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Abstract Many process capability indices have been proposed to measure process performance.
In this paper, we first review Cp, Cpk, Cpm and Cpmk, and their generalizations, CNp, CNpk, CNpm

and CNpmk, and then propose a new index Spmk for any underlying distribution, which takes into
account process variability, departure of the process mean from the target value, and proportion
of nonconformity. Proportion of nonconformity can be exactly reflected by Spmk. Its superiority
over CNpmk, a recently developed index, also taking into account process variability and departure
from the target value, is demonstrated with several non-normal processes. A method is proposed
to estimate Spmk, with illustrations.

Introduction
Many process capability indices have been proposed to provide numerical
measures on process performance. They have been widely used in the
manufacturing industry in Japan and the USA. Kane (1986) discussed two
commonly used indices Cp and Cpk. Chan et al. (1988a) and Pearn et al. (1992)
developed two more-advanced indices Cpm and Cpmk. Choi and Owen (1990)
gave detailed discussions and comparisons for Cp, Cpk, Cpm and Cpmk. Boyles
(1994) proposed the capability indices with asymmetric tolerance for Cpk, Cpm

and Cpmk. Discussions and analysis of these indices on point estimation and
interval estimation have been the focus of many statisticians and quality
researchers including Kane (1986), Chan et al. (1988a), Chou et al. (1990), Pearn
et al. (1992), Kotz et al. (1993), VaÈnnman (1995), Pearn and Chen (1996), and
many others. These investigations, however, are based on the assumption that
the process underlying distribution is normal. If the assumption is not satisfied,
then these basic indices are unreliable (Chan et al., 1988b; Gunter, 1989a; 1989b;
English and Taylor, 1993; Somerville and Montgomery, 1997; Chen and Pearn,
1997). Zwick (1995), Schneider et al. (1995), Pearn and Chen (1995), Chen and
Pearn (1997), Tong and Chen (1998) gave process capability indices for non-
normal distributions. In this paper, a new process capability index Spmk for
non-normal distributions is proposed. The index can exactly reflect proportion
of nonconformity.

The Cp(u,v) and Cnp(u,v) indices
VaÈnnman (1995) defined a class of capability indices, depending on two non-
negative parameters, u and v, as:
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Cp�u; v� � d ÿ u �ÿmj j
3

�������������������������������
�2 � v��ÿ T�2

q �1�

where � is the process mean, � the process standard deviation, d = (USL ±
LSL)/2, where USL and LSL are respectively the upper and lower specification
limits, m = (USL + LSL)/2, the specification center, and T is the target value.
The four basic indices, Cp, Cpk, Cpm and Cpmk are special cases of Cp(u, v) by
letting u = 0 or 1 and v = 0 or 1. More specifically, Cp(0, 0) = Cp, Cp(1, 0) = Cpk,
Cp(0, 1) = Cpm, and Cp(1, 1) = Cpmk, where:

Cp � USLÿ LSL

6�
; �2�

Cpk � minfUSLÿ �; �ÿ LSLg
3�

; �3�

Cpm � USLÿ LSL

6

�����������������������������
�2 � ��ÿ T�2

q ; �4�

Cpmk � minfUSLÿ �; �ÿ LSLg
3

�����������������������������
�2 � ��ÿ T�2

q ; �5�

Cp takes into account the process variance only. It cannot detect departure of
the process mean from the specification center, and therefore cannot be used to
fully evaluate process capability. Cpk takes into account both the process mean
and the process variance. When � = m, Cpk = Cp. If � = m, Cpk = Cp (1 ± K),
where K = 2 | � ± m | / (USL ± LSL), LSL � � � USL. However, Cpk cannot
detect departure from the target value. Although Cpm overcomes this drawback
by taking into account (� ± T)2, it cannot detect the location of the process mean
in the interval (LSL, USL) (Choi and Owen, 1990). Cpmk takes into account
process variability, departure from the target value and location of the process
mean in (LSL, USL). When � = m, Cpmk = Cpm; If �= m, Cpmk = Cpm (1 ± K).
When the process distribution is normal and � = m, there exists a one-to-one
relationship between Cp (= Cpk) and proportion of nonconformity P, given by
3Cp = �±1(1 ± P/2), where � denotes the CDF of the standard normal
distribution. For example, when Cp = 1, P = 0.27 per cent; when Cp = 1.33, P =
0.0066 per cent. When �= m, there is no one-to-one relationship between Cpk

