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Abstract

This paper proposes a methodology that integrates in-house placement heuristics with genetic algorithms to solve the nesting prob-
lems of shoe making. The problems are classified as placing a set of irregular patterns on a regular area and limited to at most two dif-
ferent types of patterns on the area. Because of the intractability of the nesting problem, our objective is to utilize genetic algorithms’ fast
convergence and solution quality to improve material utilization and reduce the calculation time of the pattern. Using the real-life data of
two international brands of athletic shoes, the empirical results show that our proposed methodology can reduce average material
requirements by 2.64% and average nesting time by 69.15% compared to those of current in-house software. The reduction of materials
is becoming more important given that the industry is facing continuingly declining profit margins.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A general packing problem can be defined as follows.
Given a set of small N patterns (parts, pieces), find the opti-
mal non-overlapping layout of all patterns on a large con-
taining area (surface, plate). Optimal packing can only be
achieved when patterns are touching as tight as possible
because any small gaps between two patterns are usually
unusable. The gaps resulting from the spaces between
and around the placed patterns are wasted materials and
commonly referred to as trim loss. Traditionally, a trim
loss problem generally refers to the case where the shapes
of areas and patterns are regular. However, in industries
such as shoe making the patterns are irregular shape and
the area is also irregular in a handful of situations. The
packing problems involving irregular patterns are known
as nesting. Since the regular packing problems have been
shown to be NP-complete (Fowler, Paterson, & Tatimoto,
1981) and the irregular packing problems only increase the
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complexity, the nesting problems can be regarded as
NP-complete.

The shoe making process starts with the cutting of upper
patterns from a hide with patterns nested together as tight
as possible. To make a pair of shoes, the cost of raw mate-
rials is roughly 70% of the total making cost. Further,
given this material cost, the ratio of upper patterns to sole
is about 7 to 3. Normally, the material cost of upper pat-
terns will not be available until the nesting is completed.
Taiwan has a number of well-known original equipment
manufactures/original design manufacturers (OEMs/
ODMs) located worldwide for major international brand
names such as Nike, Adidas, Puma, New Balance. With
yearly production volumes of pairs of shoes being five bil-
lion, these OEMs/ODMs produce more than 35% of the
world’s shoes. Summarizing from the reports (http://
www.footwear-assn.org.tw; http://www.shoenet.org.tw) as
of 2004, we provide short profiles of Taiwan’s major
OEMs/ODMs in Table 1 that illustrates their important
roles in the world’s shoe making industry. For example,
about every one out of six prestigious athletic shoes is made
by Pouchen Group. Owing to the importance, major brand
names of athletic shoes have selected Taiwan as the center
of research and development (R&D), as shown in Table 2.
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Table 1
Short profiles of Taiwan’s major OEMs/ODMs of shoe making

OEM/ODM MPa PLb PVc Remark

Pouchen Group Athletic 309 167.2 17% of worlds’ athletic shoes
Fengtay Ent. Athletic 78 36.16 Nike’s customized shoes
Prime Success Int. Group Ltd. Women shoes 24 30 Maker of Daphne, the most popular in China
Ever Rite International Women shoes 92 100 Owner of Miss Sofi, Sonia & the largest maker of women shoes

a Major products.
b Production lines.
c Production volumes (in millions of pairs).

Table 2
Locations of R&D sites of popular athletic shoes in Taiwan

Brand Taiwan’s OEMs/ODMs R&D sites

Nike Pouchen, Fengtay Taichung (Pouchen), Douliou (Fengtay)
Adidas Pouchen, Chingluh, Dean Shoes Taichung (Pouchen, Dean Shoes), Tainan (Chingluh)
Reebok Pouchen, Chingluh, Dasheng Taichung (Pouchen, Dasheng), Tainan (Chingluh)
New Balance Dean Shoes Taichung
Puma Dasheng Taichung
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To see how the nesting can affect the material cost of shoes,
consider the example that uses the cost structure and pro-
duction quantities described earlier. According to the struc-
ture, if the nesting can reduce even as tiny as 0.1% of the
upper’s material cost given the average cost of a pair of
shoes is $13, then the cost reduced will be $13 �
5,000,000,000 � 70% � 70% � 0.1% ffi $32 million, which
is a significant number to the industry with decreasing
gross profit margins.

