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Abstract

In this paper, we propose a new learning algorithm that can be used to design TSK-type neuro-fuzzy networks. Though there has
been a great deal of interest in the use of immune algorithms (IAs) for computer science and engineering, in terms of fundamental
methodologies, they are not dramatically different from other algorithms. In order to enhance the IA performance, we propose the
immune-based symbiotic particle swarm optimization (ISPSO) for use in TSK-type neuro-fuzzy networks for solving the prediction
and skin color detection problems. The proposed ISPSO embeds the symbiotic evolution scheme in an IA and utilizes particle swarm
optimization (PSO) to improve the mutation mechanism. In order to avoid trapping in a local optimal solution and to ensure the
search capability of a near global optimal solution, mutation plays an important role. Therefore, we employed the advantages of PSO
to improve the mutation mechanism and used a method that introduces chaotic mapping with certainty, ergodicity and the stochastic
property into PSO to improve global convergence. Unlike the IA that uses each individual in a population as a full solution to a
problem, symbiotic evolution assumes that each individual in a population represents only a partial solution to a problem. Complex
solutions combine several individuals in the population.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Fuzzy systems and neural networks are complementary technologies that can be used in the design of intelligent
systems. Each method has its own strengths and weaknesses. Neural networks are essentially low-level computational
structures and algorithms that offer good performance in dealing with sensory data, while fuzzy system technologies
often deal with issues such as reasoning on a high-level than neural networks. However, since fuzzy systems do not
have much learning capability, it is difficult for a human operator to tune the fuzzy rules and membership functions
from the training data. Also, because the internal layers of neural networks are opaque to the user, the mapping rules
in the networks are not visible and are difficult to understand. Thus, a promising approach for reaping the benefits of
both fuzzy systems and neural networks is to merge or fuse them into an integrated system [29].

Neuro-fuzzy networks [27,40,13–15,30,5,22] are gaining research interest. They not only have attracted considerable
attention in recent years due to their diverse applications in fields such as pattern recognition, image processing, and
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control, but they can also handle imprecise information through linguistic expressions. However, these models often
have a serious drawback; that is, they use the backpropagation (BP) learning algorithm [5,14]. Using the steepest
descent optimization technique in BP training could minimize the error function, allowing the algorithm to reach the
local minima very fast, but never finds a global solution. In addition, BP training performance depends on the initial
system parameter values. For different network topologies one must derive new mathematical expressions for each
network layer.

Considering the aforementioned disadvantages, suboptimal performance occurs, even for a suitable neuro-fuzzy
network topology. Hence, technologies capable of training the system parameters and finding the global solution
while optimizing the overall structure are needed. Lee and Takagi [23] proposed a design method of the fuzzy system
using genetic algorithms (GAs). Since GAs are heuristic and stochastic, they are less likely to get stuck at the local
minimum, and they are based on populations made up of individuals with specific behaviors similar to certain biological
phenomena. These common characteristics have led to the development of evolutionary computation as an increasingly
important field.

Recently, there has been a great deal of interest in the use of immune systems and algorithms in computer science
and engineering [17,24,41,43,7]. Kalinli [17] proposed an artificial immune algorithm (IA) for an infinite impulse
response (IIR) filter design. Liao [24] embedded chaos search capability in immune GAs to solve short-term thermal
generating unit commitment problems. Liao’s method uses fuzzy systems to determine the rate of crossover and mutation
mechanism. Wen [41] proposed an immune evolutionary algorithm for sphericity error evaluation. A self-adaptive
mutation operator was constructed to divide the mutation step size of every antibody according to its environment.
Zhou’s proposal [43] was based on the immune recognition principle to predict the performances of hot-rolled steel
bars. Chun [7] employed an IA as the search method for the shape optimization of an electromagnetic device. Chun’s
search method improved the global search performance of the GA by using the immune network theory. However,
these approaches in the fundamental methodologies are not dramatic in terms of overall performance.

This study proposes the immune-based symbiotic particle swarm optimization (ISPSO) for use in TSK-type fuzzy
networks to solve the prediction and skin color detection problems. The proposed ISPSO embeds the symbiotic evolution
scheme in an IA and utilizes particle swarm optimization (PSO) to improve the mutation mechanism.