and P. Given a Cpk value, Boyles (1991) gave an upper bound �(3Cpk) and a
lower bound (2�3Cpk ± 1) for proportion of conformity. Boyles (1994) further
proposed a smoothing index Spk to setup a one-to-one relationship with P. That
is, 3Spk = �±1(1 ± P/2). It follows that evaluation of process capability can be
based on the following three criteria:
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(1) variability in process;

(2) degree of departure of the process mean from the target value;

(3) location of the process mean in the interval (LSL, USL).

Cp takes into account criterion (1) only, Cpk criteria (1) and (3), Cpm criteria (1)
and (2), and Cpmk criteria (1), (2) and (3). The larger a capability index value for
a process is, the more capable the process is. However, as mentioned before,
when the process underlying distribution is non-normal, these indices may not
be appropriate to evaluate process capability. Although Zwick (1995) and
Schneider et al. (1995) provided capability indices for any distribution (normal
or non-normal), their performances were not evaluated. Chen and Pearn (1997)
and Tong and Chen (1998) proposed generalizations of Cp(u, v) for any
underlying distribution as follows:

CNp�u; v� � d ÿ u M ÿmj j

3

����������������������������������������������������������������
F99:865 ÿ F0:135

6

� �2

�V�M ÿ T�2
s �6�

where F� is the (100 � )th percentile of the distribution and M is the median. Note
that the generalizations were developed by replacing � in (1) by M, and � by
(F99.865 ± F0.135)/6. Setting (u, v) = (0, 0), (1, 0), (0, 1) and (1, 1) leads to the four basic
indices for any underlying distribution, referred to as CNp, CNpk, CNpm and CNpmk:

CNp � USLÿ LSL

�F99:865 ÿ F0:135� �7�

CNpk � min USLÿM ;M ÿ LSLf g
F99:865 ÿ F0:135

2

� � �8�

CNpm � USLÿ LSL

6

������������������������������������������������������������
F99:865 ÿ F0:135

6

� �2

��M ÿ T�2
s �9�

CNpmk � min USLÿM ;M ÿ LSLf g

3

������������������������������������������������������������
F99:865 ÿ F0:135

6

� �2

��M ÿ T�2
s : �10�

In addition, if M in (6) is replaced by �, Chen and Pearn (1997) called the indices
C'Np(u, v). For the normal case, M = �, (F99.865 ± F0.135)/6 = �, and therefore
CNp(u, v) = C'Np(u, v) = Cp(u, v). Chen and Pearn (1997) indicated that, if the
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process underlying distribution is chi-square with three degrees of freedom, then
proportion of nonconformity can be reflected by CNp (u, v) better than Cp(u, v)
and C'Np(u, v). In this paper, a new process capability index Spmk, taking into
account process variability, departure of the process mean from the target
value, and proportion of nonconformity, will be proposed for any underlying
distribution. As will be seen later, proportion of nonconformity can be exactly
reflected by Spmk. Its superiority over CNpmk, also taking into account process
variability and departure from the target value, will be illustrated for several
non-normal distributions including chi-square, gamma, exponential, and uniform.

A new index Spmk

A new process capability index, Spmk, is proposed for any underlying
distribution as follows:

Spmk �
�ÿ1�1� F�USL� ÿ F�LSL�

2
�

3

��������������������������
1� ��ÿ T

�
�2

r � �ÿ1�1ÿ P=2�

3

��������������������������
1� ��ÿ T

�
�2

r �11�

where F(x) denotes the CDF of the process distribution. The idea comes from
the properties that:

Cpmk � Cpm�1ÿ K� � Cp������������������������������
1� �ÿ T

�

� �2
s �1ÿ K� � Cpk������������������������������

1� �ÿ T

�

� �2
s ; �12�

and Cpk can be substituted, under any distribution, with 1
3 �ÿ1�1�F�USL�ÿF�LSL�

2 �
(Chen, 2000). Proportion of nonconformity P can be exactly evaluated through Spmk

by 2� �1ÿ ��3Spmk

�����������������������
1� ��ÿT

� �2�
q

. Note that if the process underlying
distribution is normal and �= m, then Spmk = CNpmk = Cpmk = Cpm.

