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Abstract

In the present study, high-speed ball bearings subjected to both axial and radial loads are investigated.
This also includes the effect of centrifugal force. Through the geometric analysis of a ball bearing and the
force balance, several parameters can be easily obtained, like: the normal forces acting on the contact
points; the contact angle at either the inner or the outer raceways that vary with the bearing position angles;
bearing stiffness in the axial and radial directions that vary with the cage’s angular velocity, etc. Using
Hirano’s criterion, the conditions for the proper choice of the total deformations in two directions can be
identified in order to avoid bearing skidding. The analysis indicates that a more effective way to prevent the
bearings from skidding at high angular velocities is to raise the deformation applied in the axial direction. It
is the angular velocity of the cage, rather than the load applied in the radial direction that is the dominant
factor in the choice of the axial deformation to avoid skidding. © 2002 Published by Elsevier Science Ltd.
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1. Introduction

High-speed angular-contact ball bearings require loading to prevent gross sliding motion, i.e.,
skidding between the balls and the inner raceway. Skidding occurs when the applied bearing load
is inadequate for developing enough elastohydrodynamic tractive force between the raceway and
the rolling elements to overcome cage drag, churning losses and prevention of gyroscopic spin.
With insufficient tractive force driving the cage assembly at the theoretical epicyclic speed, the
inner race must skid past the ball surface. Skidding is therefore gross sliding of the contact surface
relative to the opposing surface. Skidding results in surface shear stresses of significant magni-
tudes in the contact area.
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Nomenclature

A the distance between the raceway groove curvature centers

A°  the distance between the raceway groove curvature centers under a zero load
d; the inner raceway diameter

dn  the pitch diameter (d; +d,)/2

d,  the outer raceway diameter

D the ball diameter

e eccentricity

fi the dimensionless radius of the groove curvature of the inner raceway; r;/D
fo the dimensionless radius of the groove curvature of the outer raceway; r,/D
F, the axial load

F.  the centrifugal force

F, the radial load

g the distance between the bearing center and the curvature center

gi the distance between the bearing center and the curvature center of the inner raceway
g,  the distance between the bearing center and the curvature center of the outer raceway
h the curvature radius

h; the curvature radius of the inner raceway

h,  the curvature radius of the outer raceway

K the elastic modulus at the contact point

Py the bearing diameter clearance

Q. the axial component of the normal force

0O;  the normal force between the ball and the inner raceway

0O, the normal force between the ball and the outer raceway

O, the radial component of the normal force

7 the raceway groove curvature radius of the inner raceway

7o the raceway groove curvature radius of the outer raceway

X the coordinate parallel to the radial load direction

y the coordinate perpendicular to the radial load and the axial direction

z the coordinate in the axial direction

Z  the number of balls

o  the contact angle under a zero load

o the contact angle

oA the contact angle of the inner raceway

o,  the contact angle of the outer raceway

0 the elastic deformation

0, the total elastic deformation in the axial direction

d; the elastic deformation between the ball and the inner raceway

d,  the elastic deformation between the ball and the outer raceway

o; the total elastic deformation in the radial direction

/3 the bearing position angle

& the coordinate of the center of the inner raceway in the x-direction
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¢, the coordinate of the center of the outer raceway in the x-direction

0 the coordinate of the center of the inner raceway in the y-direction
n,  the coordinate of the center of the outer raceway in the y-direction
G the coordinate of the center of the inner raceway in the z-direction

{,  the coordinate of the center of the outer raceway in the z-direction
F(p), the curvature difference of the inner raceway

F(p), the curvature difference of the outer raceway

> p; the curvature sum of the inner raceway

> p, the curvature sum of the outer raceway

The comprehensive work that was reported by Jones [1,2] made an important contribution to
the kinematics and the dynamics of ball bearings. Various sources of information concerning the
contact angles in operating conditions, the forces and moments acting on a ball and the direction
of its rolling axis, etc. have been predicted by using his theory. Hirano [3] carried out an exper-
imental investigation on the motion of a ball in an angular-contact ball bearing under thrust load,
by measuring the change in magnetic flux induced by a magnetized ball. He found that when the
parameter, Q,/F. < 10 (where Q, is the axial component of normal force and F; is the centrifugal
force), gross ball slip was observed.

