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Abstract--The diffraction of time harmonic antiplane shear waves by a finite length crack embedded in 
a half-space is considered. Based on the qualitatively similar features of cracks and dislocations, with the 
aid of image method, the dislocation density function as well as the stress field due to such dislocations 
are expressed by a system of singular integral equations. These equations with kernels containing Bessel 
functions can be solved by Galerkin numerical scheme. As the crack is nearly in contact with the free 
surface, the problem can be regarded as the diffraction of elastic waves by an edge crack. The difference 
between numerical solutions for two types of boundary conditions, free of traction and clamped surface, 
is examined. Graphical results for the dynamic stress intensity factors as functions of waves number, angle 
of incidence and position of the crack are presented. 

1. INTRODUCTION 

Ix HAS been recognized that horizontally polarized shear waves (SH-waves) which are diffracted by 
the crack can give rise to high elevation of local stresses. The dynamic stress intensity factors, which 
may be about 30% higher than the corresponding static ones, depend on the crack size and the 
wavelength or frequence of the travelling waves [1]. Mal [2] made detailed studies on the stress field 
in the vicinity of a crack due to an incident anti-plane shear wave. Jain and Kanwal [3] and Itou [4] 
presented a solution for the problem of diffraction of normally incident anti-plane shear waves by 
two asymmetrical stationary coplanar cracks located in an infinite isotropic medium. Takakuda [5] 
obtained the stress intensity factors of two nonplanar parallel cracks. The effects of SH, P and SV 
waves on the stress intensity factors of two cracks at arbitrary positions in an infinite isotropic 
elastic medium had been analysed by means of a dislocation model developed by Huang and 
So [6-8]. 

Since attempts to analyse stress intensity factors of a crack with boundaries poses difficulties 
in analytical treatment, no wide efforts have concentrated on the elastodynamic response of a crack 
with its neighboring boundaries. Datta [9] obtained an approximate solution for the diffraction of 
SH-waves at low frequency by a canted surface-breaking crack. Stone et al. [10] used an 
approximation method to consider the diffraction of harmonic anti-plane shear waves by an edge 
crack normal to the free surface of a homogeneous semi-infinite space. Keer et al. [11] investigated 
the resonance effects for a crack near a free surface by determining displacement potentials that 
satisfy reduced wave equation and specified boundary conditions. The scattering of body waves 
by an inclined edge crack in a half-space has been studied by Zhang and Achenbach [12] by using 
boundary integral equations. Recently, by the method of matched asymptotic expansions, 
Abrahams and Wickham[13] obtained the dynamic stress field scattered by arbitrary shaped 
imperfections at the free surface of an isotropic half-space. 

In this article, the method of the dislocation model [6] is extended to solve the problems of 
a finite crack with arbitrary angle in a semi-infinite space subjected to elastic SH-waves. The 
dynamic stress intensity factors for a given instance of time and various positions of cracks are 
of interest. 

2. FORMULATION 

Consider a rectangular Cartesian coordinate system located at the free surface of a semi-infi- 
nite space. A finite crack, shown in Fig. 1, can be located at an arbitrary position provided it is 
not in contact with the free surface. All lengths are normalized with respect to the half width of 
the crack length. Let the coordinate x 'y '  rotate along with the crack, and its origin be at a distance 
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Fig. I. Two arrays of vibration screw dislocations with the same but opposite density function. 

h below the surface. The crack occupies the region of lx'l < 1, y '  = 0, - oo < z < + oo. The cracked 
elastic solid will undergo the anti-plane deformation if it is subjected to a harmonic anti-plane shear 
wave expressed as 

u~ i) = Uo sin[~ (x cos 0 + y sin 0) - ~ot] (1) 

where Uo is the displacement amplitude of  the incident wave; 0 is the angle of incidence; ~ = o9/C,  

is the wave number and C, the velocity of plane SH-waves. For  a free boundary in the semi-infinite 
space, the reflected SH-wave which is in phase with the incident wave can be expressed as [14] 