Comparisons
In this section, we will demonstrate the superiority of Spmk over CNpmk with six
non-normal processes. Let �2

3 denote a chi-square distribution with three
degrees of freedom. Let the underlying distribution of process A be �2

3 + 7,
that of process B be �2

3 + 14.8, and that of process C be �2
3 + 22.6, as in Chen

and Pearn (1997). In addition, let process D have a gamma distribution with
parameters � = 6, � = 3, process E have a gamma distribution with parameters
� = 1, � = 12, i.e. an exponential distribution, and process F have a uniform (17,
25.8) distribution. The distribution characteristics are summarized in Table I.

The target values for the processes are all 17.8, and USL and LSL are
respectively 10.0 and 25.6. Since Spmk can exactly reflect the actual proportion
of nonconformity P (= P(X < 10.0) + P(X > 25.6)), the difference between P and

2� �1ÿ ��3Spmk

�����������������������
1� ��ÿT

� �2�
q

(proportion of nonconformity obtained through
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Spmk) is zero. On the other hand, to see how well CNpmk can reflect the actual
proportion of nonconformity, simply examine the relative error size ERRCNpmk

= | P'CNpmk ± P | / P, where P'CNpmk denotes the predicted proportion of
nonconformity associated with CNpmk, and can be obtained by P'CNpmk =

2� �1ÿ ��3CNpmk

����������������������������������������
1� � MÿT

�F99:865ÿF0:135�=6�2�
q

. Table II displays the values of P,

Spmk, CNpmk, P'CNpmk and ERRCNpmk for the six processes. Computations were
carried out by using the SAS software (SAS Institute, Inc., 1990 ). The results
show that values of ERRCNpmk are remarkable for all of the cases, indicating the
deficiency of the CNpmk index.

An estimator of Spmk

When the process has a distribution of Pearsonian type, Pearn and Chen (1995)
proposed an estimator for CNp(u, v) by using Clements' method (Clements, 1989)
as follows:

ĈNp�u; v� �
d ÿ u M̂ ÿm

��� ���
3

��������������������������������������������������
Up ÿ Lp

6

� �2

�v�M̂ ÿ T�2
s ; �13�

Table I.
Distribution
characteristics of the
six processes

Process Underlying distribution � M � F0.135 F99.865

A �2
3 � 7 10.00 9.366 2.45 7.030 22.630

B �2
3 � 14:8 17.80 17.166 2.45 14.830 30.430

C �2
3 � 22:6 25.60 24.966 2.45 22.630 38.230

D Gamma (6, 3) 18.00 17.010 7.35 3.525 48.104

E Gamma (1, 12) 12.00 8.318 12.00 0.016 79.292

F Uniform (17, 25.8) 21.40 21.400 2.54 17.012 25.788

Table II.
Comparisons between
Spmk and CNpmk

Process P Spmk CNpmk P'CNpmk ERRCNpmk (%)

A 0.6087 0.0511 0.0000 1.0000 64.3

B 0.0129 0.8292 0.8925 0.0059 54.3

C 0.3916 0.0856 0.0277 0.8074 106.2

D 0.2683 0.3689 0.3128 0.3454 28.7

E 0.7571 0.0928 0.0000 1.0000 32.1

F 0.0227 0.4378 0.3603 0.0041 81.9
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where Up is an estimator for F99.865, Lp for F0.135, and M̂ for median M, and their
estimates can be obtained by using the tables developed by Gruska et al. (1989).
In practice, the process underlying distribution is always unknown. Chang and
Lu (1994) compute estimates for F99.865, F0.135, and M based on sample
percentiles instead of Gruska et al.'s (1989) tables. An estimator for Spmk follows:

Ŝpmk �
�ÿ1�1� F̂�USL� ÿ F̂�LSL�

2
�

3

���������������������������
1� �

�X ÿ T

S
�2

r � �ÿ1�1ÿ P̂=2�

3

���������������������������
1� �

�X ÿ T

S
�2

r ; �14�

where F̂ (USL) denotes the sample proportion of those less than or equal to USL,
F̂ (LSL) the sample proportion of those less than LSL, �X the sample mean, S
the sample standard deviation, and P̂ the sample proportion of nonconformity.
Note that the estimator in expression (14) may not perform well for small
samples.

