and system responses, as measured by the criterion
of (2) above, are minimized.

In this part we will discuss the algorithm of system identification. Section 2.3.1 presents

the algorithm which uses the initial condition as active parameters.

2.1. Form of the Mathematical Model

A good choice for the model is one that not only is able to produce a good correlation
with the measured data, but also contains terms that are directly relative to known physical
properties. The mathematical model used for the shear building is assumed to be linear,
elastic, and viscously damped.(figure 1) The resulting discrete initial value problem takes

the form:

IMI{X} + [C]{X} + [K} {X} = {P(1)} )
X} = Xoh X} = Xy}

Where [M], [C], [K] are the mass, damping and stiffness matrices of the. structure; { X},
{X}, and {X} are the acceleration, velocity, and displacement vectors; and { Xo} and
{Xo} are the initial conditions. On the right hand side of the equation is the load vector.
The parameters to be obtained in the system identification process are any combination of
the elements of the three coefficient matrices and these are placed in a one-dimensional
array which is called Active Parameter vector (denoted AP). The algorithm was originally
developed to use only zero initial conditions. However, if we include the initial velocity and
displacement vectors in the Active Parameter vector, we can start from any time. This will

prove to-be an easy way to avoid the initial noisy experimental data.

2.2. Criterion Function

A realistic mathematical model must be able to produce a response that matches the
structure's response when both the model and the structure are subjected to the same
excitation. The error function indicates how well the match is made. There are many error
functions available, but the one used here is the integral squared error function. Errors in
accelerations, velocities and displacements are all possibilities for inclusion in the error
function. In laboratory tests, however, the only response quantity that can be easily
measured is acceleration, hence errors in accelerations are the only ones used. The function
is divided by the duration of the signal, and the acceleration error at each degree of freedom

is weighted by a factor W to form a weighted , mean square error function. The final error
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function for a single degree of freedom (SDOF) system takes the form:

'

_ i td . % 2
J(AP) = a fo” WX m(W X (AP, )]%dt ()

and for an NDOF system, it takes the form:

['w; o 0
0 W, 0
1
Jap) =~ 5% (ecap, 1) {e(AP, 1)}dt 3)
i 0 0 Wn J

(e(aP, 1)) = (X (0 - X 5 (AP, )]

Where: n is the number of degrees of freedom.
Xmj(t) is the measured acceleration at the jth DOF
Xcj(AP,t) is the computed acceleration at the jth DOF using
the current set of parameters.
Wj is the weighting factor for the jth DOF.

2.3.1. Parameter Adjustment Algorithm

The Gauss-Newton method is selected to systematically adjust the parameters in the
mathematical model until the error function is minimized. This method is derived by
expanding the error function in Taylor series about the previous set of parameters AP.

Error function
1td
JAP) = — [ {e(AP, ) Wi{e(AP, )}at (4)
Taylor series for a function of one variable:
, 1 ., 2 1., 3
f(x)= f(xo) +f (xO)(x - xo) +;f (xO)(x - Xg) +;f (xo)(x —Xg)" 4+

Use the Taylor series to expand the error function.

0
OJ(APT) 1 ! 0 0 . 0
-_aZpT}+;<APl - AP, >[H(AP JH{AP; - AP}

+ HighOrderTerm )

JAP ) = J(Aff’) + <APi - APiO>{
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or(AP®) .
Where: {—BZ;—} is the Column gradient vector.

'

523aP%)  5%5ar%)  823(aPY)
3
oAPZ AP OAP, OAP| OAP,
. a25aP%)  a%1ar?)
[H(AP)] = aAp22 OAPOAP,

523(aP%)

0AP2

is the Hessian matrix.
Ap; is the ith Active Parameter.
The first three terms in the Taylor series are retained. and the higher order terms are
ignored.
To minimize J(AP), the gradient with respect to APi is set equal to zero vector:

' 0
BI(AP SI(AP
( )=0+(0 0 010 ---)[{—f—l}+[H(AP°)]{APi—APiO}) (6)
OAP; ' OAL}
0 5%1(AP)
H(AP )=6AP OAP
OAP, o

Where: q 1 JAP;AP ( >
- t 8°X(AP,1). [ &(e(AP,1) 8X(AP, t)

=2td (j) [<e(AP,t)>[W]{aAPiaAPj b+ oAF, [W]{ v Jdt ()

In the Gauss-Newton method the first integral term in the Hessian is eliminated. The
terms of the remaining symmetric matrix which is called the Approximate Hessian (denoted

AH) is given by

e . |
AH(AP) =2 <5X°(AP’° >[WJ{5X°(AP’°}dt ®
0 OAP

OAP 5

1

This has been proven in [1]
However, [H(AP)] is not necessarily positive definite, but
[AH(AP?)] is always a positive definite
Equation (6) can be rearranged to give the following equation:
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(42,1 = 420y -stasacartyr 2R, ©)
OAP. -
J
Where a is a positive scaling factor.

This equatioh is called the Modified Gauss Method.

Equation (9) is widely used in optimization and seems to have the advantage of rapid
convergence to the minimum without the need to calculate second partial derivatives.

There are many techniques for solving such problems and the great majority of them fall
under the general heading of iteration methods. Luenberger (1973) [8] describes iteration
algorithms as follow : An initial parameter vector AP, is selected and the algorithm
generates an improved vector, AP, using eq.(9). The process is repeated, and an even better
vector AP, is found. Continuing the process in this manner, a sequence of ever improving
vectors, AP,, AP,, AP,,...,AP,,..., is found that approaches the solution vector AP*. In real
problems, the sequence never actually reaches the solution vector because the process is
terminated when a vector “"sufficiently” close to the solution vector is found. The final
vector is called, somewhat loosely, the minimizing vector; and is designated APmin.