Harris [4] proposed that raceway control is generally valid for high-speed bearings when the
traction coefficient at the ball raceway contacts is high enough to prevent any gyroscopic slip.
Also, in a later work [5] he pointed out that these simple kinematic hypotheses do not hold up
under an elastohydrodynamic traction model, Harris [5] had modified the existing force balance
type of analysis to avoid the use of raceway control theories. The convergence of the solution of
the non-linear equations is such that a modified quasi-static analysis would strongly depend on the
traction-slip characteristics. Boness [6] described the development of an empirical equation used
to determine the minimum thrust load that is required to prevent gross ball and cage skidding in
high-speed angular-contact bearings. Gupta [7] built equations for the motion of the ball in an
angular-contact ball bearing that is operating under elastohydrodynamic traction conditions that
are formulated and integrated with prescribed initial conditions. A complete transient and steady
state motion is thus obtained to predict the amount of skid and resulting wear rates for a set of
given operating conditions. Poplawski et al. [8] serve as a guide to those involved in the selection
and evaluation of grease lubricated preloaded angular-contact ball bearings. Detail and discussion
were presented regarding the selection of analytical tools, for temperature and load estimation,
and use of the correlated model to do parametric studies. The method presented can be applied to
the design of other steel and hybrid ball thrust bearing systems.

Most of previous studies on skidding considered only the load in the axial direction and their
way of obtaining unknown solutions loads and contact deformations was generally coupled by
solving many algebraic equations simultaneously. This study is actually the extension of applying
the method that was developed by Liao and Lin [9] to the ball bearing analysis neglecting the
centrifugal force. An investigation of high-speed ball bearing subjected to both axial and radial
loadings, including the influence of centrifugal force, is conducted. Through the geometric
analysis of a ball and force balance, the following parameters can be obtained simply: the total
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deformation in either the axial or the radial direction; the mathematical expressions for the curved
surfaces of the inner and outer raceways; and the normal and centrifugal forces. If the defor-
mation in both directions and the angular velocity of the cage are given, we can identify the
condition without skidding by the plots of the axial deformation versus the radial deformation
using Hirano’s criterion [3].

By means of this method, the contact angle either at the inner or outer raceways can be ob-
tained easily. Then, the difference in contact angles with the bearing’s position angles because of
the effect of centrifugal forces at high speeds can be evaluated. Six equations are established six
unknowns; however, by proper elimination of five unknowns from these equations, an expression
for the unknown «, (the contact angle at the outer raceway) is given; this equation can then be
readily solved numerically. Other unknowns can then be obtained sequentially.

2. Theoretical analysis

The following assumptions are required for the derivation of the contact angle of a ball in a
bearing:
1. neither configuration change nor elastic deformation at the inner or outer raceways, except at
the ball contact area occur;
2. no thermal effect is considered;
3. friction forces are neglected;
4. no misalignment in the bearing system occurs.

2.1. Contact angle without loading
The geometry of a ball bearing in the absence of load is shown in Fig. 1. The total clearance, Py,

which is the sum of the clearances formed between the ball and the inner raceway and the ball and
the outer raceway, is:

dil2+ri

dol2-10

di
dm
do

Fig. 1. The cross-section of a single-row ball bearing.
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Fig. 2. Cross-section of an unloaded ball bearing that shows the ball-race contacts.

Py=d, —d; — 2D, (1)

where d, is the diameter of the outer raceway, d, is the diameter of the inner raceway, and D is the
ball diameter. As the ball bearing operates under no load, the distance between the two centers of
curvature of the inner and outer raceways, as shown in Fig. 2, can be given as

A’ =ri+r,— D, (2)

where r; is the radius of the curvature of the inner raceway, and r, is the radius of the curvature of
the outer raceway. The superscript “0” at the distance 4 represents no loading. The contact angle
under this situation, as shown in Fig. 2, is a constant value, namely [10]

_ Py
o = cos 1(1—@) (3)

2.2. The contact angle under axial and radial loads neglecting the effect of centrifugal force

The radius of curvature of the inner raceway of a ball bearing is 7; (equal to 4; in Fig. 2), and the
entry center of curvature is at point 7. Similarly, the radius of curvature center for the outer
raceway is r, (equal to 4,) and the center of curvature is at point 0. Two tori can be formed for the
inner and outer raceways, respectively.