The PSO algorithm, proposed by Kennedy and Eberhart [19], has proved to be very effective for solving global
optimization. It is not only a recently invented high-performance optimizer that is easy to understand and implement,
but it also requires little computational bookkeeping and generally only a few lines of code [3]. In order to avoid
trapping in a local optimal solution and to ensure the search capability of a near global optimal solution, mutation
plays an important role in ISPSO. Therefore, we employed the advantages of PSO to improve the mutation mechanism.
However, the parameters (�, r1 and r2) of the traditional PSO are the key factors that affect convergence [37,32,16],
where �, r1 and r2 are called the coefficient of the inertia term, the cognitive term and the society term, respectively. In
fact, the parameters of the traditional PSO cannot ensure the optimization’s ergodicity entirely in phase space because
they are absolutely random. Therefore, we use a method that introduces chaotic mapping with certainty, ergodicity and
the stochastic property into PSO so as to improve global convergence.

In addition to modifying the PSO, we improve the IA structure. Unlike the IA that uses each individual (antibodies)
in a population as a full solution to a problem, symbiotic evolution [16,31] assumes that each individual in a population
represents only a partial solution to a problem. Complex solutions combine several individuals in the population. Our
proposed method improves the search ability and greatly increases the convergence speed in simulations.

This paper is organized as follows. Section 2 describes the structure of the TSK-type neuro-fuzzy network. The
proposed ISPSO is presented in Section 3. In Section 4, the proposed ISPSO method is evaluated, and its performances
are benchmarked against other structures. Finally, conclusions on the proposed method are given in the last section.

2. Structure of the TSK-type neuro-fuzzy network

This section describes TSK-type neuro-fuzzy networks [36]. A fuzzy logical system is a knowledge-based system
characterized by a set of rules that determine the relationship between the input and the output. The reasoning process
is defined by means of the inference method, aggregation operators, and fuzzy connectives. The fuzzy knowledge base
contains the definition of fuzzy sets, which is stored in a fuzzy database, and a collection of fuzzy rules. The definition
of fuzzy sets and the collection of fuzzy rules constitute the fuzzy rule base.
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Fuzzy rules are defined by their antecedents and consequents, which relate an observed input state to a desired output.
Most fuzzy systems employ the inference method proposed by Mamdani in which the consequent parts are defined by
fuzzy sets [29]. A Mamdani-type fuzzy rule has the form:

IF x1 is A1j (m1j , �1j ) and x2 is A2j (m2j , �2j ) . . . and xn is Anj (mnj , �nj )

THEN y′ is Bj (mj , �j ), (1)

where mij and �ij represent a Gaussian membership function with mean and deviation, respectively, of the ith dimension
and the jth rule node. The consequent Bj of the jth rule is aggregated into one fuzzy set for the output variable y′. The
crisp output is obtained through defuzzification, which calculates the centroid of the output fuzzy set. In addition, the
most common fuzzy inference method proposed by Mamdani and Takagi–Sugeno–Kang (TSK) introduced a modified
inference scheme [36]. The first two parts of the fuzzy inference process, fuzzifying the inputs and applying the fuzzy
operator, are exactly the same. A TSK type model employs different implication and aggregation methods than the
standard Mamdani model. Instead of fuzzy sets being used, the conclusion part of a rule is a linear combination of the
crisp inputs, as follows:

IF x1 is A1j (m1j , �1j ) and x2 is A2j (m2j , �2j ) . . . and xn is Anj (mnj , �nj ),

THEN y′ = w0j + w1j x1 + · · · + wnjxn, (2)

where mij and �ij represent a Gaussian membership function with mean and deviation, respectively, of the ith
dimension and the jth rule node. Since the consequent of a rule is crisp, the defuzzification step becomes obsolete in
the TSK inference scheme. Instead, the model output is computed as the weighted average of the crisp rule outputs.
This computation is less expensive than calculating the center of gravity.

In this paper, we adopt a TSK-type neuro-fuzzy network with ISPSO to solve the prediction and skin color detection
problems. The structure of a TSK-type neuro-fuzzy network is shown in Fig. 1, where n and R are, respectively, the
number of input dimensions and the number of rules. It is a five-layer network structure. We shall describe the operation
functions of the nodes in each layer. In the following description, u(l) denotes the output of a node in the lth layer.

