
ELSEVIER 

An International Journal 
Available online at www.sciencedirect.com computers & 

oc,=.r  o,.==T, mathemat ics  
with applications 

Computers and Mathematics with Applications 51 (2006) 83-104 
www.elsevier.com/locate/camwa 

for a 

A N e w  Algor i thm 
for Optimal ly  Determin ing  

Lot-Sizing Policies 
Deter iorat ing I tem in an Integrated 
Product ion-Inventory  S y s t e m  

J I A - Y E N  H U A N G  
D e p a r t m e n t  of Market ing and  Logistics M a n a g e m e n t  

Ling Tung University, 1 Ling TUng Road 
Nantun ,  Taichung 408, Taiwan, R.O.C. 

MING-JONC YAO* 
D e p a r t m e n t  of Indust r ia l  Engineer ing and  Enterpr ise  Informat ion  

Tunghai  University, 180, Sec. 3, Ta ichung-Kang Road 
Taichung City, 407 Taiwan, R.O.C. 

myao~ie, thu. edu. tw 

(Received April PO05; accepted May 2005) 

A b s t r a c t - - l n  this study, we focus on optimally determining lot-sizing policies for a deteriorating 
item among all the partners in a supply chain system with a single-vendor and multiple-buyers so as 
to minimize the average total costs. We revise Yang and Wee's [1] model using the Fourier series to 
precisely estimate the vendor's inventory holding costs. Also, we transform our revised model into a 
more concise version by applying an approximation to the exponential terms in the objective function. 
In order to solve this problem, we analyze the optimality structure of our revised model and derive 
several interesting properties. By utilizing our theoretical results, we propose a search algorithm that  
can efficiently solve the optimal solution. Based on our numerical experiments, we show that  the 
proposed algorithm outperforms the existing solution approach in the literature, especially when the 
number of buyers is larger in the supply chain system. @ 2006 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - I n t e g r a t e d  system, Search algorithm, Lot-sizing policy, Deterioration. 

1. I N T R O D U C T I O N  

T h i s  s t u d y  a ims  a t  o p t i m a l l y  c o o r d i n a t i n g  lo t - s iz ing  pol ic ies  for a d e t e r i o r a t i n g  i t e m  a m o n g  all 

t he  p a r t n e r s  in a s u p p l y  c h a i n  s y s t e m  w i t h  a s i n g l e - v e n d o r  a n d  m u l t i p l e - b u y e r s  so as to  m i n i m i z e  

t h e  ave r age  t o t a l  costs .  T h e  v e n d o r  ( w h i c h  is a p r o d u c e r )  d i s t r i b u t e s  a d e t e r i o r a t i n g  i t e m  to  

t h e  buyers .  W e  a s s u m e  t h a t  t h e  r e p l e n i s h m e n t  cycle of  e ach  buyer ,  d e n o t e d  by  T~, m u s t  be  a n  

i n t e g e r - r a t i o  f r a c t i o n  of  t h e  r e p l e n i s h m e n t  cycle  of  t h e  v e n d o r  ( d e n o t e d  by  T) .  T h a t  is, Ti = T / n i  

a n d  n~ E { 1 , 2 , 3 , 4 , . . .  } for all i. 
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Deterioration occurs for most products in the real world. (We note that  deterioration means 
that  a product fails to regularly implement its function.) Ghare and Schrader [2] classified the 
deteriorating properties of inventory into three categories: 

(1) direct spoilage, e.g., vegetable, fruit, and fresh food, etc.; 
(2) physical depletion, e.g., gasoline and alcohol, etc.; 
(3) deterioration such as radiation changing, negative spoiling, and loss of efficacy in inventory, 

e.g., electronic components and medicine. 

From another point of view, deterioration can also be classified by the time-value or the products' 
life of inventory. Raafat [3] categorized deterioration by the time-value of inventory. 

(1) Utility Constant: Its utility does not change significantly as time passes within its valid 
usage period, e.g., liquid medicine. 

(2) Utility Increasing: Its utility increases as time passes, e.g., some alcoholic drinks. 
(3) Utility Decreasing: Its utility decreases as time passes, e.g., vegetables, fruits, and fresh 

foods, etc. 

On the other hand, Nahmias [4] classified deterioration by products'  lifetime of inventory. 

(1) Fixed Lifetime: Products '  lifetime is prespecified and its lifetime is independent of the 
deteriorated factors; therefore, it is called time-independent deterioration. In fact, the 
utility of these products decreases during its lifetime, and when passing its lifetime, the 
product will perish completely and become of no value, e.g., milk, inventory in blood bank, 
and food, etc. 

(2) Random Lifetime: There is no specified lifetime for these products. The lifetime for 
these products is assumed as a random variable, and its probability distribution could 
be a gamma distribution, Weibull distribution, or an exponential distribution, etc. Prod- 
ucts that keep deteriorating in some probability distribution are also the so-called time- 
dependent deteriorating products, e.g., electronic components, chemicals, and medicine, 
etc. 

The scope of this study covers those deteriorating products being classified as utility decreasing 
(as regards their time-value) and also as random lifetime (as regards their lifetime). Furthermore, 
we assume the deterioration of inventory to be exponentially distributed. 

Since deterioration will incur additional costs for inventory storage, it could distort the decision- 
making scenario and mislead the decision makers' replenishment strategy if one ignores the dete- 
riorating factor in their inventory models. However, most of the inventory models have considered 
the deteriorating factor as single-product or single-vendor single-buyer models, for instance, [5-9]. 
In the literature, the present authors have found very few articles that  studied inventory models 
with multiple deteriorating products or single-vendor multibuyer models. Hwang and Moon [10] 
presented a production-inventory model that  integrates the production planning of two products 
produced on a single facility and the raw material may be deteriorating over time with a constant 
rate. Kar et al. [11] proposed an inventory model for several continuously deteriorating products, 
sold from two shops under single management dealing with limitations on investment and total 
floor-space area. On the other hand, the one-warehouse multiretailer problem is one of the most 
representative studies in the integrated lot-sizing problems. One may refer to the following papers 
for further reference, namely, [12-16], etc. We note that these papers do not take into account the 
deteriorating factor in their mathematical models. Recently, some researchers have been working 
on the integrated lot-sizing models for a deteriorating item in single-vendor and multiple-buyers 
production-inventory systems. One may refer to [1,17-21] for reference. These inventory models 
share some common characteristics with the multiple-product inventory models though there still 
exist significant differences between them, especially in their solution approaches. 

In this study, we focus on solving the inventory control problem presented in Yang and Wee's [1] 
paper. First, we review the assumptions in Yang and Wee's model as follows. There are totally N 
buyers in this supply chain system. Customer demand occurs with each buyer at a constant rate. 
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A holding cost is incurred for each unit of finished product per unit time stored, and a setup cost 
is charged for each order placed with the vendor and with/by each buyer. The demand rates, 
holding cost rates, and setup costs are stationary for the vendor and each buyer. The production 
rate of the production facility is finite, and it is greater than the sum of all the buyer's demands. 
And, no backlogging is permitted anytime in the system. Finally, the replenishment of orders is 
assumed to be instantaneous (though this assumption can be relaxed by adding lead times to the 
orders). Also, we define some notation used in Yang and Wee's model as follows. We denote T 
as tile length of the replenishment cycle. And, T = T1 + T2, where Tt and T2 are the length of 
production time and the length of nonproduction time in the replenishment cycle, respectively. 
We let the unit usage of raw materials per finished product be f.  We set the ordering cost 
of raw material as Kin. The set-up cost Kp is incurred each time when the vendor starts one 
run of production. And, the ordering cost Kb incurs for each buyer as an order is placed. We 
denote di as the demand rate of buyer i and p as the production rate of the production facility 
at the vendor. We let the holding cost per dollar per unit time for raw material be Fro. And, 
let Fp and Fb be the holding cost rates of the finished product at the vendor and the buyer, 
respectively. We denote the unit price of raw material as Cm. Also, Cp and Cb are the unit prices 
of the finished product for the vendor and the buyer, respectively. And, we denote Om and 0 as 
the deterioration rate of the raw material and the finished product, respectively. 