Normally a computer run will terminate when either of the following conditions is
met: (1) the slope of the surface at a new point is less than the preselected minimization
tolerance or (2) the maximum number of iterations is reached.

2.3.2. Sensitivity Coefficient

To compute the elements of the gradient vector and the Approximate Hessian matrix,
it is necessary to evaluate the first partial derivatives of the computed acceleration with
respect to each parameter. These first partial derivatives, which are called sensitivity
coefficients, are the solutions to partial differential equations. These equations are obtained
by partially differentiating Eq.(1) with respect to each parameter.

For example ifAP = M13 ,then

{aMB}. [M]{ }*[C]{af:3}*[’<]{afd—f;}={°}. o
H{aMn}

SHEL Eoe B o B
Where : {6M13 } = {0

} {a—M":} )

If; AP = C13 Then

R R e L o S
RER NN
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ere : _6X_((_)2_ X(0)

" {&13}{}{ 13}{0} ’

If AP=K, 3 Then
X X | X oK h

.[M]{aKls } [C]{aKla } ' [K]{aKls } ' {6K13 }{X} -0} .
X oX 8 8 '

[M>{3K>1<3 } ' [C]{ aK)l(B } ' [K]{ aK)l: } ) _{aKI; }{X} o

K0) 5
Where : {5’3(;} - {o}, {_a’é%} - {0}

Egs. (11), (13) and (15) can only be started from the beginning of response because

the initial conditions for Eq.(1) are only known at time = 0. As mentioned previously, some
experimental data have noise at the beginning and it would be convenient to skip the noisy
data and use if they were known initial conditions from a non-zero starting time. However,
they are not known. One solution to this dilemma is to make them elements of the AP.
Typical equations for finding sensitivity coefficients for initial displacements and

initial velocities are given below:
AP= X3 (t) and time start from

aX(t) aX(t) aX(1) .
- M C 0 16
[ J{6X3(t')}+[ ]{6)'(30’)} []{6X3(t)} {} 10

X (1) _ axX(t) | _ {0}
8X5(t") 6X3(t)
Then

XM | -1 _ aX(t)
{6X3(t')}_[M] [C]{6X3(t')} an

AP= X4(t) and time start from t'

0
0
Iy
0

\"J
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X (1) X (t) X (1)
M C KR——¢t =10 18
[ ‘{6X3(t')}+[ ]{6X3(t')}+[ ]{6X3(t')} o} 1"

[ )

0

. , 0

oX(t") _ {0} oX(t") ~dpb

X 5(t) " 9X4(t) 0

kSJ

Then

X (1) 1 OX(t)
=Ml -k =L 19
20 b o2 )

3. Program verification using simulated data

The identification program was tested to ensure that the modified algorithms, using
the initial conditions as active parameters and the reduced sensitivity array, were correctly
implemented. This was accomplished using simulated data. In these experiments, measured
data were numerically simulated by assigning values to all of the parameters. Then, the
program is run using initial set parameters different from the assigned set and a non-zero
starting time. ‘

Mathematical model was established for a structure with specific mass, damping and
stiffness values and then subjected to pull-back-and-quick-release test to simulate the
behavior of a structure. The parameters used were similar to those expected from the
laboratory models. Simulated responses were generated using the response generating
procedure of the USID4 program. The accelerations were then used as an input file, with a
varied set of values for the active parameters (mass, damping, stiffness and initial
conditions) to the search procedure of USID4.

The numerical experiments used noise-free data and an initial set of parameters
which was thought to be typical of the initial estimates that could be made when real test
data are employed.

To check the non-zero initial condition modification, four experiments were
performed, each starting from a different time. The first try , without skipping any point,
started from time equal to zero. The second try, skipping twenty-five points, started from
the time of 1.75 seconds. (One time step equal to 0.07 seconds.) The third and forth tries,
skipping fifty and seventy-five points individually, started from times equal 3.5 seconds and
5.25 seconds respectively. All results are shown in Table 1 and Table 2. In each case, the
program converged in several iterations to a point on the error surface that was
approximately stationary, the parameters converged to the assigned values and the correct
initial displacements and velocities were obtained. Moreover, the value of the error at this
stationary point was very nearly zero.

These simulated data experiments demonstrated that the algorithms and computer
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program, derived by authors, are correct.

4. Conclusions and Recommendations

Having completed the simulated data for testing the algorithms, by using the initial
conditions as active parameters, with the computer program for the pull-back and quick-
release test. It is clear that by using the initial conditions as element of AP present a good
idea for skipping the high frequencies points at the beginning of response.

Even through some of the results of this study are quite accurate, the study has
uncovered some problems that have an effect on the prediction of response. Many of these
problems relate to analytical sources of errors, the most significant of which is the form of
the equation of motion. For example, the two story structure was assumed to have two
degrees of freedom, and the base and joints were assumed rigid. A non-rigid base and non-
rigid joints which to have some degree they could required additional degrees of freedom.
Secondly, output of the analysis presents some of random error conditions (1) the
calibration and precision of equipment (2) effects of noise sources (3) computational errors
(e.g. round off) must also be recognized as potential sources of error. All of those problems
will have an effect on the prediction of the actual response and they must be evaluated and

controlled for the shear building.
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