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Abstract

Let G be a commutative monoid with cancellation and/Rtbe a stronglyG-graded
associative algebra with finitg-grading and with antiautomorphism. Suppose Ragat-
isfies a graded polynomial identity with antiautomorphism. We showRhata Pl algebra.
0 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Throughout this paper all rings and algebras are associative. The reader is
referred to [7,16] for basic concepts and results on rings with (generalized)
polynomial identities. LetG be a monoid with unity and cancellation. LeF
be a commutative ring with 1, an® an F-algebra. We say thaR is almost
G-graded if there areF-submodulesk, C R, g € G, such thalR = >, .; R,
and RoRy  Rgp for all g, h € G. If 3 R, is direct (i.e.,} . Re =
@geG R,), then we say thak is G-graded. Further, set sugfk) = {g € G |
R, # 0}. TheG-grading s said to béniteif |[supgR)| < co. A G-graded algebra
R is calledstrongly G-graded if

(1) supggR) consists of invertible elements,
(2) R has an identity 1, and
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() 1e RgR,-1 =R, forall g € suppR).

Wheng is the group of order 2, &-graded algebra is calledsaperalgebra.

Let U(F) be the group of invertible elements #f, and letR be aG-graded
algebra. Assume tha¥f is commutative. An automorphisgh: R — R of the
F-module R is called anantiautomorphism of the G-graded algebra R if
R? =R, for all g € G and there exists a map: G x G — U(F) such that
v(e, p) = 1=1v(p,e) and (ab)? = v(p,q)b%a® for all a € R, b € R,, and
P, q € G.Inthe case wheR is a superalgebrawitf = {e, g} andv(g, g) = —1,
the antiautomorphism is called asuperinvolution provided that? = 1.

Throughout the rest of the paper, we assume the following conditions:

(1) G is a commutative monoid with cancellation,

(2) F is an associative ring,

(3) R is an associativé--algebra with a finite5-grading, and
(4) ¢: R — R is an antiautomorphism of th&-graded algebr®.

Let X = (U, X be a disjoint union of infinite setX,, ¢ € G, and let
F(X) be the freeF-algebra onX. Let .4 be an almost-gradedF-algebra. An
elementf (x1, x2, ..., x,) € F(X) is said to be & -graded polynomial identity on
A provided thaty () = 0 for all algebra homomorphismg: F(X) — A with
Y(X,) S A forallgeG.

We denote the sex? | x € X} as X?, and define a map: X U X? — G
by the rules(x) = g = §(x?) for all x € X,, g € G. Next, given a monomial
M = x7'x3?...x;" € F(X U X?), where eache; € {1,¢}, we sets(M) =
S(x1)8(x2) ...8(xp,). An elementf (x1, x2, ..., x,) € F(X U X?) is said to bea
G-graded polynomial identity with ¢ on R provided that) (f) = O for all algebra
homomorphismg : F(X UX?) — R with (X,) € R, andy (x?) = ¥ (x)? for
allx e X,,g€G.

Let h(x1, x2,...,x,) € F(X U X?®) with at least one of it coefficients is
equal to 1. It is easy to see that/ifis a G-graded polynomial identity with
antiautomorphism fofR, then R satisfies a multilineaG-graded polynomial
identity f(x1,x2,...,x,) € F(X U X?) with at least one of the coefficients of
fis 1. In this case, we may assume, without loss of generality, that the monomial
x1x2...x, isinvolved in f with 1 as the coefficient, and that there exigts G
such thaB (N) = g for all monomialsN involved in f. We set

Gy ={8(x1),8(x2),....8(xn)} €G.

In 1986 Bergen and Cohen [8] proved thRt is Pl provided thatG is
a finite group,F is a field, andR, is a Pl algebra. This result was extended to
algebras over arbitrary commutative rings by Kelarev [11]. Bahturin and Zaicev
[3] obtained an analogous result for algebras over a field with fiiigrading
whereG is any monoid with cancellation. Sehgal and Zaicev [17] proved tHt if
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is a normal subgroup of a group with finite index and the group algeb/gG],
considered a&/ H-graded algebra, satisfies® H-graded polynomial identity,
thenF[G] is a Pl algebra. Note, that in this cas§G] is a stronglyG/H -graded
algebra. Recently Beidar and Chebotar obtained the following generalization of
their result.