The rest of the paper is organized as follows. In order to solve "fang and V~ree's [1] inventory 
control problem, we first present a revised model and conduct full theoretical analysis on the 
optimality structure of the optimal objective value curve in Section 2. Then, we employ our 
theoretical results to devise a search algorithm that solves the optimal solution for the single- 
vendor multibuyers system in Section 3. Next, in the first part of Section 4, we present a numerical 
example to demonstrate the implementation of the proposed search algorithm. Also, based on our 
random experiments, we show that our search algorithm outperforms Yang and Wee's heuristic 
in the second part of Section 4. Finally, we address our concluding remarks in Section 5. 

2. T H E O R E T I C A L  A N A L Y S I S  

In this section, we present a mathematical model that optimally coordinates lot-sizing policies 
for a deteriorating item among all the partners in a supply chain system with a single vendor and 
multiple buyers. Also, we conduct theoretical analysis on the mathematical model and present 
some theoretical results that provide insights into the optimality structure of the mathematical 
model. 

2.1. The  M a t h e m a t i c a l  Mode l  

In the first part of this section, we present a revised version of Yang and Wee's [1] model. 
In our revised model, we derive new mathematical expressions by the Fourier series to precisely 
estimate the vendor's inventory holding costs. Then, we transform our revised model into a more 
concise version by applying an approximation to the exponential terms in the objective function. 
We note that our revised model will later facilitate our theoretical analysis and algorithm design. 

In the following discussion, we focus on deriving accurate expressions for computing the ven- 
dor's inventory holding costs in our revised model. As shown in Figure 1, there are two phases, 
namely, 0 < t < T1 and T1 < t < T, regarding the dynamics of the vendor's finished product. 

We set T2 = T - T1 for ease of our presentation later. (We note that Figure 1, on p. 572, in Yang 
and Wee's [1] paper should be corrected by showing that the vendor's inventory level drops after 
the buyers' replenishment.) In the first phase, the vendor keeps producing the finished item and 
the buyers could replenish the finished item at the meanwhile. Then, in the second phase, all 
the buyers consume the vendor's inventory which accumulates by the end of the first phase. In 
Yang and Wee's [1] paper, they represent the dynamics of the vendor's finished product by the 
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Figure 1. The  dynamics  of the vendor 's  finished product.  

expressions in (1) and (2) as follows. 

N 

+ oz, (t) = ; - Z d,, 
dt 

i=1 

o < t < T1, (1) 

N 

dIp2(t) + OIp2(t) = - E di, T1 < t < T,  (2) 
dt - - 

i=1 

where fpl(t) and Ip2(t) are the vendor's inventory level of finished product at any time t in the 
time intervals [0, T1] and [2171, T], respectively. 

Expressions (1) and (2) indicate that  the consumption rate of the vendor's finished product 
is equal to the sum of the deterioration rate of the vendor's inventory and the summation of all 
the buyer's demand rates, i.e., Y:~N=I di. Also, the term p shows in the right side of (1) since the 
vendor's inventory accumulates due to the production in the first phase. 

We would like to point out that  the consumption rate of the vendor's inventory in (1) and (2) 
is not  accurate since the consumption rate from all the buyers includes not only the summation 
of all the buyer's demand rates, i.e., ~/N=I d~, but also the deterioration rate of all the buyers' 
inventory. In other words, the vendor needs to supply the buyers for both their demands and 
their consumption from deterioration. A shortage problem may exist if the vendor employs (1) 
and (2) to plan for its replenishment policy. 

Therefore, we propose to use the expressions in (3) and (4) to accurately compute the vendor's 
finished product hold during the replenishment cycle. 

N dIbi(t)  0 < t < T1, (3) dIp l ( t )  + OIp1(t) = p + E dt 
dt 

i=1 

dIp2(t) g dIb~(t) 
d----i--- + OIp2(t) = ~ dt ' T~ < t < T. (4) 

i=1 

The dynamics of the vendor's raw material, as illustrated in Figure 2, can be described by the 
following equation. 

d im( t )  + OmI,~(t) = - I P ,  0 < t < T1 (5) 
dt - - n m '  

where nm is the number of deliveries of the raw material from the supplier to the vendor in T1. 
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Figure 2. The dynamics of the vendor's raw material. 

! 

From the ordinary differential equation in (5) and the boundary condition Im(T1/nm = 0, we 
may express the dynamics of the vendor's raw material as 

O ~ t  ~ T1 
n ~  

(6) 

On the other hand, the dynamics of the finished product of buyer i in the time period [0, T/ni] 
can be expressed as follows. 

s ~  + t~Ib~(t) = -d i ,  0 < t < T 
ni 

(7) 

One may observe that  the consumption rate of the finished product of buyer i includes not 
only the demand rate from its customer, but also from deterioration. By solving the differential 
equations in (7), we have 

Ibm(t) = -~ ~ eOi = -~ e~ -~ - 1  , O < t <--.hi (8) 

Hence, we have the closed form for the consumption rate of the finished product of buyer i given 
by 

dlbi(t____~)_ dieO(T/n,)e_ot" (9) 
dt 

During the replenishment cycle T, there should be ni times of replenishment to buyer i. There- 
fore, the dynamics of each individual buyer's finished product shall repeat periodically. We note 
that  it is important to obtain an accurate expression for ~g=l  dIbi(t) dt SO as to precisely estimate 
the vendor's holding costs for the finished product as shown in equations (3) and (4). However, 
since the replenishment cycle of each buyer may not be the same, it is hard to directly calculate 
the sum of the consumption rates of the finished product of all the buyers (which is used in the 
right-side equations (3) and (4)). One may refer to Figure 3 for an example of three buyers with 
different replenishment cycles. 

French mathematician J. Fourier commented that  any periodic motion can be represented by a 
series of sines and cosines which are harmonically related. (One may refer to [22] for reference.) 
Using the Fourier series, we can represent the exponential term in equation (9) by 

OG 

e_Ot =Y+a~  E ( a n  coswnt + b, sinwnt), (10) 
n = l  
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Figure 3. The dynamics of the sum of the finished product of three buyers. 

where 

1 ( ) 2 n .  
ao - ( T / 2 n i ) O  e ~  - e - ~  , COn = T / n / '  

1 [T/2~. ( - 1 ) " 0  ( ) 
= e -Or cOSWnt dt  = - , a,, ( T / 2 n i )  j _ T / 2 m  ( T / 2 n i )  (0 2 + w2n) e~ e -O(r /2nO 

1 f T / 2 ~ ,  (_ l )nwn -- - -  e -Or sinwnt dt = ( e  O(r/2m) -- e-O(T/2ni)  ) . 
bn ( r / 2 n / )  j _ T / 2 , ,  ( T / 2 n i )  (0 2 + w~) 

and 

Recall tha t  there are two phases, namely, 0 < t < T1 and 7'1 < t < T, in the replenishment 
cycle T. By using the Fourier series and the boundary condition Ipl(0) = 0, we may derive the 
dynamics of the vendor's finished product  in the first phase by (11) as follows. 