To nest, Taiwan’s OEMs/ODMs use in-house software
or depend on experienced workers to do the nesting manu-
ally. Either way has challenges that are closely related.
First, the in-house software RSPN (Rising Star Pattern
Nesting), which was developed by Rising Star Technology
Corporation (http://www.rising.com.tw/) and has been
widely used by more than 200 Taiwan-based companies,
fails to solve the intractable nesting problems efficiently.
More specifically, RSPN is even extremely inefficient to
solve the situation involving more than one pattern that
we will describe below. This inefficiency initiates our moti-
vation to consider an alternative. Second, the turnover rate
of workers is so high that they are poor trained in most
cases. Owing to the software’s inefficiency, manual nesting
is occasionally required to complement the nesting. Nesting
inherently needs to deal with complex geometric problems.
The complexity leaves workers exhausted easily, which
mainly contributes to high turnover rate. Third, when
using manual nesting, workers often fail to calculate the
accurate material requirements. Under manual nesting,
workers highly depend on using stock sheets to layout each
pattern and then calculate the material requirements of
patterns. The experience and training have a great impact
on the final layout with fewer materials and less variability.

To understand how the calculation affects the material
requirements, consider a generic type of the athletic shoe
that possibly contains 40–50 types of upper patterns and
accommodates 15–20 sizes. Given the types and sizes, the
combination of the nesting is about 600–1000 patterns.
Even by using common patterns as many as possible to
reduce the combination, workers still have to deal with
300–500 patterns. Assume an experienced worker can finish
calculating the nesting of a pattern in 2 min; the underlying
generic type will approximately take 600–1000 min, or
10–17 h. Being infeasible given the amount of time in prac-
tice, the popular way is to select three representative sizes,
i.e., large, medium, and small. On the basis of these three
sizes, workers calculate the materials of other sizes accord-
ing to the proportion relative to the representatives. Using
representative sizes, however, cannot calculate accurate
material requirements of other sizes due to the relationship
between each pattern’s material and each size is not per-
fectly linear. Miscalculation often leads to either material
shortage or overstock that weakens the competitiveness.

Given the intractability to solve a nesting problem, in
this paper we apply genetic algorithms (GAs), proposed
by Holland (1975), to implement in-house placement heu-
ristics derived from the experienced workers. Our objective
is to improve material utilization and reduce calculation
time by exploiting GAs’ fast convergence and solution
quality. A number of researchers have reported applying
GAs to the problems related to packing or nesting. Cheng
and Rao (2000) proposed an algorithm combining the com-
pact neighborhood algorithm with GAs to optimize large-
scale nesting processes considering multiple orientation
constraints. Hopper and Turton (1999) used two GAs for
a regular packing problem. Fischer and Dagli (2004) intro-
duced a new GA to solve the irregular-shape, full-rotation
nesting problem. Poshyanonda and Dagli (2004) integrated
artificial neural networks and GAs to solve the stock cut-
ting problem of regular and irregular shape. Crispin, Clay,
and Taylor (2005) presented coding methodologies of GAs
for the leather nesting problem involving cutting shoe
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Fig. 2. An illustration of the master–slave pair.
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upper components to maximize material utilization. Inter-
ested readers are referred to some reviews of solving nest-
ing problems and applying GAs. For example, Dowsland
and Dowsland (1995) reviewed a variety of approaches to
the problems involving the nesting of irregularly shaped
patterns. Hopper and Turton (2001) reviewed approaches
developed to solve 2D packing problems with meta-heuris-
tic algorithms, particularly GAs. Poshyanonda and Dagli
(2004) discussed the solution approaches in length and clas-
sified them into three categories: optimization, heuristic
and emerging. Gen and Cheng (1997) comprehensively
introduced the applications of GAs and the design of the
parameters.