Theorem 1.1[5, Theorem 1.1]Let G be a monoid with unity e and cancellation,
let 7 bea commutativering with 1, and let R be an almost G-graded F-algebra
with finite G-grading satisfying a G-graded multilinear polynomial identity
f(x1,x2,...,x,). Suppose that the monomial x1x2...x, isinvolved in f with
coefficient 1, §(N) = 8(x1x2...x,) for all monomials N involved in f and
Gy CsupR). Then:

(i) If R isaprimeringand |supgR)| = 2, thenthering R, containsa nonzero

ideal satisfying the standard identity Sty,_> of degree 2n — 2, and the ring
R satisfiesa nontrivial generalized polynomial identity. If in addition R isa
simplering with 1, then R isa Pl algebra.

(i) If both R and R, are prime rings, then R, satisfies St,_> and R isa Pl
algebra.

(i) If R has an identity 1 € R., Gy consists of invertible elements, and
RgRy-1=R.forall g e Gy, then R isa Pl algebra.

On the other hand, in 1969 Amitsur [2] proved that a ridgsatisfying
a polynomial identity with involution is Pl (see [1,9,13] for earlier results).
Motivated by the aforesaid results we prove the following theorem.

Theorem 1.2. Let G be a commutative monoid with unity ¢ and cancellation,
let 7 be a commutative ring with 1, and let R be a G-graded F-algebra with
an antiautomorphism ¢. Suppose that |supgR)| < oo, and that R satisfies a
G-graded multilinear polynomial identity f(x1, x2,...,x,) with antiautomor-
phism such that the monomial x1x>...x, isinvolved in f with coefficient 1,
8(N) = é(x1x2...x,) for all monomials N involved in f, and Gy C supfR).
Then:

(i) If Risaprimeringand [suppR)| = 2, thenthering R, containsa nonzero

ideal satisfying the standard identity Sty,,_> of degree 4n — 2, and the ring
R satisfies a nontrivial generalized polynomial identity. If in addition R is
asimplering with 1, then R isa Pl algebra.

(i) If R and R, are both prime rings, then R, satisfies Sts,_» and R isa Pl
algebra.

(i) If R has an identity 1 € R., Gy consists of invertible elements, and
RgRy1=R.forall g e Gy, then R isaPl algebra.
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We now give the following examples to justify the necessity of the conditions
setin Theorem 1.2. These examples are modification of Examples 1-3 from [5].

Example 1.3. Let G = (a) be a cyclic group of order 3. There exist&agraded
algebraR over a field with an antiautomorphisgh such thatR is a simple
Artinian ring not satisfying a (generalized) polynomial identi®, is a direct
sum of two skew fields an® satisfies aG-graded polynomial identity with
antiautomorphisny (x, y) = xy?, x, y, € Ry, such thaiG ; C supR).

Indeed, letD be a skew field with an antiautomorphigmwhich is not a Pl
ring (for instanceD may be the classical ring of quotients of the Weyl algebra
over the rational number field with involutiorf =y andyi” = —x1 [15]). Let
F = Z(D) be the center dD, let R = M2(D) be theF-algebra of 2x 2 matrices
overD and let{e;; | 1 < i, j < 2} be a system of matrix units &. Further, set
u=e11, vV =e22, and

Re=uRu+ vRv, Ra=uRv and R,2=vRu.

Define an antiautomorphisgof R by the rule

¢
a b dv  —p¥
(C d) :(—c‘” av ) foralla,b,c,d eD
and note thaR is a G-graded algebra satisfying@-graded polynomial identity
with antiautomorphisny (x, y) = xy?, x, y € Ra.

Hence the first statement of the theorem does not hold in general if
|supaR)| = 3. Next, the second statement does not hold in genef@} ifls not

prime even ifR is a simple Artinian ring andk, is a direct sum of two skew
fields.