N 

1,1 (t) = (1 - e -~ ,=1 _ e-O' X-" A ~or / . ,  /__ ~/~ a n h l ( t )  + b,~h2(t) , (11) 
0 i=1 

0 < t < T 1 ,  

where 

and 

1 [(OCOSWnt + Wn s i n w n t ) e  et -- 0)] hi(t)  - 02 4- wn 2 

1 
h2(t) = 02 + w2 n [ ( O s i n w n t  - wn c O s w n t ) e  8t + COn)]. 

The terms with an and bn in (11) come from the Fourier series expansion, and they assist to 

match with the saw-toothed curve for the dynamics of the vendor's finished product  as shown in 
Figure 1. 
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Similarly, we may represent the dynamics of the vendor's finished product in the second phase 
aN 

s~2(t/= e -~ ~~ ~ A ,  + ~ (a~ c o s ~ j  + bn sin~*') et'+c~ 
i=1 n= l  

N 
d~ 

i = 1  
0 

e -or N-" d e OT/m - - - e  ~  (e~ -~  - 1) + Z_~ i angl ( t )  + b~g2(t) + c2, 
i=l k n = l  n= l  

T~ _<t _<T, 

(12) 

where 

1 
gl (t) - 02 + a~ 2 [(O cos a~nt + aJn sin wnt)e  Ot - (0 cos aJnT1 - a4~ sin aJ~T1)eOT'], 

1 [(0sincont - w n c o s ~ o n t ) e  ~  (OsinwnT1 - w n c o s a 3 n T 1 ) e  OT' ] g2(t) - 02 + ~ 

and the coefficient c2 can be obtained by using the boundary condition Ip2(T) = O. 

Now, we are ready to compute the average inventory level of the vendor's finished product by 

1 s0r  1SoTI 1 ; ~" -~ Ip(t)  dt = -~ Z p l ( t l ) d t l  + "~ Ip2(t2)dt2.  (13) 
1 

We note that  our revised model is a notorious nonlinear-integer program, and it also carries 
many exponential terms. Its formulation not only makes the theoretical analysis on our revised 
model extremely difficult, but also gives rise to the difficulty of solving it directly. Therefore, we 
suggest the use of an approximation in (14), which is proposed by Yao and Wang [23], to simplify 
the term e ~ in its formulation. 

02t 2 03t 2 
e ~ ~ 1 + Ot + ~ + 3--~.' 0 < Ot < 1. (14) 

We derive our approximation from the Taylor series expansion. Also, Yao and Wang [23] show 
that  the approximation in equation (14) achieves better precision in approximating the term e ~ 

than another function in (15) which is popularly used in the literature, namely, 

e0 t ~ (2 + Or) (15) 
(2 - a )  

(One may refer to [24] for details.) 
After applying the approximation in equation (14), one may have a more friendly formulation 

for each cost term in our revised model as follows: after using our approximation, the annual 
holding cost for the vendor's finished product is given by 

HCp - T Ip(t)  dt 

- T TI+  
e0 _l) a0 [ 

0 - - ~  E d{eO(T/ad T - T1 + :~ 
i :1  

C;Fp f pT2_ ao N } 
"~ T ~ 2 1 -4- Ei=I d i e O ( T / n ' ) ( T -  T1) 2 , 

(16) 
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where the term e ~ in (16) could be further approximated using the expression in (13). We 
may express the variable T1 in (16) in terms of T by using the boundary condition Ipl(T1) = 
Ip2(T1) as follows. 

N 

TI.~ (T +-~T2) ~=lp (17) 

On the other hand, the annual holding cost for all the buyers' finished product can be expressed 
as follows. 

CbFbz.._ ni Ibi(t) dt~ d~ 3 +  - -  (18) 
H C b -  T i=1 Jo 6 ~=1 n~ 

The annual holding cost of the vendor's raw material is expressed as 

HCm CmFmnrn~oTX/n" CmFmfP(3+ O ) T  (19) 
- T Im(t) dt = ~ ~ nm" 

If we denote DCb and DCp as the annual deterioration costs for all the buyers and the vendor, 
respectively, then we have the approximation terms for them as follows. 

= ~ ~ d~ 3 4- -- DCb ~- ni Im~ n~ / T ~= n~ (20) 

and 

DCp : -~..- PTt-EniIraii=l / ,.~Cp - -  i--1 di 1+ ~ n  +-~n2 ]j  . 

The annual deteriorated costs for the raw materials is 

(21) 

cm( DCm :  /nm Qm fpT1 _ CmfpOmT1 .~ E d ~ T. 
nm 2nm i=1 k, ~ 7 

(22) 

The annual ordering costs for the vendor and for all the buyers are given by (23) and (24), 
respectively. 

g m  TI, m 
s c m  : - - ,  (23) 

T1 

N n~Kb 
SCb = E T 

i = l  

(24) 

And, we denote SOp as  the setup costs per year for the vendor. Then, 

/(_ 
SCp = - - ' .  (25) 

T 

The average total costs for all the buyers are the sum of HCb, DCb, and SCb which are expressed 
in (18), (20), and (24), respectively. On the other hand, the average total costs for the vendor 
are the sum of HCp, DCB, and SCp which are expressed in (16), (21), and (25), respectively. The 
average total costs for the raw material are the sum of HCm, DCm, and SCm which are expressed 
in (19), (22), and (23), respectively. Therefore, the annual total costs of the integrated system 
are given by 

TC = HCp + DCp + SCp + HCb 4- DCb + SCb + HCm + DCm + SC,~, 
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which can be rewritten as follows. 

TC = Kv tfmnm d4 C2 
--T- + - -  + d4T C1+ -~ + , 

4=1 

(26) 

where C1 = CpFp/2 and C2 = (CpO + CbFb + CbO)/2. We note tha t  C1 and (72 are constant 
terms. 

Let f4 = 1/n4. Then, we may formulate a mathematical  model, namely, problem (P) for 
optimally coordinating lot-sizing policies of a deteriorating item in a supply chain system with a 
single-vendor and multiple-buyers as follows. 

Minimize 
g p  

TC ( f t , . . .  , fN ,T ,  nm) =- --~ + 

Kmnmp di 

T 

N 

+ Z [d4C1T + TC4(fi, T)] ,  (27) 
4=1 

(P) 
1 1 1 } 

subject to f~E 1 , 2 , 3 , 4 , . . .  ' i = 1  . . . .  ,N,  (28) 

g b  
where TCi( f4 ,T)  = f - ~  + d4C2Tfi. (29) 

Interestingly, we may note tha t  problem (P) is separable in terms of the decision variables 
{f, : i = 1 , . . . , N } .  

2.2. S o m e  I n s i g h t s  i n to  t h e  O p t i m a l  C o s t  F u n c t i o n  

In this section, we analyze the function TCi(f4 ,T) .  For a given T = T ~, one can solve the 
optimal multiplier f~ so as to minimize the value of TC4(fi, T = T') .  We define it as TCi(T) ,  the 
minimum cost function for buyer i with respect to all the value of T ~ on the T-axis, i.e., 

min {TC~ (f~,T')}. (30) TCi(T)  = U fiGp -1, where pGN + 
T'ER + 

Then, Lemma 1 holds for each buyer i. 

LEMMA 1. TC4(T ) is a piece-wise convex function with respect to T. Also,/or each value o[ f~, 
one can obtain the local minima for TC4(T ) at 

1 , /  Kb 
A4 ( fd = ~ VdTd2 (31) 

with the minimum cost ofTC~(Ai(f~)) = 2 ~ C 2 .  

PROOF. It can be shown by an easy algebraic derivation. | 

One may refer to the graphical representation of Lemma 1 in Figure 4. 
Similarly, we define TCopt(T) as the optimal objective function value of problem (P) with 

respect to T, i.e., 

Kv Kmnmp d~ N 
TC~ = ~ + T + ~ [d~C1T + TCi(T)]  �9 (32) 

4=1 
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Figure 4. The piece-wise convex curve of the TCi (T  ) function. 