The remainder of this paper is organized as follows. Sec-
tion 2 provides the background of the shoe making nesting.
Section 3 describes the proposed methodology that imple-
ments placement heuristics with GAs. Section 4 compares
and discusses the empirical results of the proposed method-
ology using the real data of Puma and New Balance. Sec-
tion 5 presents the conclusions and possible extensions.
2. Shoe making nesting

Depending on the shapes of patterns and the area, a
nesting problem can be broadly classified into (1) placing
regular patterns on a regular area, (2) placing irregular pat-
terns on a regular area, (3) placing regular patterns on an
irregular area, and (4) placing irregular patterns on an
irregular area. In the shoe making industry, the area’s
shape depends highly on the types of raw materials used.
Given the same type of the material, a nesting problem
can be further classified into (1) only one type of pattern
is placed, (2) two types of patterns are placed, and (3) mul-
tiple types of patterns are placed. These three different
types are shown in Fig. 1.

The majority of patterns used in shoe making are irreg-
ular except in few cases. Common raw materials used for
shoe making include natural leather and artificial materials
such as polymer materials, where the former is mostly of
irregular shape and the latter is regular. If artificial materi-
als are used, the shoe nesting problem will deal with the
cases such as Figs. 1(a) and (b), while Fig. 1(c) otherwise.
Since the growing awareness to protect animals has led
the shoe making industry to gradually reduce the use of
natural leather, we focus on placing irregular patterns on
a regular area in this paper.

As far as manual nesting is concerned, placing only one
type of pattern eliminates frequent change of patterns and
Fig. 1. Classifying shoe nesting according to the typ
thus helps to calculate the material requirements more
accurate and to generate fewer nesting errors. However,
the accuracy and fewer errors are at the cost of wasted
areas. If one of the wasted areas is large enough, then it
should be reconsidered as a candidate area to accommo-
date another pattern. In theory, multiple types of patterns
can be considered for the wasted areas. Considering the
growing error rates and increasing time when more than
two types of patterns are involved; however, limiting to
only two types is a popular practice. We refer to the first
placed pattern as a master pattern, and the succeeding
one as a slave; the area using the master (slave) pattern is
a master (slave) area, as shown in Fig. 2. In sum, we study
placing irregular patterns on a regular area and at most
two types of patterns are used for the same material. In
the subsequence we will use the master–slave pair to mean
two types of patterns, and use the single pattern to mean
one type of pattern.

3. Proposed methodology

In this section, we describe the foundations of in-house
placement heuristics and the application of GAs.

3.1. In-house placement heuristics

To describe the heuristics, we briefly introduce a pat-
tern’s rotations, the moveable distance of a succeeding pat-
tern relative to a previously placed pattern, and the manual
nesting.

Different orientations of a pattern may produce different
results. To describe a pattern’s rotation, we need such
parameters as x coordinate, y coordinate, and the angle
of rotation. In this paper, four different orientations can
be generated by rotating the pattern 0�, 90�, 180�, and
270� clockwise. Next, we describe the moveable distance
of a succeeding pattern moving toward a specific direction
that can be a single orientation or a combination of orien-
tations. Such movement is constrained to the condition
es of patterns given the same type of material.



Fig. 5. Nesting by the alignments of patterns.
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that the pattern’s locus can not overlap with the boundary
of a placed pattern. In Fig. 3, let F, M, and B respectively
denote a fixed (i.e., previously placed) pattern, a moving
pattern, and the set of points on the material’s boundary.
Further, let o be the moving orientation and d the distance.
Then the moveable distance of the B toward o (moving to
the left in Fig. 3) can be computed as d = mini-
mize(D(M, F, o), D(F, M, �o), D(M, B, o)), where
D(M, F, o) defines the minimal distance between M and F

with respect to the orientation o.
On the basis of the preceding descriptions, workers com-

monly follow three categories of guidelines below.

(1) By the placing sequences of patterns: either from left
to right, or from bottom to top.

(2) By the orientations of patterns: there are four cases as
shown in Fig. 4.

(a)Consistent: each pattern has the same orientation
(Fig. 4(a)).
(b)X-inverted: every other pattern rotates 180� with
respect to only x coordinate (Fig. 4(b)).
(c)Y-inverted: every other pattern rotates 180� with
respect to only y coordinate (Fig. 4(c)).
(d)XY-inverted: every other pattern rotates 180� with
respect to both x coordinate and y coordinate
(Fig. 4(d)).