Example 1.4. Let G = {e, g} be a cyclic group of order 2. There existsGa
graded algebr® over a field with an antiautomorphisasuch thatR is a simple
ring (without identity) satisfying a generalized polynomial identRyjs not a PlI
algebra;R satisfies aG-graded polynomial identity

fxa, ..., x5) = [x1, x2lx3[x4, x5], X1, x2, x4, x5 € R, x3€ Ry,
andG y = supfR) = G (see Theorem 1.2(i)).
Indeed, letF be a field, letR be theF-algebra of infinite matrices with finite
number of nonzero entries and lebe the matrix whosél, 1) entry is equal to 1

and all the other ones are equal to 0. Obviouslyyu — uyuxu is a generalized
polynomial identity orfR andR is not a Pl algebra. Further, set

Re=uRu+A—-u)yRA—-u) and Rg=uRA—u)+ (1—u)Ru.

Clearly R is a G-graded algebra. Next the transpose map an antiautomor-
phism of theG-graded algebr& andR satisfies thes-graded polynomial iden-
tity f(x1,...,x5).
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Example 1.5. Let G = {e, g} be a cyclic group of order 2 and I¢t be a field.
For any positive integer the algebraR = M, (F) admits aG-grading such that
R is a stronglyG -graded algebra with antiautomorphism satisfying@hgraded
polynomial identity f (x1, ..., x5) (See Example 2).

Indeed, lety = e11. As above seR, =uRu + (1 —u)R(1 —u) andR, =
uRA—u)+ (1—u)Ru. Obviously72§ =R, and soR is stronglyG-graded. We
already know thaf (x1, ..., xs5) is aG-graded polynomial identity oR and the
transpose map is an antiautomorphism of ¢hgraded algebr&. On the other
hand, the minimal degree of a polynomial identity®ris 2n [16, Lemma 1.4.3].
Therefore there exists no function=m(deq f)) such that a simple algebra with
1 satisfying thaG-graded polynomial identity” satisfies a polynomial identity of
degreen even if R is a stronglyG -graded simple finite-dimensional algebra (see
Theorem 1.2(iii)).

The following two corollaries are special cases of the above theorem.

Corollary 1.6. Let R be a strongly G-graded algebra with identity and having
an antiautomor phism. Suppose that |[supgR)| < oo, and R satisfiesa G-graded
multilinear polynomial identity f(x1,x2,...,x,) with antiautomorphism such
that the monomial x1x2...x, isinvolved in f with coefficient 1. Then R isa PI
algebra.

Corollary 1.7. Let R be a superalgebra with superinvolution. Suppose that
R satisfies a graded multilinear polynomial identity f(x1,x2,...,x,) Wwith
superinvolution such that the monomial x1x2...x, is involved in f with
coefficient 1. Further, assume that R isa prime ring. Then R satisfies a nonzero
generalized polynomial identity. If in addition R isa simple ring with 1, then R
isa Pl algebra.

We also obtain the following generalization of Amitsur’s result [2] on algebras
with polynomial identities with involution.

Corollary 1.8. Let F be a commutative ring with 1, and R an F-algebra with
antiautomorphism ¢. Suppose that R satisfies a polynomial identity with ¢, and
at least one of the coefficients of the polynomial is equal to 1. Then R isa Pl
algebra.

Proof. Let f(x1,x2,...,x,) € F(X UX?) be a multilinear polynomial identity
with ¢ on'R such that at least one coefficient pfs equal to 1. LeR* be the ring
R with 1 adjoined. ClearlyR* satisfiesf ([x1, y1l, . . ., [xn, y»1). SetG = {e} and
R¥ =R* ThenR* is a stronglyG-graded algebra. The result now follows from
Corollary 1.6. O
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2. Proof of main theorem

We first set some further notation in place and obtain some preliminary results
for rings.