The following proposition depicts an important characteristic of the optimal objective function 
value of problem (P). 

PROPOSITION 1. The TCopt(T) function is piece-wise convex with respect to T. 
N PROOF. It is obvious that KB/T + (Kmnmp/)-']~=1 di) /T and diC1T are convex functions with 

respect to T. On the other hand, each TCi(T ) function is piece-wise convex with respect to T 
by Lemma 1. Since TCopt(T) is the sum of (N + 1) convex functions and N piece-wise convex 
functions by (32), it is surely a piece-wise convex function. II 

By utilizing our theoretical results on TC,(T), we could have more insights into the optimality 
structure of problem (P). 

2.3. T h e  J u n c t i o n  Po in t s  

Next, we introduce the "junction points" on the curve of the TCopt(T) function. We define 
a junction point for the TC~(T) function as a particular value of T where two convex curves 
using consecutive integers of ni concatenate. (For example, as shown in Figure 1, the junction 
point 5i(1) is the particular value of T where the two consecutive convex curves, with ni = 1 and 
n~ = 2, concatenate.) These junction points determine at 'what value of T' where one should 
change the multiplier of buyer i from fi to f i / ( f i  + 1) so as to secure the minimum value for 
the TCi(T ) function. We first derive a closed-form for the location of the junction points for 
buyer i as follows. We define the difference function Ai ( f , ,T )  by 

f~ ) Kb f} 
A ~ ( f , , T )  = T C i  f - ~ , T  - T C i ( f i , T )  = --f- - d iC2T  fi  +-------~. (33) 

We note that Ai(f~, T) is tile cost difference between using A and f i / ( f i +  1) as its multiplier for 
TC~(fi, T). Since the function Ai(fi, T) is an increasing function with respect to T, suppose that 
the search algorithm proceeds from a lower bound toward larger values of T; we evaluate Ai(f~, T) 
from positive values, to zero, and finally, to negative values. Let w be the point where Ai(f i ,  T) 
reaches zero. Assume that fi is the optimal multiplier for buyer i for T < w. This scheme implies 
that one should keep using fi until it meets w. From the point w onwards, the value of TC~(fi, T) 
can be improved by using f i / ( f i  + 1) as its optimal multiplier. We note that w is the point where 
two neighboring convex curves TCi(f i ,T)  and TCi( f i / ( f i  + 1),T) meet. Importantly, such a 
junction point w provides us with the information not only on "which buyer i" to modify, but 
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also on "where on the T-axis" to replace fi with f i / ( f i  + 1). By equation (33), we identify a 
junction point for buyer i by 

= V-3Y  

More specifically, 5i(1/f i  = 1/ j )  is the ( l / j )  th junction point of buyer i where ( i / j )  E N +. 
Therefore, the junction point ~i(1/j) provides us with the information that  one should choose 
f i  - j for T < 5i(1/j)  and choose f~ = j / ( j  + 1), vice versa, to obtain the lowest value for the 
TCi (T  ) function. 

The following theoretical results on the junction points provide a strengthened foundation for 
such a search scheme. 

LEMMA 2. Suppose that f[L) and fiR),  respectively, are the optimal multipliers of for the convex 
curves on the left side and the right side of a junction point of the T C i ( T  ) function. Then, 

~L) 
f(R) _ f(i L) -[- 1" 

(35) 

PROOF. It can be easily proven by (34). | 

PROPOSITION 2. Ali the junction points for each individual buyer i, will be inherited by the 
TCopt (T) c u r v e .  

(Kmnmp/  ~--~=1 d i ) / T  + PROOF. Recall tha t  TCopt(T) - K p / T  + g ~N=I[diCIT + TCi(f~,T)] is 
separable. Assume that  co is a junction point for buyer i, but  not for the other (i - 1) buyers. 
Then, there must exist e > 0 such that  the following two facts hold. 

1. The curve for K p / T  + (Kmnmp/~iN=l d i ) /T  + ~-~N=I diC1T + ~ j r  is convex in 
the interval of [w - E, co + e] since each one of TC 4 (T) where j 7~ i is convex in [ca - ~, w + r 

and 
2. TCi(T)  is convex in the intervals of [co, co + r Except at the junction point w, TCopt (T) = 

K p / T  + (Kmn,nt)/ ~g= 1 d i ) /T  + ~-~.ig=l d~C1T + ~-~.j~i TCj (T)  + ~ i  T___CCi (T) is still convex 
in the intervals [co - r ca] and [w,co + r 

Therefore, co becomes a junction point of TCopt(T). | 

In other words, Proposition 2 asserts tha t  if a junction point co shows on one piece-wise con- 
vex curve TCi(T) ,  then, co must also show on the piece-wise convex curve of the TCopt(T) 
function as a junction point. Define f~(T)  as the optimal multiplier for buyer i given a par- 
ticular value of T E R +. Let F(T)  be the vector of optimal multipliers at a given T, i.e., 
F(T)  = ( f ~ ( T ) , . . . , f ; v ( T ) ) .  The following theorem is an immediate result of Lemma 2 and 

Proposition 2. 

THEOREM 1. Suppose that w is a junction point in the plot of  the TCopt(T) function. Also, 
F(L) = (f}L)(co),f(L)(co),. . . , f(L)(co)) _ F(co - r = (f~(co - r - e ) , . . .  ,f~v(w - r and 

F(R) _-- (f}R)(co), f~R)(co),. . . ,  I(NR)(co)) = F(co + z) = (f~(co + r f ; ( w  + ~) . . . . .  f~v(a~ + e)) are 
the vectors of the optimal multipliers for the left-side and right-side convex curves with regard 
to the junction point co, respectively. Then, F (R) is secured from F (L) by changing at least one 
of its optimal multiplier by f(R)(w) = f(g)(co)/(f(L)(co) + 1). 

Usually, only one f~* changes at a junction point except for some extreme cases in which two 

buyers share the same junction point. 

The following corollary is also a by-product  of Lemma 2 and Proposit ion 2, and it provides an 

easier way to obtain each f~(T)  E F(T) .  
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COROLLARY 1. For any given T, one can obtain each f* (T) C F(T)  by 

/2Kb  
1, T < Vd---i-C2, 

f,*(T) = f - g V  1 / (36) 

 --jG < r - <  V �9 

The following corollary is important  for the design of the proposed search algorithm. 

COROLLARY 2. Let wl and w2 be two neighboring junction points for the function TCopt(T), 
and a/1 < w2. Then, the vector of optimal multipliers for the TCopt(T) function is invariant in 

PROOF. It is obvious from Theorem 1, where we know that  F(a/2) is obtained from F(a/1) by 
changing at least one of its optimal multipliers by fi*(a/2) =- f~(a/1)/(f~(a/1) + 1). Thus, the 
vector of optimal multipliers for the TCopt(T) function is invariant in (a/l, a/2)- ]] 

3. T H E  P R O P O S E D  S E A R C H  A L G O R I T H M  

In this section, we propose a search algorithm that  obtains a heuristic solution for problem (P). 
First, we provide an overview of the proposed search algorithm before presenting the de- 

tails. We divide the decision variables in problem (P) into three categories, namely, nm, T, 
and ( n l , . . . ,  rig) (or, equivalently, ( f l , . . . ,  fY)) .  To make our presentation more concise, we 
define F* =- ( f i , . . .  , fN)  as the vector of the optimal multipliers. The proposed search algo- 
ri thm starts with setting n m =  1, and search for the optimal solution of problem (P) given 
n,~ = 1, namely, T*[,~m= l and F*[~,,=l.  We record the best-on-hand solution by setting 
TC B O t I =  TC(F*[~m=I,T*[~m=I,  n m = 1), T BOH = T*[n,,=l, and F BOH -- F*[n~= 1. Then, 

we increase the value of nm by 1, i.e., nm = n m  + 1 = 2, and obtain the optimal solution 
given n m =  2, namely, T*[ . . . . .  2 and F*[,~.,,=2. Next, if the latest-obtained optimal solution is 
better than the best-on-hand solution, we update it by setting TC B~ = TC(F*  ]n,,~=2, T* I-.,=2, 
n,n = 2), T B~ = T*[ .... =2, and F B~ = F*[ .... =5; otherwise, we terminate the search algorithm. 
That  is, we repeat such a search scheme until we are not able to improve the best-on-hand solu- 
tion. 