U(z r) = Uo sin[0t (x cos 0 - y sin 0) - ~ot]. (2) 

The superimposition of eqs (1) and (2) yields 

uz = 2Uo cos(~ty sin 0)sin[~x cos 0 - cot]. (3) 

The wave represents wave motion behaving as standing waves in the y direction and progressive 
waves in the x direction. For  normal incident, 0 = 90 °, the expression eq. (3) represents purely 
standing waves. Note that for 0 = 0 °, i.e. for grazing incident, there is no reflected wave. Similarly, 
for a clamped surface in the semi-infinite solid, the superimposed wave can be obtained by 
employing the displacements vanishing at y = 0 [14]. We have 

u~ = 2Uo sin(~y cos 0)sin[ctx cos 0 - cot]. (4) 

In solid mechanics, the Green's function defines the response of the rigidly supported body 
to a point force or couple. For  fracture problems dealing with static loads, the stress generated 
from each dislocation can be regarded as a Green's function. The elastic stress fields around loaded 
cracks, slip bands and twins, etc. have qualitatively similar features when viewed on a suitable scale. 
It is because they all represent the same type of incompatibility caused by the Somigliana 
dislocation. As has been proposed by Huang and So [6-8], this qualitative similarity between crack 
and dislocation causes the stress wave emitted from a vibrating screw dislocation to also be treated 
as a Green's function for elastodynamic crack problems. By superimposing an array of dislocations 
and adjusting the distribution density to fulfill the boundary conditions of  traction-free of  the crack 
faces, the stress intensity factors of  cracks in an unbounded solid subjected to SH-waves were 
obtained. 

A half-space concerning the two-dimensional motions in anti-plane shear is one of the simple 
problems that can be solved by the application of Green's function. The problem of a screw 
dislocation moving parallel to the surface with constant velocity and at a distance below the free 
surface had been solved by considering an image dislocation, with opposite sign, at the same 
distance above the free surface [15]. Based on the same concept, the results for a vibrating screw 
dislocation in an infinite medium can give an estimate of the stress field for a screw dislocation 
vibrating along the x-axis, and at a distance h below the surface of  the semi-infinite medium. 
Consider the incident sound wave propagated parallel to the negative y-direction, the screw 
dislocation with Burgers vector (0, 0, b), lying on the z-axis, then to oscillate in the x-direction. 
A SH-wave will emit, which can be represented by the Bessel functions given as [16] 



where 

Interaction of SH-waves with a finite crack 

aye(x, y, t) = A~2{a(y,  r)cos cot + b(y ,  r)sin cot} 

a ~ ( x ,  y, t) = A~2{e(y,  r)cos cot + f ( y ,  r)sin cot} 
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(5) 

a(y ,  r) = (2y 2/r2)Jo(~r ) + [(2/~r) - (4y2/~r3)]Jt (~r ) 

b (y, r) = (2y 2/r2 ) Yo (~r) + [(2/~r) - (4y 2/~r 3)] YI (~r) 

e(y ,  r) = (2xy /r2)Jo(o~r ) - (4xy /otr3)jt (o~r ) 

f (y, r) = (2xy /r 2) Yo(~r ) - (4xy /~r 3) YI (~r ) 

r z = x z + yZ 

A = - bAo#/8 

where A0 is the amplitude; o9 is the vibrating frequency of  the dislocation; # is the shear modulus; 
the subscript ~ denotes the dislocation in an infinite space. J0 and J~ are the Bessel functions of  
the first kind of  order zero and one; Y0 and Y~ are the Bessel functions of  the second kind of  order 
zero and one, respectively. The problem is readily solved by superimposing the stress fields of  the 
screw dislocation and its image; one obtains 

ayz(x, y, t) = ay~ (x, h + y, t) - -  O'y~z ( x ,  h - y, t). (6) 