Each of these two tori is generated by a circle with either 7; or », as radius, and point i or point o
as center; then, by rotating this circle around the passing through the point of coordinates (&, 7, ().
The general diagram for the torus generated for either the inner or the outer raceways is shown in
Fig. 3. Apparently, the coordinates for the geometric center of these two tori are different, and are
dependent upon the loading condition. In the case of a ball bearing before a loading, the geo-
metric center of the torus of the outer raceway is located at the point of coordinates (0,0, {,),
whereas the one for the torus of the inner raceway has the coordinates (0,0, ;). As the bearing is
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Fig. 3. Two coordinate systems and the torus produced by one of two raceways in a ball bearing.

loaded, the geometric center of the torus of the inner raceway remains unchanged because the
inner raceway is fitted tightly with the rotating shaft and the radius of curvature is assumed to be
unchanged even under loading. However, the geometric center of the torus corresponding to the
outer raceway is now moved to (&,,0,{,). From the geometry of Figs. 2 and 4, the coordinates of
any point on the surface of the inner raceway can be written as

(xiayla Zi) = (éi? i, él) + gi(COS ’10) sin lp7 0) + hi(COS 0 cos lpa cos 0'sin lpu sin 0)7

4
= (0,0,¢) + gi(cosy, sinyy, 0) + hi(cos 6 cos iy, cos Osin y, sin 0), @)
where
gi:di/2+ri (Sa)
z
Outer Rin,
Ci
Inner Ring
C2

Fig. 4. A ball in contact with the outer and inner rings under the loads that are in the radial and axial direction.
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and
hi = Ti. (Sb)

The subscript i1 of all parameters denotes association with the inner raceway, and y is the position
angle on the X' plane, and since & = n; = 0, Eq. (4) can now be written as

(xiaylazi) = ((gl + hi Cos 9) COs lpv (gl + hi COs 9) sin lp) hi sin 0 + Ci)a (6)
where {; in Eq. (6), as Fig. 4 shows, is given by
D
Ci:—<l"i—ESinOCO>. (7)

In Eq. (7), r; is the radius of curvature of the inner raceway and o’ is the ball’s contact angle
under zero load. Here, the contact angles of the ball at the inner raceway and the outer raceway
are assumed to be the same, provided that the centrifugal force acting on the ball is ignored.
Similarly, the coordinates for any one point on the outer raceway surface, as shown in Fig. 2, are
given as:

(X0, Yoy Zo) = (Eoy o = 0,(,) + go(cos iy, sin iy, 0) + h,(cos O cosy, cos O sin i, sin 6), (8)
where

8o =do/2 =1, (9a)
and

ho = 1. (9b)

The bearing elastic deformation produced in the x-direction due to the externally applied radial
load is d,; and the total elastic deformation in the z-direction (parallel to shaft axis) is J, due to the
externally applied axial load. Then, the coordinates &, and {, in Eq. (8) are given by

éo = _5r7 (IOa)
{o = (ro — D/2)sina” + 6,. (10b)
The two elastic deformations, J, and J,, are given in this study because they can be readily ob-

tained from the experimental measures by the use of the displacement gauge. Then Eq. (8) can be
rewritten as:

(X0, Yo, Zo) = ((go + hocos 0) cosy + &, (go + hocos 0) sinyy, h, sin +,). (11)

The two tori which have point i and point o as the center of two circles and r; and r, as the radius
of these two circles for the inner and outer raceways, respectively, the points of intersection of the
cross-sections of two tori are ¢; and ¢,. According to Fig. 4, the contact angle « can be written as:

a=m—0-—p. (12)
This contact angle is the same in the inner and the outer raceways if the centrifugal force is ig-
nored. The angle  shown in Fig. 4, by the sine theorem, is given as:
sinff sinu
re A

(13)
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Then, angle f is obtained as:

B = sin”! <r°jn“>, (14)

where A is the distance between the two centers of curvature i and o obtained as the bearing
loaded. Based on the cosine theorem, the angle u satisfies the expression:

24 2 2
ri+r;—A

2riry

2 4,2 g2\
sin,u:\/l— <r+2:—r> . (16)

Substituting Eq. (16) into Eq. (14), we can obtain the following expression:

2, .0 2\ 2
- —1 ro r; r A
— a1l =- A0 . 17
p = sin \/ < i >) (17)

In most practical applications, the bearing has the same radius of curvature for both the inner and
the outer raceways (r, = r;). Consequently, Eq. (17) can be further simplified as (shown in Fig. 4):

2
p=sin"y/1— <§> (18)

cosp = (15)

or

or

B = cos™! (zi) (19)

According to Eq. (12), the contact angle « can be obtained only when the angle 6 is available. The
angle 0 can be solved as follows.