We design the search scheme discussed above based on our observations on extensive numer- 
ical experiments. We have strong confidence that  such a search scheme may solve the optimal 
solution for problem (P). However, we could merely call it a heuristic since it is extremely diffi- 
cult to provide a rigorous proof for the characteristic tha t  the envelop of the optimal objective 
function value with respect to nm is convex. (Note: our termination condition is devised based 
on such a convexity characteristic, and one may refer to Figure 5 in Section 4.1 for its graphical 
representation. We will discuss it later tha t  solving problem (P) given a particular value of nm 
is not trivial at all. Our discussions in Sections 3.1-3.3 might help to learn the difficulty to prove 
the convexity characteristic mentioned above.) 

Next, we propose a search algorithm that  could obtain the optimal solution for problem (P) 
given a particular value of nm. Recall tha t  the WCopt(T) function is piece-wise convex with respect 
to T. (One may refer to Section 2.) Also, some interesting properties on the junction points reveal 
the optimality structure of the TCopt (T) function. These theoretical results encourage us to solve 
problem (P) by searching along the T-axis. 

~Ib design such a search algorithm, we first need to define the search range by a lower and an 

upper bound on the T-axis, which are denoted by TL and Tu, respectively. We note tha t  the 
bounds TL and Tu are derived by asserting that  the best local minimum in [TL, Tu] must be no 
worse than any solution outside of [TL, Tu]. Naively, one can solve an optimal solution by a small- 

step search algorithm which enumerates T E [TL, Tu] and using a very small step-size A T  -+ 0. 
But, this is neither efficient nor accurate, since the step-size determines its performance. Also, 
the run time of the search algorithm may be extremely long if the search range [TL, Tu] is wide. 
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Figure 5. The optimal objective function value of problem (P) vs. different values 
of rim. 

In order to propose an efficient search algori thm, we must  utilize our theoret ica l  results  on the  
op t imal i ty  s t ructure ,  especial ly the  proper t ies  of the  junct ion  points  on the  TCopt(T)  function. 
By Lemma 2 and Propos i t ion  2, we can easily obta in  all of the  junc t ion  points  within any search 
range [TL, Tu] by equat ion (34). Corol lary  2 asserts  t ha t  the  vector  of op t imal  mult ipl iers  for 

TCopt(T)  is invariant  in any convex interval between two neighboring junct ion  points.  These 
theoret ical  results  lead us to the  following idea: if we are able to ob ta in  all of the  local min ima 

for each convex curve in [TL, Tu], we surely can ob ta in  an op t imal  solut ion by picking the one 
with the  lowest object ive  value. 

In the  following sections, we first derive a lower bound on the search range in Section 3.1. 

Then,  Section 3.2 demons t ra tes  how to use the  junct ion points  to proceed with  the  search. Also, 

we propose an approach to secure and revise the  upper  bound on the  search range in Section 3.3. 
(Note: our discussions in Sections 3.1-3.3 provide the  detai ls  of our search a lgor i thm to solve 

problem (P) given a par t icu lar  value of nm. Therefore, we t r ea t  nm as a constant  in these three 
sections.) Finally,  we summarize  our proposed search algori thm. 

3,1.  A L o w e r  B o u n d  

In this  section, we derive a lower bound on the search range by the common cycle (CC) 
approach which requires tha t  fi = 1 for all i, i.e., all the  retai lers share the  same replenishment  
cycle. 

Denot ing as Tc*c, the  opt imal  replenishment  cycle for the  CC approach,  then,  one may  easily 

secure Tc* c by the following expression. 

( K p + K  nmp/i~__ldi+NKb) 
TA= 

d~(C1 + C2) 
i=1 

(37) 

Propos i t ion  3 asserts  t ha t  the  search scheme may  skip the  range (0, T~*). Consequently,  we 

may  set Tc* c in equat ion (37) as a lower bound of the  search range. 

PROPOSITION 3. For the TCopt(T) function, there exist no local minima for T < Tcc. 
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PROOF. Proposition 1 asserts that  TCopt(T) function is piece-wise convex. It  implies that  the op- 
timal solution must be one of its local minima. The local minimum for any vector of ( f ~ , . . . ,  f~r 
where 1/f~ E N +, Vi, is given by 

i N * * i=1 i=1 (38) 
( f l , ' ' ' , f N )  = g C * 

E d~[Cl+ 2f,] 
i=l 

By equation (38), it is obvious that  T(f~  . . . . .  f~)  _> T~* c since f* _< 1 for all i. Therefore, there 
exists no local minima for T < To* c. | 

3.2. P r o c e e d i n g  w i t h  t he  Sea rch  by  J u n c t i o n  P o i n t s  

By utilizing the theoretical properties of the junction points, we show how to proceed with the 
search from our lower bound TL in this section. 

Before proceeding with the search, we first secure F(TL), i.e., the vector of optimal multipliers 
at TL by Corollary 1. 

Next, we show how to proceed with the search by utilizing a sequence of (sorted) junction 
points. By Lemma 2 and Proposition 2, each junction point {51(1/fi*)} provides the information 
that one should change the optimal multiplier of buyer i from fi* to f~(f~ + 1) at 5i(1/f~) to 
secure the optimal value for the TCopt(T) function. Therefore, during the search, we need to 
keep an n-dimensional array (51(1/f~),..., 5N(1/f~v)) in which each value of 5i(1/f~) indicates 
the location of the next junction point of each buyer i where the optimal multiplier of buyer i 
should be changed. Since the algorithm searches toward larger values of T, one shall change 
the multiplier for the particular buyer i with the smallest value of 5i(1/f~) to correctly update 
the vector of optimal multipliers. Let Tc be the current value of T where the search algorithm 
is reached. Denote as 7r the index for the buyer i with the smallest value of 5i(1/f~), i.e., 
~r = argmini{6i(1/f[) > To}. To proceed with the search form To, by Theorem 1, we need to 
update the vector of optimal multipliers at 5~(1/f~) by 

( ( 1 . ) )  { f'~ } (39) F ~ ~ -~(F(Tc) \{ /~})U ( f • + l )  ' 

where ' \ '  denotes set subtraction. 
Let {mj} be the sequence of the points where the search algorithm is reached. Also, by the 

definition, we have w0 = TL. From another point of view, the algorithm searches along {w j}, 
a (sorted) sequence of junction points from TL, where wj+l ~ wj, j = 0 , 1 , 2 , . . . .  Note that 
this array is sorted on the location of the junction points in ascending order except that  the 
lower bound TL may not be a junction point. Importantly, Corollary 2 asserts that  the vector 
of optimal multipliers for the TCopt(T) function is invariant between wj+l and mj. Therefore, 
F(w/) is the vector of optimal multipliers for the TCopt(T) function in the interval (w/+l,wj]. 

Denoted as T(F(wj))  the minimum for the vector of multipliers F(wj), the following proposition 
indicates the existing condition and the location of a local minimum for the TCopt(T) function. 