When y = 0, then ay~ = 0, as it should at the free surface. Based on the dislocation model [6-8], 
the crack can be simulated by superimposing an array of  continuous distribution of  vibrating 
infinitesimal screw dislocations at the position defined by A0 sin[ogt + p(x')],  where A0 is assumed 
to be small; p ( x ' )  is the phase lag compared with incident wave. The vibration frequency of  the 
dislocations is assumed to be the same as the incident wave. Let D ( x ' )  be the distribution function 
of the dislocation density. By assuming an array of  image dislocations with density function 
-D(x'), the zero traction condition on the surface of the semi-infinite space is satisfied. The 
problem of  diffraction of SH-waves by a crack embedded in the semi-infinite space degenerates into 
diffraction of SH-waves, expressed in eq. (6), by two arrays of  vibration screw dislocations with 
the same but opposite density functions in an infinite space shown in Fig. 1, i.e. an array of 
vibrating screw dislocations with it image dislocations in an infinite space. To fulfil the requirements 
of the equation of  motion of  each dislocation on the crack, D ( x ' )  must satisfy the following 
equation for all points in the range of - 1 < x '  < 1, 

f l s')cos[cot + p(s')] + d(x ' ,  s')sin[ogt + p(s')]} D(s ' )A~2{c(x  ', ds" 
- 1  j" + - D ( s " ) A ~ 2 { [ a ( y  ", R)cos 2~b + e(y" ,  R)sin 2~b]cos[ogt +p(s")]  

- I  

+ [b(y", R)cos 2q~ + f ( y " ,  R)sin 2~]sin[ogt +p(s")]}  ds" 

= - 2 a o  sin 0 s in [~( -h  - x '  sin q~)sin 0]sin(~x' cos 4) cos 0 - w/)cos 4~ 

+ 2go cos 0 cos[a( - h  - x '  sin ~b)sin 0]cos(~x' cos 4) cos 0 - og/)sin q~ (7) 

where 

¢ ( x ' ,  s ' )  = Jo(~ i x '  - s ' [ )  + J2(~ ix '  - s ' l )  

cl(x',s')= r ' 0 ( ~ l x ' - s ' l ) +  r'2(~ I x ' -  s'l) 

R = {(2h + x '  sin 4) - s" sin 4)) 2 + (x '  cos 4) - s" cos ~b)z} I/2 

y" = - [2h cos 4) + x '  sin(24~)] 

where ao = I~Uo~, denotes the value of the shear at the incident wave front and is taken finite as 
co ~ 0. ~b is the inclined angle of the finite length crack. The unknown dislocation density D(s )  can 
be divided into two parts such as 
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Fig. 2. The stress intensity factors for a vertical subsurface crack of  finite length subjected to grazing 
incident waves. 

El (s) = AD(s) cos[p(s)] 

E2(s) = AD(s) sin[p(s)]. (8) 
Substituting eq. (8) into (7) and by comparing both sides, the coefficients of sin tot and cos tot 

in eq. (7) may be equated. A system of singular integral equations is obtained as 

f~l  ~t:{E~(s'){c(x" s') - [a(y", R)cos 2~b + R)sin 2~b]} e(y", 

+ E2(s){d(x', s') - [b(y", R)cos 2~b + f (y" ,  R)sin 2~b]}} ds '  

= -2~o  sin 0 sin[~t(- h - x '  sin ~b)sin 0]sin(~x' cos ~b cos 0)cos 

+ 2o0 cos 0 cos [~ ( -h  - x '  sin ~b)sin 0]cos(~x' cos ~b cos 0)sin tk 

~, ~t2{E, (s'){d(x', s') - [b(y", R)cos 24 + f (y" ,  R)sin 2q~]} 

+ E 2 ( s ' ) { - c ( x ' ,  s') + [a(y", R)cos 2~b + e(y", R)sin 2~b]}} ds '  

= 2ao sin 0 s in [a ( -  h - x '  sin ~b)sin 0]cos(0tx' cos ~ cos 0)cos ~b 

+ 2tr o cos 0 cos [= ( -h  - x ' s in  ~b)sin 0]sin(0tx' cos ~b cos 0)sin ~b. 
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Fig. 3. Stress intensity factors for an edge crack normal to the free surface subjected to inclined incident 
waves. 
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Fig. 4, Stress intensity factors of a horizontal subsurface crack vs distance h below the free surface. 