The angles 6 and  in Eq. (11) are now temporarily replaced by u and v, respectively; then, Eq.
(11) can be rewritten as:

Xo = (go + hocosu)cosv+ &, = (go + hocosu) cosv — 9y, (20a)

Yo = (8o + hocosu)sinu, (20b)

Zo = hosinu + (. (20c¢)
The intersections of the cross-sections of two tori must satisfy

(g + hicos ) cosyy = (g, + hocosu) cosv — oy, (21a)

(gi + hicos0)siny = (g, + h, cosu) sinv, (21b)

hisin0+ § = hosinu + (. (21¢)

We will isolate 4, sinu in Eq. (21¢)
hosinu = hysin0 + §; — (. (22)
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And we can obtain Eq. (23) from Eq. (22)
ho cosu = \/hg — (hisin 0+ & — ) (23)
Now square both sides of Eq. (21a) and (21b) and add them for eliminating the variable v:

[(gi + hicos 0) cosy + &, + [(gi + ki cos 0) sinh]” = (g, + ho cosu)’. (24)
Substituting Eq. (23) into Eq. (24), the variable u can be eliminated from Eq. (24), the angle 0 thus
satisfying:

2
(gi + hi cos 0)” + 26,(g; + h; cos 0) cosy + 5 — [go + \/hg — (hsin0+ & — )| =0. (25

The solutions of 0 in Eq. (25) are dependent upon the position angle i; that is, the contact angle «
varies with the position angle of a ball bearing. The above equation can be solved by a Newton
method if the bearing elastic deformations in radial and axial direction, o,, J,, are available. If the
angle 0 is obtained, the contact angle « is thus achievable from Eq. (12). In Eq. (19), the distance 4
between the two centers of curvature i and o is calculated as follows:

4= ||((g0 COSW - 5r7g0 Sinlﬁa Co) - (gl COSlﬁygi Sinwv Cl))”?
= [I((go — gi) cosyp = dr, (g0 — &i) sin¥, &, = L), (26)

- {[(go —g)cosy — &,]° + [(go — &) siny]” + ({, — Ci)z}l/z.

2.3. The contact angles of the inner and the outer raceways in the presence of centrifugal forces

The contact angle at the inner and the outer raceways is variable. It varies depending upon the
bearing angular velocity. Define the change in contact at the inner and outer raceways as:

Aoy = o — a, (23a)
Aoy = o0 — oy, (23b)

where « is the contact angle of a bearing under loading but without taking centrifugal forces into
account; o; and o, are the real contact angles at the inner and the outer raceways, respectively, but
considering centrifugal forces. The above angle differences are not equal because the contact angle
; 1s in general different from o, if centrifugal forces are included. Then, a triangle m0i is formed as
shown in Fig. 5, where point m is the center of the ball that is tangent to both the inner and the
outer raceways tori the absence of elastic deformations at these two contact points. If the radius of
curvature of the inner and the outer raceways is assumed to be equal to r, then

F=To =" (27)
and the angle differences Ao; and Aa, are approximately
Ao =2 Ao, =2 Ao (28)

Let the distance between point i and point o (io) be 4, the distance between point i and point m
(im) be B, the distance between point o and point m (om) be C. Then B and C, as shown in Fig. 5,
can be expressed as
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central line of outer-raceway torus
ball bearing

z

Fig. 5. The ball-raceway contacts under loading in the axial and radial directions and the ball’s centrifugal force.

D D
B:i i — <= 5i——, 2
Fi O =t 0= (29a)
D D
C=rotd—5=r+d -7, (29b)

where o; and J, are the elastic deformations arising at the contact point of the inner and the outer
raceways, respectively. The distances B and C also satisfy

C? = A% + B* — 24B cos(Ax), (30a)

B? = A% 4 C? — 24C cos(Ax). (30b)
Eliminating B and C from Egs. (29a2)—(30b) gives

(2r — D+ 6; + 0,) cos(An) = 4. (31)

If the frictional forces produced at the ball are so small that they are excluded from the force
balance, the equations of the force balance in the y- and z-direction are as shown in Fig. 5,
namely,

O;sino; — Q, sino, = 0, (32a)
0;cosa; — Q,cosa, + F, =0, (32b)
where the centrifugal force F; in Eq. (32b) due to high angular velocities can be written as
dm
F. = meg, (33)

where m is the mass of the ball; d,, is the bearing pitch diameter; and . is the angular velocity of
the cage. The normal contact force at the inner raceway, can be decided from Eq. (32a), as

sin o,

Qi Qo- (34)

B sin o
If the elastic deformation of the contact point at either the inner or the outer raceways is available,
the normal contact force at the inner and the outer raceways can be stated as
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0 =K', (35a)