PROPOSITION 4. L e t  

N 

E d,~ [C1 + C2f* (will 
i=1 

(40) 



A New Algorithm 97 

'T(F(wj)) is a local minimum for the TCopt(T) function i fT(F(wj ) )  �9 (wj+l, wj] where f ; (wj)  �9 
F(a,j), Vi. 

PROOF. For any given vector of (f~*,..., f~) ,  one may obtain its local minimum, T(fi*,. �9 f~) ,  
by taking the derivative of the TCopt (T) function with respect to T, and equating it to zero. By 

Corollary 2, T(f{*, . . . ,  f } )  becomes a local minimum for the TCopt(T) function when ~I'(F(wj)) �9 

(~Mj+ 1 , a)j]" II 

3.3. T h e  U p p e r  B o u n d  

In order to obtain the optimal solution, the search scheme needs to secure all the local minima 
in fT,*c, Tu] where Tu is the upper bound to be derived in this section. Recalling that T~* c is 
the optimal replenishment cycle for the CC approach, we can obtain the corresponding vector of 
optimal multipliers F(Tc*c) at T~* c by Corollary 1. 

Let T* and F* be the best-on-hand local minimum and its corresponding vector of optimal 
multipliers, respectively, and we derive an upper bound fl in Lemma 3. We note that our upper 
bound ~3 is derived by asserting that for T > ~, there exists no solution with its objective function 
value lower than TC(F(T*),  T*). 

LEMMA 3. At the local minimum T*, one may secure an upper bound/3 on the search range by 

N , (41) 
2 E diC1 

i=1  

wh ere 

and 

K p  -}- Kmnmp di N N 

X = T* + ~ r (F (T*), T*) + T* E diC1, (42) 
i=1  i=1  

( ) 
+ diC2T* - 2v'-K-bdiC:, 

r  = (2 + fi* (T*)) 2 

X/1 + fi. (T,)  ' 

f~(T*) = 1 ,  

I ; (T*)  < 1. 
(43) 

PROOF. \Ve note that the function r indicates the maximum magnitude of decre- 
ment in TCi(f~, T) from T* to any value of T > T* for buyer i. Recall that Lemma 1 asserts 
that the function TCi(f~, T) is bounded from below by 2 ~ .  If the optimal multiplier for 
buyer i is f~(T*) = 1, then the maximum magnitude of decrement in TCi(fi ,  T) from T* to any 
value of T > T* is bounded by Kb/T* + diC2T* - 2 ~ .  If f~(T*) < 1, 

{ ( .  ( TCi (f/* (T*) T * ) < m a x  TC{ f; (T*) ti n l + f : ( T  )~ ,TC{ f~(T*) . t in  
' - ' i f ( T * )  ] " i f ( T * )  

by the piece-wise convexity of the TC~(f*(T*),T*) function, then, TC~(f~*(T*), T*) < TC~(f~ . 
(T*),5~(1/f;(T*))),  since one can easily prove that TC~(fi*(T*),6i(1/I~'(T*))) > TC~(fi*(T*), 
5~((1 + f*(T*)) / f~(T*))) .  By plugging equation (34), we have the following concise expression 
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for TCi(f~'(T*), ~i(1/f~(T*))) after some simplification. 

1 = v / l + f : ( r ' )  TCi f; (T*),~i f[ (T*) 

In other words, if f[(T*) < 1, the maximum magnitude of decrement in TCi(f~, T) from T* to 
any value o f T  > T* is bounded by ~ [ ( 2 + f ~ * ( T * ) ) / V / 1  + f~*(T*)-2]. Also, a set-up cost k0 

at warehouse would decrease from (Kp + Kmnmp/EN=I d~)/T* to  (Kp + K,~nmp/ EN=, d,)/T 
from T* to any value of T > T*. 

On the other hand, the sum of the holding cost for all the buyers would increase from 
T* N T N T* ~=1 diC1 to ~i=1 diC1 from to any value of T > T*. 

The upper bound is derived by asserting that  for T > fl, the increment in the sum of the 
, N 

holding cost for all the buyers, i.e., T ~-~g=l diC1 - T ~=1 diC1, must exceed the maximum 

magnitude of decrement, i.e., 

(I(p+Kmnmp/~=ld~) (Kp+Kmnmp/~=ldi) 

T* T 

N 

+ (T*),T*); 
i = l  

o r  

~d~C2(T-T*)  > N +~~r 

i = 1  

which gives exactly equation (41). | 

By using Lemma 3, we shall t ry  to revise the upper bound of the search range as we obtain 
an updated best-on-hand solution during the search. We note tha t  revising the upper bound 
may significantly improve the efficiency of the search algorithm since it could notably shorten the 
search range. (Please refer to the demonstrative example discussed in Section 4.1 for instance.) 

3.4. T h e  A l g o r i t h m  

We are now ready to enunciate the proposed search algorithm. Recall tha t  the algorithm 
searches from ~ c  toward larger values of T until it meets the upper bound Tu. In the search 
process, we use a sequence of (sorted) junction points as the backbone and obtain all the local 
minima of the TCopt(T) function between [T*c,Tu ]. Recalling tha t  T* and F* the best local 
minimum and its corresponding vector of optimal multipliers, respectively, we summarize the 
step-by-step procedure of the proposed search algorithm as follows. 

STS~ 1. Set n m : l  and T C  BOH : ~ .  

STEP 2. The initialization. 

(a) Obtain  the lower bound TL : To* c by equation (37). Then, use Tcc to obtain Tu by 
equation (37). Set T~ = TL. 

(b) Calculate and sort all the junction points in equation (34). Set Wl = 6~(1/f~) by rr = 
argmini{6{(1/f~*) > To}. Use Corollary 1 to obtain F(TL). 

(c) Check by Proposit ion 4: if T(F(TL)) E [w2,wl), set T* = T(F(TL)) and F* = F(TL), 
calculate TC(F*,T*). Also, set j = 1 and Tc = wj. 

STEP 3. The search procedure. 

(a) Obtain F(wj) by F(wj) - (F(Tc) \ {fg}) U {fg/fg + 1} and wj+l = 6~(1/fg)  by 7r = 

argmin{{5{(1/fi* ) > To}. 

(b) Check by Proposition 4; if ~I'(F(w])) �9 [wj, wj+l), calculate TC(F(wj ) ,  T(F(wj))). 
(c) If T C ( F ( w j ) ,  T(F(wj))) < TC(F*,  T*), set T* = ~I'(F(wj)) and F* = F(wj) .  
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STEP 4. The termination condition of the search algorithm. 

(a) If wj+l > Tu, output T*, F*, TC(F*,T*) and the algorithm stops the search for the 
current value of nm. 

(b) Otherwise, set j = j + 1 and Tc = wj. Go to Step 3. 

STEP 5. Try t o  revise the best-on-hand optimal solution. If T C  BOH > TC(F* ,T* ,nm) ,  then 
we update the best-on-hand solution by setting T B~ = T*, F B~ = F*, and TC B~ = 

TC(F*, T*, rim), and go to Step 6; otherwise, we terminate the algorithm. 

STEP 6. n m =  n r n + l ;  GO to Step 2. 

4. N U M E R I C A L  E X P E R I M E N T S  

In this section, we present an example to demonstrate the implementation of the proposed 
search algorithm. Also, by using random experiments, we will show that the proposed search 
algorithm outperforms Yang and Wee's [1] heuristic. 

4.1. A Demonstrative Example 

Here, we use an example with three buyers to demonstrate the implementation of the proposed 
search algorithm. Then, by using the same example, we will show how the setting of the range of 
n~-v~lue in Yang and Wee's [1 t heuristic could be a crucial factor in obtaining an optimal solution 
though they did not clearly specify how to set the range of n,-value. 