Let. A be aring. Given rightd-moduled/ andV and a module map:i/ 4 —
V 4, we denote by:x the image ofc € U underh. If Z is a nonempty subset of,
we set

CU;T) = {x el | xT =0}

Let n be a positive integer and lety, Lo, ..., £,, M be right A-modules.
We shall uset, to denote the elemefit1, uz, ..., u,) € [[;_1 Lk, and usei;,, to
denote the element

n
U1, ..o Ui, Uity ooy Uy) € 1_[ Ly forie{l,2,...,n}.
k=1,

ki
Leta € A be fixed. For nonnegative integerand: with r < n, let
n—t
Eij: [] £x > Homu(Li, M) (1<i<n—tand0<j<s+1)
k=1,
ki
be maps having the property that
n—t s+t
ZZE,] i}, Juia’ =0 forallu,_ tenﬁk
i=1j=0

If E;; =0 foralli andj, they certainly have the above property. On the other
hand, under certain conditions, the converse is also true.

Lemma 2.1 [5, Lemma 2.1] Suppose that the following conditions are satisfied:
(i) For any 0 < r <n+ s — 1 there exist a positive integer m = m(r) and

elements b,,crg € A,g=1,2,...,m, suchthat

m

d. = Zbrqarcrq #0 and
q=1

m
MZbrqal’crqzo forall p=0,1,...,n+s—1, p#r.
g=1

(iiy ¢(M; Ad,)=0forallr=0,1,...,n+s— 1

Then E;; =0for all i and ;.
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Now let ¢ be a antiautomorphism o4, and assume that;, 1 < k < n, are
A-A-bimodules with the unary operatignsuch thatp : £ — L; is a bijective
map, (xe)? = c¢®x?® and (cx)® = x¢c? forall c e A andx € Ly, 1 < k < n.
Further,let/ € {1,2,...,n} with |J|=n —t and let

n
Fip: ]_[ Ly — Homa(Li, M) (1<i<nand0<p<1),

k=1,
ki

n

Ej;: ]_[ L — Homy (L, M) (jeJand0<q <1)

k=1,
k#j

be maps such that

n t t
ZZEP(‘A‘L)W‘ZP +ZZqu(ﬁ;jz)”?aq =0 1)

i=1p=0 jeJ q=0

forall u, € [T;_1 Lk.
The following result, which we shall need in the sequel, is a generalization of
both Lemma 2.1 and [6, Theorem 3.3].

Lemma 2.2. Suppose that the following conditions are satisfied:

(i) Forany0<r < 2n— 1thereexist a positiveinteger m = m(r) and elements
brr,crke A k=1,2,...,m,suchthat

m
dr = bra’c #0  and
k=1
m

M “bpa’c =0 foralls=0,1,....,2n — Lwiths #r,
k=1

(i) £(M; Ad,)=0forallr=0,1,...,2n - 1.
Then F;, =0and E;, =0for all i, j, p, and q.

Proof. We proceed by induction on—¢. If n —r =0, then (1) reads

n n n
D> Fip(ay)uia” =0 forallu, €[] Lk,

i=1p=0 k=1
and the result follows from Lemma 2.1.
In the inductive cas@a — ¢ > 0, we may assume without loss of generality
thatn € J. SetJ' = J \ {n}. Substitutinga"’*lu,, for u, in (1), and using the
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. e -1 -1 .
notation(&,, _,,a® "uy) for (u1, ..., ui—1,uit1, ..., un—1,a® u,) andthe likes,
we obtain

n—-1 t

t
Z Z Fip (ﬁi,_]g a¢71un)uiap + Z Fup (un—l)aquunap

i=1p=0 p=0
t ) 1 t
+2. 0 Ejqlinyg.a® wn)ufa’ + 3 Engu-pufa®™ =0 (2)
jed' q=0 g=0

for all u, € [;_1 Lx. Multiplying (1) by a from the right and subtracting the
resulting expression from (2), we see that

n t+1 t+1
ZZF’P Juia +ZZEM u 2a9=0 (3)
i=1 p=0 jeJ' q=0

forall u, € [];_; L«, where

Fio(@,) = (nlv 7un) 1<i<n—1,
Fop(ith) = Fip (it _1.a® "wa) = Fipoa(i)), 1<i<n—1,1<p<t, (4)
Fiia(i,) = —Fn(ﬁi,), 1<i<n—1, )
Foo(@}) = Faolis)a® ",
Fop () = Fup (@3)a® " = Fopa (&), 1<p<t, 6)
Fosva(@h) = = Fu (), @)

and the mapijq (j € J and 0< g <t + 1) are defined similarly. Applying the
induction assumption on (3), we see that, in particutgy,= 0 for 1<i <n and
0<p<t+1.