Qo = K050L5’ (35b)

where the elastic moduli, K; and K, in the above two equations can be obtained as shown in
Appendix A. Substituting Egs. (35a) and (35b) in Eq. (34) gives

sin o
OK 5 1.5

Kiéi LS — (36)

sing;  © °

Substitution of Eqgs. (34) and (35b) into Eq. (32b) gives
(sm % _ cos oco>K0501'5 +F. =0. (37)

tan o
Eq. (36) can be rewritten as

. 2/3
5 = <K° s °‘°> 3o (38)

Ki sin o

Elimination of Ag; from Egs. (23a) and (23b) gives
o + ot = 20 (39)
Substituting Egs. (38) and (39) into Eq. (31) gives

K,sina 2/3
29— D o7 1
{ : * (Ki sin(20 — oco)> *
Eliminating J, from Eq. (40) specify using Eq. (37) gives the above equation as a function of o,.
Then, it can be solved by a Newton method. The other unknowns «;, O;, O, and o; are thus

obtained from Egs. (39), (32a), (32b) and (35a). The summation of the load components for a
bearing with Z balls gives the total load (see Fig. 6) in the axial direction as:

F, = Z]:Qaj) (413,)
=

50} cos(a— o) — A4 = 0. (40)

where j denotes jth ball bearing;
0. = O;sing;

and for the total load in the radial direction can be written as:

A
F=Y0,cos, (41b)
=1
where
O, = Q; cos ;.

2.4. The criteria for the skidding threshold

Hirano [3] carried out several experiments to investigate the gross ball slip occurring in ball
bearings under various operating conditions and tried to induce the threshold of bearing skidding
from experimental results. The criterion for bearing skidding is stated as:



102 N. Tung Liao, J.F. Lin | Mechanism and Machine Theory 37 (2002) 91-113

X

F:

y Pitch Circle

Fig. 6. Moment and load distribution of the pitch circle in a ball bearing under a combined radial and axial loads.

Fe O,

— >0.1 or = < 10. 42

Q. Fe 42)
If this inequality is true, then skidding between ball and inner raceway will occur. This criterion
deduced by Hirano was from the investigation of many experiments on ball bearings.

3. Results and discussion
3.1. The contact angle at the inner and the outer raceways

The contact angles at the inner and the outer raceways vary with the position angle of a b218
angular-contact ball bearing, as shown in Fig. 7. The dimensions of this bearing are shown in
Table 1. Axial and radial deformations are applied with the same value of 0.01 mm. In the static
case, the centrifugal force of the balls in a bearing is neglected. If the centrifugal force is con-
sidered at high angular velocities, either the inner or the outer contact angle varies with the
bearing position angle Y and the angular velocity w. of the cage. At the inner raceway,
the maximum contact angle is formed at an angle of 180° from the x-axis (the radial direction). At
the outer raceway, the minimum contact angle is also formed at the same bearing position. The
contact angle at the inner raceway is increased by increasing the angular velocity of the cage.
Conversely, the contact angle at the outer raceway diminishes by increasing the angular velocity
of the cage. The difference in the contact angle between the inner and outer raceways is enlarged
by increasing the cage’s angular velocity w..

The variations of the load in either the axial or the radial direction are shown in Fig. § as
functions of cage’s angular velocity. If these two deformations are fixed, the axial load applied to
the system is close to linearly related to the cage’s angular velocity. However, the radial load
declines to the minimum value as the cage’s angular velocity reaches around 8000 rpm, then
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Fig. 7. The contact angle at either the inner or outer raceway varying with the bearing position angle for different cage’s
angular velocities.

Table 1

The dimensions of the b218 and #7307 angular-contact ball bearing
Bearing type Contact angle «° Z i (mm) 7o (mm) di (mm) d, (mm) D (mm)
b218 40.0° 16 11.6281 11.6281 102.7938 147.7264 22.225
#7307 39.4° 11 7.0500 7.0500 43.8110 71.0680 13.491

Z: ball number.

further increase in the cage’s angular velocity causes an increase in the radial load. There exists an
extreme value for the radial load at certain cage speeds. Substitution of Eq. (33) into Eq. (32b)
gives the radial contact force at bearing position angle i as

O, = O;cos vy,

d., 43

= 0, COS 0ty — — M. (43)
2

Since the radial load F; of a ball bearing, as shown in Eq. (41b) is obtained then Q; is available.

Taking the partial derivative of the radial load F; with respect to the cage’s angular velocity w,

gives

OF, 00,
0w, - Z 0w, cosy

= Z <% (Qo cos oty — dmmw§/2)cos¢>

=> % (Qocos05) COS Y — > diymar oS Y. (44)
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Fig. 8. Axial and radial loads varying with the cage’s angular velocity under deformations of J, = 0.01 mm and
o, = 0.01 mm.