We employ the test data presented in Yang and Wee's [1] paper, but increase the number of 
buyers to three. We present the set of parameters used in this numerical example in Table 1. 

Given different values of nm, we solve the optimal solution for problem (P), and we plot the 
optimal objective function value versus nm for this example in Figure 5. We note that the envelop 
of the optimal objective function value of problem (P) with respect to nm is convex. Recall that 
the termination condition of our search algorithm is devised based on the convexity characteristic 
as shown in Figure 5. 

Table 1. The set of parameters used in the demonstrative example. 

Buyer 

Producer 

Raw material 

Demand rate 

Ordering cost 

Holding cost 

Price 

Setup cost 

1 2 3 

12000 6 0 0 0  2000 

i0 

0.35 

24 

150 

Holding cost 0.15 

Price 10 

Deterioration rate 0.05 

Unit usage of material 2.1 

Setup cost 

Holding cost 0.15 

Price 20 

Production rate 24000 

Deterioration rate 0.1 



i00 J.-Y. HUANG AND M.-J. YAO 

Since we obta in  the  op t imal  solution for this example  as nm = 6, we summarize  our search 
process only for the  case of n m =  6 as follows. 

1. We first compute  Tcc = 0.03606 by equat ion (37), and let Tc = Tc*c. We obta in  the  

vector of op t imal  mult ipl iers  at T~*c, i.e., F(T~c), by (1/3, 1, 1/2),  and TC(F(Tc*c), Tc*r = 

$10,271.28. We regard it as the  bes t -on-hand object ive  value. We obta in  the  upper  bound 

Tu = 0.19209 by equat ion (37). 

2. We obta in  wl = 51(1/f; = 1/3) = 0.0395 by 7r = argmin~{5~(1/f*) > Tc} = 3. By 

Propos i t ion  4, we have local min imum 2~(F(Tc*c) ) by 0.0507; since ~F(F(T~c)) r [T~*~,wl), 

we do not have to revise the  bes t -on-hand solution. 

3. Next,  we move to wx and obta in  the  vector of opt imal  mult ipl iers  F(Wl) by F(wl) =- 
F(T~*) \ {fi* = 1/3} U {fi* = 1/4}, which is given by (1/4, 1, 1/2). Then,  we let Tc = wl 
and secure ~2 = 52(1/f~ = 1) = 0.03951 by lr = a r g m i n i { ~ i ( 1 / ) ~ )  > To} = 4. We 

ob ta in  the  local min imum T(F(wl)) by 0.0536. Since the  local min imum is not  located in 

the  interval T(F(a~I))  r [c01,~o2) = [0.03950,0.03951], we do not  revise the  bes t -on-hand 

solution. 

4. As we move to aJ6 and obta in  the  vector of opt imal  mult ipl iers  F(w6) by F(aJ6) - F(T~) \ 
{fl  = 1/5} t2 {f l  = 1/6}, which is given by (1/6, 1/2, 1/4).  Then,  we let Tc = a~1 = 0.0625 

and secure ca7 = ~2(1//2 = 1/3) = 0.0685 by rr = a r g m i n ~ { ~ ( 1 / f ~ )  > To} = 2. We 

obta in  the local min imum T(F(w6)) by 0.0676. 

5. The  local minimum is located in the  interval  T(F(w6) )  �9 [w6,co7) = [0.0625,0.0685]. 

We have F* = f (w6)  = (1/6, 1/2, 1/4),  T* = T(F(~6)) = 0.0676, and TC(F*,T*) = 
$9046.87. Since it is less than  $10271.28, we thus revise the  bes t -on-hand  solution. We 

also revise the  upper  bound Tu = 0.16549 by equat ion (37). 

6. As we move to ~7 and obta in  the  vector of op t imal  mult ipl iers  F(wT) by F(~oT) -- F(Tg) \ 
{f2 = 1/2} t2 {f2 = 1/3}, which is given by (1/6, 1/3, 1/4).  Then,  we let Tc = ~7 = 0.0685 

and secure ws = ~3(1/f3 = 1/5) = 0.0722 by 7r = argminn{C~n(1/fn) > Tc} = 3. We 

obta in  the  local min imum T(F(wT)) by 0.0699. 

7. The local min imum is located in the  interval ~'(F(wT)) �9 [aJT,cJs) = [0.0685,0.0722]. 

We have F* = f(a~7) = ( 1 / 6 , 1 / 3 , 1 / 4 ) ,  T* = T(F(w7)) = 0.0699, and T C ( F * , T * )  = 
$9045.66. Since it is less than  $9046.87, we thus revise the  bes t -on-hand  solution. We 

again revise the  upper  bound Tu = 0.16518 by equat ion (37). 
8. As we continue the  search, the  next local min imum is secured in the  interval  [a~9,col0) = 

[0.0740, 0.0854]. We have F* = F(w9) = (1/7, 1/3, 1/5), T (F(w9) )  = 0.0742, and T C ( F ,  T) 
= $9053.43. Since it is larger than  $9045.66, we therefore re ta in  the last bes t -on-hand 

solution. Note tha t  we do not  revise the  upper  bound this t ime since the  new ~ = 0.16535 

by equat ion (37) is larger than  the one on hand (0.16518). 

9. We continue the  search, but  find no more local min imum less than  $9045.66. The  search 

a lgor i thm stops when it encounters  the  local min imum tha t  is larger than  Tu. In this  

example,  before the search a lgor i thm terminates ,  it  visits to ta l ly  90 junc t ion  points.  Note 
tha t  if we did not revise the  upper  bound and s imply use the  upper  bound  obta ined  at 

T* i.e., Tu = 0.19209, we need to visit  to ta l ly  126 junc t ion  points.  Our  upper  bound 
C C  1 

revising technique assists the  search a lgor i thm to save around 25% of the  run t ime in this  

example.  

10. For the  entire search process, we secure only three  local min ima  for this  example.  All of 
the  local minima,  their  corresponding vector of opt imal  mult ipl iers ,  and their  object ive 

function values are summarized  in Table 2. 



A New Algorithm 

Table 2. The local minima obtained in the search process of the proposed search 
algorithm. 

v 

[coj,Wj+l) fl  h f3 T j  

[0.0625, 0.0685) 6 2 4 0.0676 

[0.0685, 0.0722) 6 3 4 0.0699 

[0.0740, 0.0854) 7 3 5 0.0742 
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WCopt ~'Tj)/" "~ On-Hand Tu ~q Revised Tu 

$9046.87 0.192O9 O.16549 0.16549 

$9045.66 0.16549 0 .16518  0.16518 

$9053.43 0.16518 0 A 6 5 3 5  0.16518 

By the proposed algorithm, we obtain the optimal solution and the vector of optimal multipliers 
as T* = 0.0699 and F* = (1/6, 1/3, 1/4), respectively, with the optimal objective value being 
$9045.66. 

For the rest of this section, we will show how the setting of the maximum n~-value (equivalently, 
the range of hi-value) could significantly affect the solution quality of Yang and Wee's [1] heuristic. 
We note that one may encounter two possible problems from setting the maximum n~-value; 
namely, 

(1) one could miss the optimal solution by underestimating the maximum ni-value, or, 
(2) one may have an overflow problem when running Yang and Wee's heuristic by overesti- 

mating the maximum n~-value. 

In the following experiments, we test Yang and Wee's heuristic by different settings of the maxi- 
mum n,-value ,as follows. 

1. If we set the maximum n,-value to be 3, there are totally 9 (= 33) potential solutions that 
need to be tested. However, we obtain no feasible solution by Yang and Wee's heuristic. 

2. As we set the maximum ni-value to be 4, there are totally 64 (= 43) potential solutions 
that need to be tested. Again, we obtain no feasible solution by Yang and Wee's heuristic. 