Now, (5) implies that;; =0 for 1<i <n — 1. From (4) we infer thaF;, =0
forall 1<i <n—1and 0 p <t. Analogously, (6) and (7) together yield that
Fup =0 for 0< p < t. Taking these into account, the identity (1) becomes

ZZEN u) u ?q9 =0 forallunenﬁk

jeJ q=0
-1
Substitutinguf foruy (k=1,2,...,n) inthe above equation, we obtain
1 -1 -1

!
- -1
ZZEM(M({ ,...,u?_l,u?_i_l,,”,uf )ujanO,

jeJ ¢=0
and the result follows at once from Lemma 2.1

As a special case of Lemma 2.2, we have the following corollary.
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Corollary 2.3. Let F;, E; :[ 1=y Lx — Homu(L;, M),i=1,2,...,n, bemaps

ki
such that
n ) n . n
S F (k)i + > Ei(ah)u? =0 forallu, €[] Li.
i=1 i=1 k=1

Suppose that there exists an element a € A such that the following conditions are
satisfied:

(i) There exist a positive integer m and elements b,¢, ¢, € A, 0<r < 2n — 1,
1<k <m,suchthatforall r=0,1,...,2n — 1,

m
dr =) bra’c #0 and
k=1

M “bpa'c =0 foralls=0.1,....21n — Lwiths #r.
k=1
(i) ¢(M; Ad,)=0forallr=0,1,...,2n—1.

Then F; = E; =0for all .

Before we can prove Theorem 2.1, some more results afegtaded.f-
algebras have to be stated.

Proposition 2.4 [5, Proposition 2.3]Let G be a monoid with cancellation and
let R be an almost G-graded algebra with finite G-grading. Let n = |[SUpgR)|,
let m be a positive integer, let L =3, ; £, be a G-graded subring of R (i.e,
Le CR, isasubgroup and Lo Ly, € Lgy for all g, h € G) and let T be a right
ideal of R.. Further, let

H = {g € SUpER) | g isnot invertiblein G or R;R,-1 = 0}
and let ¢/ betheideal of R generated by } ;.5 Ry. Then:
(i) If (Lo)™ =0, then £ = 0.

(iiy 1fZ™ =0, then (ZR)" = 0.
(iif) U isanilpotentideal of R.

Proposition 2.5 [5, Proposition 2.4]Let G be a monoid with cancellation, R be
an almost G-graded algebra and n = |SupfR)| < co. Supposethat R isa prime
algebra. Then R, is a semiprime algebra containing nonzero ideals 71, .. ., Z,,,
such that:

(@) ZiNnZ; =0for all i # j;
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(b) T =P, Zx isan essential ideal of R,;

(c) eachZy, k=1,2,...,m,isaprimering;

(d) m <nm;

(e) ifdr e Zx\ {0} (k=1,2,...,m)andd =Y }"_; di, then £(R,, R.d) = 0 for
al geG.

The next result is a special case of [3, Theorem 3].

Theorem 2.6. Let G be a monoid with cancellation, let F be afield and let R be
an almost G-graded algebra with finite G-grading. If R, isa Pl algebra, then so
isR.

Theorem 2.7 [12, Theorem 3]Let £ be a class of rings which is closed under
direct powers and homomorphic images. If every prime ring in £ satisfies a
generalized polynomial identity, then £ consists of Pl rings.

Now, we are ready to prove the main theorem.

Proof of Theorem 1.2. Let P be a prime ideal ofR. SetR = R/P, and for
g€aq, set7_2g = (Rg+P)/P.ltis clear thatR is an almostG-gradedF-algebra.
Givena € R, we denotgi =a + P € R.