The first term on the right-hand side of Eq. (44) represents the summation of all the components
in x-direction of the normal forces acting upon the balls. The second term denotes the summations
of all components in x-direction of all centrifugal forces acting upon the balls. If 0F; /0w, = 0, an
extreme value of F; exists; i.e., the first term is of magnitude equal to the second term. This is
found at a cage’s angular velocity of about 8000 rpm.

3.2. The normal force acting upon the inner and the outer raceways

The normal forces at various angular velocities of the cage acting at the contact points of either
the inner or the outer raceways are shown in Fig. 9. The curve marked “‘static’” is obtained in the
absence ball’s centrifugal force. The area near the position angle of 180° does not have a normal
force acting upon either the inner or the outer raceways. This feature mainly results when the balls
rolling on this area are separated from the inner raceway such that the normal forces acting on the
inner and the outer raceways are nearly zero. This separation can be avoided when taking the
balls’ centrifugal force into account in the analysis. The normal force at the position angle of 180°
from the radial load direction is a minimum, irrespective of the inner or the outer raceways. The
normal force acting upon the outer raceway is still higher than that upon the inner raceway, and
an increase in the cage’s angular velocity magnifies the difference between these two loads.

Generally speaking, the normal force acting on either the inner or the outer raceways is gov-
erned by the combined effect of the ball’s centrifugal force and the contact angle at the two
raceways. They both are actually determined by the cage’s angular velocity. Increasing the cage’s
angular velocity will enhance the ball’s centrifugal force. On the other hand, the cage’s angular
velocity will increase the contact angle at the inner raceway and decrease the contact angle at the
outer raceway. The variations in both of the contact angles will lead to a decline of the normal
force acting at the contact point when the cage’s angular velocity is increased. The combined
effects according to the force diagram shown in Fig. 5 cause the normal force acting on the outer
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Fig. 9. The normal forces acting on the inner and outer raceways vs. the bearing position angle for deformations of
0, = 0.01 mm and ¢, = 0.01 mm at different cage’s angular velocities.

raceway to be noticeably higher than that acting on the inner raceway when the cage’s angular
velocity is sufficiently high.

Fig. 10(a) shows the contact angles, o; and o, varying at the cage’s angular velocity w., under
various axial loads when no radial load is applied (6, = 0). The area on the right-hand side of the
curve is marked “A” and denotes the contact angles formed in a bearing by applying a positive
axial deformation (0, > 0). In this area, the contact angle at the inner raceway o; is increased if a
non-zero J, is applied by raising the load in the axial direction, whereas the contact angle at the
outer raceway o, is decreased, irrespective of the angular velocity of the cage w.. Increasing the
cage’s angular velocity would increase the inner contact angle «;, but would decrease the outer
contact angle o, when the axial load is fixed. When the angular velocity of the cage is low, the
increase in the axial load makes o; and «, quite close.

The area between the two dash lines points out the combined conditions of the axial defor-
mation J, and the cage’s angular velocity such that surface skidding can be avoided in the b218
bearing system. It is the cage’s angular velocity, rather than the axial deformation, that is the
primary controlling factor on surface skidding. Surface skidding can be inhibited only when the
cage’s angular velocity is considerably lowered and there is an appropriate high axial load applied
to the system. Fig. 10(b) shows the contact angles at the inner and outer raceways varying with the
radial load. The axial deformation is fixed at 0.01 mm, and the radial deformation is varied in the
range 0.001-0.01 mm. Since a non-zero radial load applied to the bearing would cause the load
distributions to be non-symmetric with respect to the axis, the contact angles «; and o, vary with
the bearing position angle . The plots in this figure are shown as {y = 0. Either of the contact
angles o; or o, is expressed as a function of the cage’s angular velocity and the radial load.
However, it is the cage’s angular velocity that is the primary controlling factor for the two contact
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Fig. 10. (a) Contact angles o; and «, varying with the thrust load in the axial direction of §, = 0 mm at different cage’s
angular velocity; (b) contact angles o; and o, varying with radial load of J, = 0.01 mm at yy = 0° for different cage’s
angular velocities.

angles. Similarly, the area outside the dash lines indicates the conditions that cause skidding.
Surface skidding seems unavoidable at various angular velocities of the cage because the current
combinations of J, and J, cannot satisfy the criterion of Q,/F. > 10.