(3) By the alignments of patterns: there are two cases as
shown in Fig. 5.

(a) Line: two rows of patterns are aligned either ver-
tically or horizontally (Fig. 5(a)).
(b)Zigzag: two rows of patterns are aligned to mini-
mize the wasted areas (Fig. 5(b)).

Summing up the guidelines described above, we can
obtain the combination of 16 nesting heuristics as shown
Fig. 3. Moveable distance of a pattern moving toward the left.

Fig. 4. Nesting by the orientations of patterns.
in Fig. 6, where the number in the parenthesis is referred
to as the nesting serial number and will be mentioned later.
One may raise the concern over whether other nesting
approaches such as the bottom-left placement heuristic
(Dowsland, Vaid, & Dowsland, 2002) can also be consid-
ered. In our case, the bottom-left heuristic is not appropri-
ate for the zigzag arrangement.

Given a stock sheet, say j, and using the preceding heu-
ristics, we can obtain the layout as shown in Fig. 7, where
wj, lj, uj, and tij represents the sheet’s width, length, unit
length, and the total number of patterns i used for this
sheet. Since each pattern’s length varies, a stock sheet’s
length may also vary from one to the other and complicate
the material calculation. To tackle this variation, the unit
length uj is used to normalize the calculation and equals
to 36 in. With uj in place, the number of patterns in a
unit-length sheet, say cij, can be expressed as the following.

cij ¼ tij �
uj

lj
3.2. Application of genetic algorithms

Genetic algorithms include the following general steps:

� Generate an initial random population of potential
solutions.
� Evaluate the population using a fitness function (objec-

tive function).
� Select the population with high fitness values as the par-

ents to produce the offspring.
� Crossover the pair of parents at a chosen splice point(s)

with some probability.
� Mutate a proportion of the offspring to avoid early trap

in the local solutions.
� Reevaluate the fitness values of the offspring.
� Terminate the algorithm if the stopping criterion is

satisfied.

To implement the preceding heuristics with GAs, recall
that we use at most two types of patterns for a stock sheet,
i.e., a master and possibly a slave. Moreover, we assume
that each pattern will be given the opportunity to be a mas-
ter for a stock sheet, i.e., the number of pattern is the num-
ber of stock sheets. Given a master, we are to find any
feasible slave so that the material utilization can be
improved. Under the circumstances, the coding of genes
is the relationship between a stock sheet and a set of genes.
The chromosome is composed of n genes, where n repre-
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Fig. 6. The combination of 16 nesting heuristics.
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Fig. 7. An example of the stock sheet j with the pattern i.
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sents the total number of patterns. Each gene consists of a
triplet, where the first number represents the given master’s
serial number that is one of 16 in Fig. 6; the second and
third numbers are the slave pattern and its serial number.
Fig. 8 illustrates that given the master pattern being one,
workers use serial number five; the slave pattern is four,
and the serial number of the slave is seven.

To formulate the fitness function, let i and j represent
the number of patterns and the number of stock sheets
(recall that 1 6 i = j 6 n), x denote the length (i.e., the
material requirement) of each sheet, and r be the number
of patterns required. Then, the fitness function f(x) is
expressed as follows:
Chromosome …

Gene 1 

… … … …

5 4 7

1 2 3 … n

Fig. 8. An illustration of the coding of chromosome and gene.
Min f ðxÞ ¼
Xn

j¼1

xj

Subject to
Xn

j¼1

cijxj P ri; i ¼ 1; 2; . . . ; n;

xj P 0; j ¼ 1; 2; . . . ; n:
The parameters of GAs were determined in Lin (2006) by
using the Taguchi method (Taguchi, Chowdhury, & Wu,
2004), where the crossover (one-point and two-point) rate
is 40%, the mutation rate is 30%, and the number of pop-
ulation is 10. To form the parents for the succeeding gener-
ations, we use the elitism strategy preserving the best five
chromosomes, and the ranking method selecting the
remaining chromosomes. Further, we label the latest three
pairs of parents as a list to prevent GAs from achieving a
local solution at early generations. The value of three is
determined by jointly considering the computational
efficiency and the quality of solution. A higher value will
reduce the likelihood to converge to a local solution at
early stages, while will increase the time to search the list.
The algorithm is terminated when the fitness function value
improves less than 10�5 in consecutive 150 generations.
4. Empirical results