It follows from Proposition 2.4(iii) that sugR) consists of invertible elements
and that

RyR,-1#0 forallg e supaR). (8)
Next, Proposition 2.5 implies th&, is a semiprime ring. Write
f@r ) = fE) =Y fi(#)x+ Y gi()x?,
i=1 i=1

where allf; (¥),) andg; (x;,) are multilinear polynomials iny, xf, X1, x?_l,

x,~+1,xi¢+1, . ..,x,,,x,?. LetZ1,Zo, ..., I, be ideals ofR, as in Proposition 2.5.
Assume thateachy, [ =1, 2, ..., w, does not satisfy gt_>. We claim that

n
fi@,)u; =0 foralli e{1,2.....n} andu, € [ [ Rsc)- (9)
k=1

Indeed, fix 1< ! < w and recall thaf; is a prime ring. Let; be the Martindale
(extended) centroid df;. If every elements aof; is algebraic of degreg 2n — 1
over &, thenZ; is a subring of the ring of2n — 1) x (2n — 1) matrices over
the algebraic closure df; (see [4, p. 3928]), and so Amitsur—Levitzki theorem
[16] implies thatZ; satisfies S§,—», a contradiction. Thereforg, contains an
elementa; which is not algebraic of degree2- 1 over&;, which means that



552 K.l. Beidar et al. / Journal of Algebra 256 (2002) 542-555

1,a,a?,...,a;?" 1 are linearly independent ovér. By [7, Theorem 2.3.3], we
see that for any, 0<r < 2n — 1, there exist a positive integer = m(l, r) and
elementsy,«, cirk €21, k=1,2,...,m, such that

m
d;, = Z blrkalrclrk 75 0 and
k=1
m

ZbZrkalsclrk =0 foralls=0,1,...,2n—1, s #r.
k=1

We may assume without loss of generality tiadoes not depend on batlandr.
Now, set

w
a=)_a.
=1
w w
b= bk Gr=y ark (1<r<2n—1land1<k<m),
=1 =1
and put
m
dr =Y buacy (1<r<2n-1).
k=1
Then we have

m
CT,:Z@;AO and
1=1

m
> bpase =0 fors=1.2,....2n—1withs #r, (10)
k=1

forallr=1,2,...,2n — 1. It follows from Proposition 2.5(e) that
¢(Rg.Red,)=0 forallgeGandr=1,2,...,2n— 1. (11)

Without loss ofgerlerality, we may assume that, «, c,«, d, € R, forall » andk.
Now, regard eaclR, as a rightR.-module. Then, from (10), we obtain, for
re{l,2,...,2n— 1} andg € G, that

m
dr =Y bpac #0 and
k=1

m
Re Y bra'c=0 fors=12....2n—Lwiths#r. (12)
k=1
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Moreover, (11) yields
¢(Rg.Red,) =0 forallge Gandr=1,2,...,2n— 1. (13)

The left multiplications (induced by the riglR-module structure ofR) by
fi(@') and byg;@') (i =1,2,...,2n — 1 andu, € R") can be viewed as
elements of Home(Rg(x[),ﬂ) where h = §(x1x2...x,). Since f,»(ﬁfz)u,» =

fi(ﬁ;)ui, we see from Corollary 2.3 that (9) is fulfilled. Note that (9) is true for
any multilinear polynomialf (x,,) with antiautomorphisrgp such thatf (u,) =0
forallu, € [T;_1 Rsxp)-

(i) Assume thatR is prime and|supgR)| = 2. ReplacingF by F/¢(F; R)
we may assume thd& is an integral domain. Settin§= 7 \ {0} and considering
the S—1F-algebras— 1R, we reduce the proof to the case whEtis a field.

SinceR is prime, Proposition 2.4 implies thate supgR). Let g € supgR)
wzith g # e. Recalling thatg~! e supgR), we conclude thag = ¢g~1 and so
g =e.

We claim thatf(R.;R,) = {a € R. | aRg = 0} = 0. Indeed, letb €
L(Re; Rg). Then

bRRy =b(RRy) + (bRg)Ry CSbR, =0

and sob = 0 becaus& is prime andR, # 0.