3.3. The skidding region

According to the criterion shown in Eq. (42) for skidding, the threshold can be expressed as a
function of the deformations applied in both the axial and the radial directions. Fig. 11 shows the
threshold for skidding can be expressed by a straight line in the plot of axial deformation versus
radial deformation. In the subregion above the threshold line, bearing skidding can be avoided by
applying the proper deformations in the two directions of the bearings that have the cage’s an-
gular velocity of w.. For no skidding to occur in a bearing rotating at a constant speed, the axial
deformation should be slightly increased by diminishing the radial deformation. The angular
velocity of the cage becomes the dominant factor as to the determination of the proper defor-
mations in the two directions. A rise in the angular velocity w. should apply a higher deformation
in the axial direction to prevent the bearing from skidding. Since the threshold of skidding as
shown in Eq. (42) was proposed on the basis of several empirical results, the validity of this
criterion can be illustrated by choosing five points on each side of the threshold line of constant
.. Fig. 12 shows examples of all five points beneath the threshold line, with the cage’s angular
velocity set at 4000 rpm, and the deformation applied in the axial direction is 0.030 mm. In this
figure, the values of Q,/F; varying with the position angle are shown for five radial deformations.
The line for Q,/F. is equal to 10, which is the threshold of surface skidding. Apparently, all five
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Fig. 11. The skidding criterion for the b218 ball bearing.
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curves are either wholly or partly below the threshold line. That is, skidding occurs definitely for
all five cases. As the axial deformation and the angular velocity of the cage are constant, in-
creasing the radial deformation (thus the radial load) would reduce the possibility where skidding
disappears. If the axial deformation is chosen such that four points are all above the threshold line
of w. = 4000 rpm (shown in Fig. 11), the Q,/F. values vary with the position angle of the bearing,
as shown in Fig. 13. Here the axial deformation is increased to 0.045 mm. All four curves are

Fig.
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12. The ratio Q,/F; varying with the bearing position angle under different radial deformations.
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Fig. 13. The force ratio Q,/F; varying with the bearing position angle under different radial deformations.

located above the line of Q,/F. = 10; consequently, no skidding occurs. Proper reduction of the
shaft diameter can effectively avoid skidding even when working at high angular velocities.
However, if a finite value of the axial load is required, an appropriate choice of the bearing with a
moderate value of the static-state contact angle («°) is needed in order to prevent the ball bearing
from skidding. As Fig. 14 shows, skidding can possibly still be avoided by means of reducing the
diameter of the shaft even when a high angular velocity is demanded.

a0=39.4° dm=57.4395mm ®e
0.12—
No Skidding 30000rpm
Skidding
€
S
=~ 0.08
8 No Skidding 20000rpm
9
g Skidding
£ i
§
< %7 No Skidding 10000rpm
5 J Skidding
i No Skidding 5000rpm
d skidding
0 ; — , — —
[] 0.002 0.004 0.006 0.008

Radial Deformation (mm)

Fig. 14. The skidding criterion for the #7307 ball bearing at four different angular velocities of the cage.
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3.4. The axial and radial stiffnesses

The variations of the axial load with bearing deformation in the axial direction at various
angular velocities of the cage are shown in Fig. 15. The behavior of the bearing with a positive
axial deformation is exactly opposite to that of a negative deformation. In the region with a
negative J,, increasing the angular velocity of the cage elevates bearing stiffness in the axial di-
rection, represented by the slope of a curve. Conversely, this bearing stiffness is lowered signifi-
cantly by increasing the cage’s angular velocity when a positive axial deformation is applied. It
should be noticed that the curve for the angular velocity of the cage at 10000 rpm largely lies in
the region of 4, < 0; that is, the axial load applied to a bearing with the cage’s angular velocity at
10000 rpm is much higher than that required at relatively lower angular velocities when a positive
bearing deformation (J,) is required. The radial loads created at the various angular velocities of
the cage are shown in Fig. 16. If the system operates without axial deformation, increasing the
angular velocity of the cage increases the bearing stiffness in the radial direction. As the axial
deformation increases to 0.02 mm, the increase in the radial deformation under a constant radial
load makes the bearing stiffness decrease in the radial direction as the cage’s increases. As Fig. 16
shows, the application of a positive axial deformation causes a bearing with a higher angular
velocity to have a lower stiffness increase in the radial direction.

From Figs. 15 and 16, the following conclusions can be drawn: the bearing stiffness in either the
axial or the radial direction is decreased by increasing the cage’s angular velocity when a positive
deformation in the axial direction J, is applied. An increase in the radial deformation would
decrease a bearing’s stiffness in the axial direction, especially for a bearing operating at a low
cage’s angular velocity. However, the influence on the bearing’s stiffness in the radial direction,
due to a raise of the radial deformation, is negligibly small, whether an axial deformation is given
or not.