To validate our proposed methodology, we select New
Balance (NB) and Puma (PUMA), where each of them pro-
vides two models (1 and 2) and each model uses two types
(A for outsole and B for insole) of raw materials. In the
subsequence, we refer to the name like NB1A01 as the pat-
tern 01 used for the model NB1 with the material A; the
material requirements in comparisons are the quantities



Table 4
Comparisons between single and master–slave pair using NB1 with
material A

Pattern Material requirements Case

Single Master–
slave

NB1A01 4.6877 4.6877 Unchanged
NB1A02 3.3354 3.3374 Different
NB1A03 1.1183 1.0173 Reduced: slave of NB1A05
NB1A04 3.1638 3.1638 Unchanged
NB1A05 11.1134 4.3219 Reduced: slave of NB1A13
NB1A06 0.9205 0.0000 Reduced: slave of NB1A11
NB1A07 0.7439 0.6198 Reduced: slave of NB1A02 &

NB1A04
NB1A08 24.8982 24.8982 Unchanged
NB1A09 4.5119 4.5121 Different
NB1A10 6.2869 6.2869 Unchanged
NB1A11 25.1789 25.1789 Unchanged
NB1A12 4.8479 4.8479 Unchanged
NB1A13 46.4580 49.2816 Different
Total

materials
137.2647 132.1534 Reduced by 3.72%

Total times 178.7500 46.1410 Reduced by 74.19%
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(in yards) of 500 pairs of shoes; the calculation times of the
patterns are measured by seconds. Note that the number of
feasible patterns for each model with either type of material
differs from one to the other; we refer readers to Lin (2006)
for details. We use Visual C++ 6.0 to implement the heu-
ristics on an AMD Athlon XP 2400+ with the capacity of
one gigabyte memory. We compare our results to those by
RSPN that is widely used to generate the nesting involving
single pattern. Given the test data of two brands, two mod-
els, and two types of materials, we can obtain the combina-
tion of eight results where each of them shows the
comparison of using all feasible patterns for a specific
brand’s model with either type of material. For brevity,
we summarize those results in Table 3 and will give some
of them when they are to be discussed in more details.

According to Table 3, with respect to the average
considering all eight models, our proposed methodology
outperforms RSPN in terms of material requirements
by 2.64% and nesting time by 69.15%. In addition, with
respect to the average considering all 80 patterns, each
pattern’s calculation time reduces to 2.23 s. Compared
to 2 min mentioned in Introduction, the new calculation
time appears to be a significant improvement. To under-
stand how the material requirements are reduced given a
master pattern on a stock sheet, consider three possible
cases.

(1) Unchanged: no slave pattern is introduced and hence
the material requirements remain unchanged.

(2) Different: the other slave pattern is introduced but the
given master does not serve as a slave elsewhere,
which leads to different requirements.

(3) Reduced: the other slave pattern is introduced and
the given master also serves as a slave somewhere,
which reduces material requirements.

These three cases are illustrated in Table 4 using NB1
with material A as the example, where the number of mas-
ter pattern is 13.

According to Table 4, we have the following
observations:
Table 3
Comparisons between single (RSPN) and master–slave pair

Model No. of Pattern Single (RSPN) Master

Material Time Materi

NB1A 13 137.26 178.75 132.1
NB1B 11 217.04 44.33 210.0
NB2A 10 356.16 51.58 342.7
NB2B 8 282.26 38.00 272.8
PUMA1A 13 133.38 170.42 132.1
PUMA1B 10 140.00 55.33 139.4
PUMA2A 8 89.88 57.0 87.7
PUMA2B 7 50.93 66.688 49.2
Total 80 1406.92 662.09 1366.2
Average of all models 175.87 82.76 170.7
Average of all patterns 17.59 8.28 17.0
(1) If a master pattern (including NB1A03, Nb1A05,
NB1A06, and NB1A07) is also introduced as a slave
somewhere, its material requirements will be reduced.
Among them, NB1A06 even reduces to zero because
all of its requirements can be met by utilizing the
wasted area of NB1A11. Given NB1A05 as the mas-
ter, Fig. 9 illustrates introducing the slave NB1A03
(in yellow) to NB1A05 and shows that the material
utilization is improved from 76.59% to 78.33%.