3. When we set the maximum n~-value to be 5, there are totally 125 (= 53) candidate 
solutions. We secure the solution and the set of multipliers as T* = 0.0607 and F* = 
(1/3, 1/3, 1/4), respectively. The optimal nm = 5 and its optimal objective value $9417.48 
is 4.1% larger than ours (i.e., $9045.66). 

4. If we set the maximum ni-value to be 8, which is larger than the maximum multiplier 
that we obtained in the proposed search algorithm, then totally 2,187 (= 37) potential 
solutions should be tested, and Yang and Wee's heuristic obtains a solution as above. 

As one may observe, the number of the candidate solutions grows extremely fast as the setting of 
the maximum n~-value and the number of buyers increase. Imaging that, if there are seven buyers 
involved in this system and the maximum n~-value is 8, we would have totally 2,097,152 (= 8 T) 
potential solutions to be tested. In order to prevent missing the optimal solution, one needs 
to set a larger value for the maximum n~-value. However, it requests a price of spending a 
significant amount of computational efforts, but possibly, without guaranteeing to obtain the 
optimal solution by using Yang and Wee's heuristic. Also, when using large values for the 
maximum n~-value, we have often encountered an overflow problem since the enumeration load of 
Yang and Wee's heuristic exceeds the capacity of the personal computer during our experiments. 

4.2. R a n d o m  Exper iments  

In this section, we present our random experiments to show the proposed search algorithm 

outperforms Yang and Wee's [1] heuristic. The annual demand rates and the production rate were 

randomly generated from uniform distributions UNIF[2,000-12,000] and UNIF[240,000-400,000], 
respectively. The holding costs for the vendor, the buyers, and raw materials were randomly 
generated from uniform distributions UNIF[0.15-0.20], UNIF[0.35-0.40], and UNIF[0.15-0.20], 
respectively. On the other hand, we borrow the other parameters, such as the ordering cost for 
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Table 3. The comparison between the proposed search algorithm and Yang and 
Wee's [1] heuristic. 

Number Production Max Min Avg. Run Run 
of Setup Cost Error (%) Error (%) Error (%) Time of Time of 

Buyers in Y&W in Y&W Y&W H&Y Y&W 

150 4.01 2.40 3.42 3.00 0.25 

250 4.82 2.95 4.11 3.50 0.25 

2 350 5.58 3.63 4.86 5.25 0.25 

450 5.90 4.25 5.09 4.77 0.25 

550 6.22 4.07 5.55 6.00 0.25 

150 3.79 2.97 3.32 1.75 0.25 

250 6.48 4.72 5.79 2.75 0.25 

4 350 7.76 5.34 6.42 4.52 0.25 

450 8.02 5.45 6.82 5.75 3.50 

550 8.39 5.81 6.93 7.25 7.00 

150 3.56 1.89 2.50 2.25 3.75 

250 5.65 4.37 4.83 3.77 3.77 

6 350 7.47 5.43 6.46 5.75 3.75 

450 8.32 5.18 7.02 7.25 3.75 

550 8.72 4.97 6.74 9.27 3.75 

150 2.57 1.13 1.81 2.75 11,77 

250 4.40 3.37 3.88 4.75 11.52 

8 350 6.67 5.24 5.91 6.77 11.50 

450 7.89 5.29 6.87 9.25 11.02 

550 8.8i 4.46 7.20 11.77 12.27 

150 2.20 0.41 1.22 3.00 161.97 

250 3.63 2.58 3.02 5.50 161.22 

10 350 5.96 4.25 4.91 8.52 161.50 

450 6.71 4.64 5.87 11.52 161.47 

550 8.26 5. i3 6.81 17.27 161.22 

Max. 
of 

8 

9 

l l  

12 

13 

5 

7 

9 

9 

11 

5 

6 

7 

8 

10 

5 

5 

6 

7 

8 

4 

5 

5 

6 

7 

t h e  buyers ,  t h e  d e t e r i o r a t i o n  r a t e  a n d  t h e  u n i t  pr ice  for t h e  v e n d o r  a n d  t h e  buyers ,  f rom t h e  

e x a m p l e  in Y a n g  a n d  W e e ' s  [1] pape r .  Also,  fo l lowing t h e  s a m e  a s s u m p t i o n s  s t a t e d  in  Y a n g  a n d  

\Vee ' s  [1] p a p e r ,  we se t  Cb a n d  CbFb t o  b e  l a rge r  t h a n  Cp a n d  CpFp, respec t ive ly .  We  t e s t e d  five 

s e t t i n g s  of  t h e  n u m b e r  of  b u y e r s  ( N  = 2, 4, 6, 8, 10) a n d  five s e t t i n g s  of  t h e  s e t u p  cos t  for t h e  

v e n d o r  (Kp = 1500, 2500, 3500 ,4500 ,  5500).  For  e a c h  c o m b i n a t i o n  of N a n d  Kp, we r a n d o m l y  

g e n e r a t e d  500 e x a m p l e s  a n d  so lved  e a c h  of t h e m  by  t h e  p r o p o s e d  sea rch  a l g o r i t h m  a n d  Y a n g  a n d  

Wee ' s  heur i s t i c .  W e  s u m m a r i z e  t h e  c o m p a r i s o n  of  t h e s e  two  s o l u t i o n  a p p r o a c h e s  in T a b l e  3 in 

w h i c h  we use  H & Y  a n d  Y & W  to  r e p r e s e n t  t h e  p r o p o s e d  sea rch  a l g o r i t h m  a n d  Y a n g  a n d  Wee ' s  

heur i s t i c ,  respec t ive ly .  

We  have  some  o b s e r v a t i o n s  f rom T a b l e  3 as follows. F i r s t ,  w h e n  t h e  n u m b e r  of b u y e r s  is no t  

large,  t h e  r u n  t i m e  of  Y a n g  a n d  W e e ' s  h e u r i s t i c  is v e r y  s h o r t ,  b u t  i t s  s o l u t i o n  q u a l i t y  is n o t  as 

good  as t h e  p r o p o s e d  s e a r c h  a l g o r i t h m .  W h e n  t h e  n u m b e r  of  t h e  b u y e r s  is l a rger ,  t h e  p r o p o s e d  

sea rch  a l g o r i t h m  b e c o m e s  m o r e  eff icient  t h a n  Y a n g  a n d  W e e ' s  h e u r i s t i c  ( in i ts  r u n  t ime) .  Second ,  
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the  er ror  p e r c e n t a g e  of  Yang a n d  \Vee 's  so lu t ions  increases  as t h e  value of  t h e  v e n d o r ' s  s e t u p  

cost  Kp increases .  

B a s e d  on  ou r  r a n d o m  e x p e r i m e n t s  in Tab le  3, we conc lude  t h a t  t h e  p r o p o s e d  sea rch  a l g o r i t h m  

o u t p e r f o r m s  "fang a n d  Wee ' s  [1] heur is t ic .  

5. C O N C L U D I N G  R E M A R K S  

In this study, we focus on optimally determining lot-sizing policies for a deteriorating item 
among all the partners in a supply chain system so as to minimize the average total costs. We 
revise Yang and Wee's [1] model using the Fourier series to precisely estimate the vendor's in- 
ventory holding costs. Also, we transform our revised model into a more concise version by 
applying an approximation to the exponential terms in the objective function. In order to solve 
this problem, we analyze the optimality structure of our revised model and derive several inter- 
esting properties. By utilizing our theoretical results, we propose a search algorithm that can 
efficiently solve the optimal solution. Based on our numerical experiments, we show that the 
proposed algorithm outperforms the existing solution approach in the literature, especially when 
the number of buyers is larger in this supply chain system. 
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