We now seth = §(x,) € Gy € SUPAR) = {e, g}. It follows from the above
result together with semiprimenessif thaté(R.; Ry) = 0. LetKC = £(R; Ry).
ClearlyK is aG-graded ring and a leftideal &. Next, X, = £(R.; Ry) = 0and
so Proposition 2.4(i) implies th&f? = 0. AsR is prime,K = 0.

Assume thaR, has no nonzero ideals satisfying,St. Then (9) (with? = 0)
implies that f,, (u,—1) € K =0, and so we conclude that,(x1,...,x,-1) IS
a G-graded polynomial identity with antiautomorphism®&n Making use of in-
duction onn = deq f), we get thafR, contains a nonzero ideal satisfying,Sts
and so $,—», a contradiction. Thereforfg, contains a nonzero ide@lsatisfying
St4,—2. Nowsetl, =IR,, p e G,andL = ZpeG L,.SinceL, satisfies Sf,_»,
Theorem 2.6 implies thaf is a Pl algebra. It now follows from [10] th& sat-
isfies a nonzero generalized polynomial identity (see also [7, Theorem 6.3.20]).
Suppose that in additioR is a simple ring with 1. Then the central closure of
R is equal toR. It now follows from Martindale theorem on prime rings with
generalized polynomial identity [14] th® has a nonzero socle and the associ-
ated skew field is finite-dimensional over its center (see also [7, Theorem 6.1.6]).
SinceR is simple, it coincides with its socle. In particular, 1 is an idempotent of
finite rank and so Litoff's theorem [7, Theorem 4.3.11] yields tRais a matrix
ring over a skew field which is of finite dimensional over its center. Therefore
is a Pl algebra and the first statement of the theorem is proved.

(i) Now assume that botl® andR, are prime rings. As above we reduce the
proof to the case whef is a field. If R, has a nonzero idedl satisfying S4,,—2,
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thenR, satisfies Sj,_> and so Theorem 2.6 implies tha&tis PI. Assume thak,
has no nonzero ideals satisfying,Sto. Then (9) implies tha, (u,,—1)u, = 0 for
allu, € [T;_1 Rs(x)- Setting

T=Rse)Rswy-1»  Ke={beRy |bT=0}, and K=Y K,
geG

we see thafC is a left ideal ofR. SinceZ is a nonzero ideal oR, by (8), we
conclude thatC, = 0. Therefore, Proposition 2.4(i) yields thitis a nilpotent
ideal of R, forcing/C = 0. As f,, (u,—1) € K, we see thaf, (x,—1) is aG-graded
polynomial identity oriR. The second statement of the theorem now follows from
induction on degf).

(iii) Suppose that E R, Gy consists of invertible elements, an& R, R,-1
forallge Gy.

Let r be a positive integer and I1&t, be the class of all homomorphic images
of G-graded algebraB with finite G-grading, with antiautomorphism, satisfying
multilinear G-graded polynomial identity’ with antiautomorphism in which the
monomialxyxz. .. x, is involved with coefficient 1 and such that for agy G ¢
there existu, uz, ..., u, € Bg and vy, vz, ..., v, € By-1 With Yo _quivi = 1.
Clearly the clas#{, is homomaorphically closed and is closed under direct powers.
Further,R € H, for some integer. In view of Theorem 2.7 it is enough to show
that every prime homomorphic imadgkof a G-graded algebr# € H, satisfies a
nonzero generalized polynomial identity.

If B, contains a nonzero ideal satisfyings,Sty, then as in the proof of (i)
we get thatB satisfies a nonzero generalized polynomial identity. Therefore
we may assume without loss of generality tht has no nonzero ideals
satisfying Sk,_2. Setg = 6(x,). It follows from (9) that f, (w,—1)B, = 0 for
all u,_1 € H;{’;} Bs(x,)- Sincel e B,B,-1, we conclude thaff, (u,1) = 0 for

allu, 1€ ]_[Zj Bs(x,). Proceeding inductively ok = degh), whereh is a G-
graded polynomial with antiautomorphism in which the monomiab. .. x,, is
involved with coefficient 1, such that(u,,) = 0 for allu,, € [[;_1 Bs(x,), we see
that B satisfies a nonzero generalized polynomial identity. The proof is thereby
complete. O
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