An example
To illustrate how to calculate Ŝpmk, we use data provided by the Tung Pei
Industrial Co. Ltd, a manufacturer of bearings in Taiwan. The bearings
manufactured are certified by CNS, JIS and ISO. The number of bearings
produced is about ten million. Outer ring, inner ring, rolling body, and retainer
are four main components of roller bearing. Items for examining roller bearing
include size variation, dimension variation, and rotation tolerance. In this
illustration, only single row deep groove radial ball bearing (index number
6212) is discussed (Figure 1), and air gauge or cylinder gauge is used to
measure the size variation. Let d denote diameter of the inner ring and its target
value be 60mm. According to the CNS2862 standard, USL for d is 60.004mm
and LSL is 59.981mm. If d falls outside specification limits, it is unacceptable.
Table III displays a random sample of size 100 for d. Normality has been
examined by using the Shapiro and Wilk (1965) W test. Using the SAS

Figure 1.
The structure of ball

bearing
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software, we have W = 0.8618 with p-value < 0.0001. Since the p-value is very
small, we conclude that the data were drawn from a non-normal distribution.
To find Ŝpmk, we first calculate F̂ (USL) = 98/100, F̂ (LSL) = 4/100, �X = 59.9903,
and S = 0.008356. Substituting these values into equation (14), we have:

Ŝpmk �

�ÿ1
1� 98

100
ÿ 4

100
2

0B@
1CA

3

������������������������������
1�

�X ÿ T

S

� �2
s � �ÿ1�1ÿ 6=200�

3

������������������������������
1�

�X ÿ T

S

� �2
s �

1:881

3

���������������������������������������������������
1� 59:9903ÿ 60:000

0:008356

� �2
s � 0:4092:

Although Ŝpmk= 0.4092 is small, indicating that the process is not
capable, proportion of nonconformity can be well reflected by computing

P̂ 0Spmk � 2� �1ÿ ��3Ŝpmk

������������������������
1� ��XÿT

S
�2�

q
= 0.06, which can be verified by

noting that there are six observations falling outside the specification limits
(59.981, 60.004).

Conclusions
In this paper, we have reviewed Cp(u, v) and CNp(u, v). We have also proposed a
new index, Spmk, for non-normal underlying distributions, taking into account
process variability, departure from the target value, and proportion of
nonconformity. Proportion of nonconformity can be exactly reflected by Spmk.
Its superiority over CNpmk has been demonstrated with various non-normal
processes. In addition, a method is proposed to estimate Spmk for any

Table III.
100 observations of
inner diameter for
roller bearing

59.984 59.981 59.981 60.003 59.982 60.005 60.004 59.983 59.981 59.980

60.000 59.998 59.982 59.983 59.981 59.982 59.999 60.001 59.982 59.988

59.995 59.998 59.982 59.983 59.981 59.994 60.002 59.988 59.980 59.982

59.982 59.983 59.981 59.986 59.987 60.001 59.982 60.003 60.001 59.984

59.985 59.979 59.987 59.990 59.998 59.984 59.989 59.999 59.985 60.003

60.004 60.001 60.000 59.982 59.981 59.984 59.998 59.983 59.999 59.987

59.991 59.992 59.992 59.983 59.981 59.996 59.997 60.000 60.000 59.991

60.002 60.001 59.990 59.987 59.982 60.006 59.981 59.982 59.984 59.985

60.003 60.004 59.992 59.991 59.986 59.992 59.991 59.981 59.998 59.985

60.001 59.980 59.993 59.984 59.981 59.984 59.988 59.999 60.000 60.001
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underlying distribution. An example illustrating how to calculate the estimate
is given. It appears that Spmk possesses practical importance in evaluating
process capability. How to improve estimation for Spmk needs to be studied
further.
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