60000 —

- - -3r=0.02mm

40000 —

Axial Load (N)

20000 —

-0.2 -0.15 -0.1 -0.05 0 0.05
Axial Deformation (mm)

Fig. 15. Axial load vs. axial deformations of 6, = 0 mm, é, = 0.01 mm and 6, = 0.02 mm at different cage’s angular
velocities.
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Fig. 16. Radial load vs. radial deformation of §, = 0 mm and J, = 0.02 mm at different cage’s angular velocities.

Conclusions

. The variation of the contact angle at either the inner or the outer raceways with the bearing

position angle is affected greatly by the angular velocity of the cage. The difference between
these two contact angles is enhanced by an increase of the cage’s angular velocity resulting
in different normal forces acting on the contact points; bearing stiffnesses in the axial and radial
directions; and deformations required in the axial and radial directions to prevent a bearing
from skidding.

. The deformations applied in the radial and axial direction and the angular velocity of the cage

form the controlling factors in the occurrence of skidding in a bearing. A more effective way to
prevent a bearing from skidding at high angular velocities is to increase the deformation ap-
plied in the axial direction. That is the dominant factor in the choice of the axial deformation
to avoid surface skidding.

. Bearing stiffness in the axial direction is governed by the following parameters: the cage’s an-

gular velocity and the deformations applied in the radial and axial direction. Increasing the ca-
ge’s angular velocity would decrease bearing stiffness significantly in the axial direction. If a
positive axial deformation were applied, increasing the deformation in the radial direction, then
the radial load would decrease the axial stiffness. Applying a positive deformation in the axial
direction noticeably increases bearing stiffness in the radial direction. The bearing system with a
lower angular velocity always has a higher stiffness in the radial direction.

. Reduction in the shaft diameter can work in a considerably high angular velocity without bear-

ing skidding when the contact angle «° is not too low.
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Appendix A

The sum and the difference of curvatures in a ball bearing are needed in order to obtain the
normal loads on the ball. The sum of curvatures p is expressed as [10]:

1 1 1 1
dp=—t—+—+— (A.1)
m T rmo Yo
and the curvature difference F(p) is expressed as [10]:
(P — Pr) + (P — Pin)
F(p) = . A2
(p) S (A.2)

The parameters, 71, 712, Fi1, Fir2> P115 Pr2» Py @nd py, are given by the calculations in reference to
the inner or outer raceways. If the inner raceway is considered, then

rn = D/2, pn =2/D,
rn=D/2, pr =2/D,
rmn = di/2, pm = 2/d;,
Fipp = 1. P = —1/r.

If the outer raceway is considered, then

rn =D/2, pn =2/D,
rn=D/2, P =2/D,
rn =dy/2, pm = —2/ds,
Fip = Fo. P = —1/7s.

Now, three dimensionless parameters are defined as:

_Dcosoc
=
rO
fo 57
i
fi=5

Then, Eq. (A.1) for either the inner or the outer raceways is rewritten as:

1 1 2y
Zpil_)(4_/7i+l——);>’ (A.3a)

1 1y
Zpo—l—)(“—fo—lﬂ) (A.3b)

and Eq. (A.2) for either the inner or the outer raceways is rewritten as:
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F(p); =%<1LV%;<’% ) : (A.4a)
Flo - <_2>: (), (A.4b)

The elastic modulus K; for the contact of a ball with the inner raceway is given as [10]:
-05
K = 1.084152 x 106(2 pi> 6.1 (A.5)
and for the contact of a ball with the outer raceway as:
. 05 s
K, = 1.084152 x 10 (Zpo> (6,7 (A.5b)

In Egs. (A.5a) and (A.5b), the parameter ¢, and 6, can be attained from Table 2. if the values of
F(p); and F(p), are available.

Table 2

The dimensionless contact parameters
F(p) o
0 1
0.1075 0.997
0.3204 0.9761
0.4795 0.9429
0.5916 0.9077
0.6716 0.8733
0.7332 0.8394
0.7948 0.7961
0.83595 0.7602
0.87366 0.7169
0.90999 0.6636
0.93657 0.6112
0.95738 0.5551
0.97290 0.4960
0.983797 0.4352
0.990902 0.3745
0.995112 0.3176
0.997300 0.2705
0.9981847 0.2427
0.9989156 0.2106
0.9994785 0.17167
0.9998527 0.11995

1 0
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