3. NUMERICAL METHOD 

There are two unknowns, E~ (s) and E2(s), to be determined in eq. (9) which can be separated 
into the singular parts, Hadamard's type and logarithmic singularity, and regular parts [6]. The 
solution of eq. (9) can be approximated by its truncated Chebyshev expansion [6]. 

N 

E,(s) ,~ ~ a.U.(s)(1 - s2) '/2 
n = 0  

N 

E2(s) .~ ~ b.U.(s)(l  - s:) 1/2. (10) 
n = 0  

Substituting eq. (10) into (9) and performing necessary integration procedures, the coefficients a., 
b. as the solutions of the equations can be obtained by using the Galerkin's method with N = 5. 
Once the coefficients have been obtained, the dynamic stress intensity factor can be determined by 
carrying out the limiting process defined as 

K3 = limx.-, [ 2 ( x ' -  1)]'/2{;~, [1 / (x-s)2][E,(s)s inogt+ E2(s)cosogt] ds} 

= IKglcos(cot - &) (11) 

where [K~t is the amplitude of dynamic stress intensity factor with respect to tip B; 6 is the phase 
angle. 
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Fig. 5. Variation of stress intensity factors vs wave numbers and the distance between the free surface 

and crack. 



222 J . Y .  H U A N G  

2.0 

0.5 ,, ,, ~ , ~  

Half-space " , \ \  
- - , In f in i te  Spa  ce , ," 

l 

0 ° 200 4 0 ° ~  60 ° 800 

Fig, 6. Comparisons of  the stress intensity factors of  an inclined subsurface crack and an inclined crack 
embedded in an infinite medium. 

[K~l=4{[~=oa.(n+ 1)]: + I.=~o b.(n + 1)12}1/2 

{[20 ]7. 6 = tan -~ a.(n + 1) b.(n + 1) (12) 
n 0 

Similarly, the amplitude of dynamic stress intensity factors with respect to the tip A can be 
expressed as 

{[20 ? ]7 IK~I = 4  a . ( -1 ) " (n  + 1) + b . ( -1)"(n  + 1) . (13) 
n = 0 

4. RESULTS AND DISCUSSION 

In Fig. 2, the curves for 0 = 0 ° and ~ = 90 ° represent the stress intensity factors for collinear 
cracks of  length 2 in an infinite space and agree with that given in ref. [4]. As the distance from 
crack to free surface becomes large enough, the dynamic stress intensity factors converge to the 
values of  a single crack [1]. On the other hand, as one of  the crack tips is nearly in contact with 
the free surface, the problem can be treated as the diffraction of  elastic waves by an edge crack. 
The calculated stress intensity factors agree with the results of the approximation method derived 
by Stone et al. [10] as shown in Fig. 3. Note that due to the difference of  the definition of  the stress 
intensity factor, the calculated values are two times the values of Stone [10]. 

3 . 5  

edge crack 

0 . 5  
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Fig. 7. The stress intensity factors for an inclined edge crack subjected to grazing and normal incident 
w a v e s .  
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Fig. 8. Stress intensity factors of a horizontal subsurface crack vs the angle of incidence for traction-free 
surface. 