(2) If a master pattern such as NB1A02 (or NB1A13) is
not introduced as a slave elsewhere, its material
requirements by using the master–slave pair slightly
increase, which seems to be contrary to the notion
that a master–slave pair would be better. Further
exploration reveals that the underlying nesting actu-
ally accommodates NB1A07 (or NB1A05) as a slave
and improves the overall material utilization from
79.61% (or 60.26%) to 80.82% (or 67.36%).
–slave Materials saved Time saved

al Time Yards % Seconds %

5 46.14 5.11 3.72 132.61 74.19
2 18.99 7.017 3.23 25.34 57.17
0 27.13 13.46 3.78 24.45 47.41
0 11.06 9.47 3.35 26.94 70.89
6 27.20 1.22 0.91 143.22 84.03
6 15.81 0.55 0.39 39.52 71.42
6 17.55 2.12 2.36 39.45 69.22
1 14.09 1.71 3.37 52.59 78.87
7 177.97 40.65 21.11 484.12 553.2
8 22.25 5.08 2.64 60.52 69.15
8 2.23 0.51 0.26 6.05 6.92



w × l: 36” × 67.214” w × l: 36” × 67.214” 

Material utilization: 76.59% Material utilization: 78.33% 

Number of master patterns used: 168 Number of master patterns used: 168 

Number of slave patterns used: none Number of slave patterns used: 39 

(a) The master is NB1A05 (b) The slave NB1A03 is introduced 

Fig. 9. An illustration of the master–salve pair in a stock sheet.
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(3) Using the master–slave pair for NB1A09 marginally
increases its material requirements too. The factor
causing the increase is not the same as that of
NB1A02 discussed earlier, but because GAs failed
to produce genes of better solutions over the course
of evolutions. The failure can be in part attributed
to the marginally different fitness function value
(0.0002 in this case) that is easily affected by some
genes dominating the solution improvement.

(4) A chain of the master–slave pair is formed. For
example, NB1A03 serves as the slave of NB1A05 that
serves as the slave of NB1A13. Another example is
that NB1A07 is the slave of NB1A02 and NB1A04.
Without using GAs, discovering these chains is
beyond the capability of manual nesting or RSPN.
In other words, improving material utilization
becomes a reality when GAs are implemented.
5. Conclusions

This paper presents a methodology that combines
in-house heuristics with genetic algorithms to solve the
nesting problems of shoe making industry in Taiwan. Lar-
gely determined by the raw materials, the problems in this
paper are classified to be the placement of irregular pat-
terns on a regular area. Considering the complexity, we
limit the nesting problems to at most two types of patterns
on the area and refer to the underlying nesting as the pair
of master–slave.

To test our proposed methodology, we use real-life data
of Puma and New Balance where each of them contains
two models and uses two types of materials. According
to Table 3, the results show that, for models tested, our
methodology reduces their average material requirements
by 2.64% and average nesting time by 69.15%. In addition,
each pattern’s average calculation time drastically reduces
from 2 min to 2.23 s. Since OEMs/ODMs are exposed to
the plight of high turnover rate in large attributed to the
exhaustive calculation, the drastic reduction of calculation
time may help to alleviate the plight. Finally, our method-
ology can produce the complex chain of patterns that helps
improve the material utilization.

Despite the encouraging results, some issues remain.
First, the heuristics summarized are far from exhaustive;
a wider variety of in-house heuristics may improve solu-
tions further. Second, as frequently discussed in the litera-
ture, different settings of GAs’ parameters are highly likely
to result in different solutions. Finally, the extensions to
study placing more than two types of patterns, or placing
irregular patterns on an irregular area appear to be more
challenging.
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