To show the effect of the free surface, the stress intensity factors of a horizontal subsurface 
crack subjected to normal incident waves are shown in Fig. 4. The stress waves are diffracted and 
reflected from boundary to boundary within the free surface and crack faces. The dynamic stress 
intensity factors fluctuate with the distance from crack to free surface at a nearly constant frequency 
which is proportional to the wave number. Resonance vibrations of the layer between the crack 
and the free surface are observed in Fig. 5. It is expected that a lower value of h will produce a 
stronger resonance effect. Similar results had been shown in ref. [11] for considering a horizontal 
subsurface crack engulfed in an incident field of uniform tension and uniform shear. Results 
showing the variation of stress intensity factors vs the inclined angles of the subsurface crack 
subjected to normally incident waves are given in Fig. 6. The stress intensity factors of a crack 
embedded in an infinite medium are also presented for comparison. In general, due to the effect 
of the surface of the half-space, the stress intensity factor of a subsurface crack is larger than that 
of a crack in an infinite space. The stress intensity factors of an inclined edge crack are shown in 
Fig. 7. For grazing incident wave, the stress intensity factors increase with the inclined angle of 
the edge crack and become a constant when the inclined angle exceeds 60 °. 

Note that to fulfil the requirement of zero displacement on the clamped surface, the image 
dislocation with the same density function D(x') and the superimposing wave expressed in eq. (4) 
should be applied. The difference between the numerical solutions of two types of boundary 
conditions, free of traction and clamped surface, is examined as shown in Figs 8 and 9, respectively. 
The effects of interface between the incident and reflected waves due to these two boundary 
conditions are quite different as can be seen from the calculated stress intensity factors of a 
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Fig. 9. Stress intensity factors of a horizontal subsurface crack vs the angle of incidence for clamped 
surface. 
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horizontal  subsurface crack subjected to incident waves with 0 = 0 ° and 0 = 90 °. For  traction-free 
surface, the stress intensity factor  is zero when the crack is subjected to a grazing incident wave. 
On  the contrary,  for clamped surface, the stress intensity factor  is zero only when the crack is 
subjected to a normal  incident wave. Fur thermore,  by compar ing  the amplitudes and fluctuations 
shown in Figs 8 and 9, the effect o f  the boundary  o f  clamped type on the diffracted stress field 
seems to be more  significant. 

5. C O N C L U S I O N S  

By combining the stress field emitted f rom an array o f  vibrating screw dislocations with its 
associated image array o f  dislocations, the stress intensity factors o f  a subsurface finite crack were 
determined. Fur thermore ,  by assuming the crack to be nearly in contact  with the free surface, the 
solution o f  the diffract ion o f  elastic waves by an edge crack can be obtained. Conclusions f rom 
this work  can be summarized below: 

(1) The effect o f  the surface on the diffraction wave field is significant. The dynamic  stress 
intensity factors fluctuate with the distance f rom crack to free surface at a nearly constant  frequency 
which is propor t iona l  to the wave number.  Resonance vibrations o f  the layer between the cracks 
and the free surface are observed as had been indicated in ref. [11]. 

(2) By assuming the crack to be nearly in contact  with free surface, the problem of  the 
diffraction o f  elastic waves by an edge crack can be solved by the dislocation model.  For  grazing 
incident wave, the stress intensity factors increase with the inclined angle o f  the edge crack and 
become a constant  when the inclined angle exceeds 60 °. 

(3) The effects o f  interference between the incident and reflected waves can be quite different 
concerning the bounda ry  condition.  The results o f  two types o f  boundary  conditions, free o f  
t ract ion and clamped surface, are compared.  

Al though  the results presented here are for a single crack in a half-space, the method  can be 
generalized to study the problem o f  crack--crack interaction under  dynamic  considerations by the 
technique presented in ref. [8]. Fur thermore ,  the method  o f  using dislocation model  associated with 
image concept  also shows a promising approach  in handling more  complex problems o f  diffraction 
o f  SH-waves by multiple cracks in a region bounded  by two planes, for example a plate or a wave 
guide. These are presently under  investigation and will be reported later. 
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