Layer 1 (Input node). No computation is done in this layer. The node only transmits input values to layer 2 directly

u
(1)
i = xi. (3)

Layer 2 (Membership function node). Nodes in this layer correspond to one linguistic label of the input variables in
layer 1; that is, the membership value specifying the degree to which an input value belongs to a fuzzy set is calculated
in layer 2. For an external input xi , the following Gaussian membership function is used:

u
(2)
ij = exp

(
−[u(1)

i − mij ]2

�2
ij

)
, (4)

where mij and �ij are, respectively, the mean and the deviation of a Gaussian membership function of the jth term of
the ith input variable xi .

Layer 3 (Rule node). The output of each node in this layer is determined by the fuzzy AND operation. Here, the
product operation is utilized to determine the firing strength of each rule. The function of each rule is

u
(3)
j =

∏
i

u
(2)
ij . (5)

Layer 4 (Consequent node). Nodes in this layer are called the consequent nodes. The input to a node in layer 4 is the
output delivered from layer 3, and the other inputs are the input variables from layer 1, as depicted in Fig. 1. For this
kind of node, we have

u
(4)
j = u

(3)
j

(
w0j +

n∑
i=1

wijxi

)
, (6)

where the summation is over all the inputs, and wij are the corresponding parameters of the consequent part.
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Fig. 1. The structure of the TSK-type neuro-fuzzy network.

Layer 5 (Output node). Each node in this layer corresponds to a single output variable. The node integrates all the
actions recommended by layers 3 and 4 and acts as a defuzzifier with

y = u(5) =
∑R

j=1 u
(4)
j∑R

j=1 u
(3
j )

=
∑R

j=1 u
(3)
j

(
w0j +∑n

i=1 wijxi

)
∑R

j=1 u
(3)
j

, (7)

where R is the number of fuzzy rules and n is the number of input variables.

3. The immune-based symbiotic particle swarm optimization (ISPSO)

The IA is a global search algorithm and is based on the characteristics of the biological immune system. It is an
adaptive, distributed, and parallel intelligent system that has the capability to control a complex system. The immune
system is aimed at protecting living bodies from the invasion of various foreign substances such as viruses, bacteria,
and other parasites (called antigens), and eliminating debris and malfunctioning cells. When an animal is exposed
to an antigen, some subpopulation of B cells responds by producing antibodies. Antibodies are molecules attached
primarily to the surface of B cells whose aim is to recognize and bind to antigens. B cells, in addition to proliferating
and differentiating into plasma cells, can differentiate into long-lived B memory cells. Memory cells circulate through
the blood, lymph, and tissues and, when exposed to a second antigenic stimulus, commence to differentiate into plasma
cells capable of producing high-affinity antibodies, preselected for the specific antigen that had stimulated the primary
response. To perform this function, the immune system has to be able to recognize all cells (or molecules) within
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Fig. 2. Clonal selection principle.

the body and categorize these cells as self or non-self. Fig. 2 depicts a model representing the relationship among
components in an immune system [4].

Analogous to the biological immune system, the proposed algorithm has the capability of seeking feasible solutions
while maintaining diversity. The proposed ISPSO embeds the symbiotic evolution scheme in an IA and utilizes PSO
to improve the mutation mechanism to perform parameter learning.

The PSO algorithm, proposed by Kennedy and Eberhart [19], has proved to be very effective for solving global
optimization. It is not only a recently invented high-performance optimizer that is very easy to understand and implement,
but it also requires little computational bookkeeping and, generally, only a few lines of code. Recently, an adaptation of
PSO specifically designed for biomedical image registration was proposed by Wachowiak et al. [39]. In order to avoid
trapping in a local optimal solution and to ensure the search capability of a near global optimal solution, mutation plays
an important role in ISPSO. Therefore we employed the advantages of PSO to improve the mutation mechanism.

However, the parameters (�, r1 and r2) of the traditional PSO are the key factors that affect convergence [37,32,16].
In fact, parameters of the traditional PSO cannot ensure the optimization’s ergodicity entirely in phase space because
they are absolutely random. Therefore, we use a method that introduces chaotic mapping with certainty, ergodicity and
the stochastic property into PSO to improve global convergence.

In addition to modifying the PSO, we improve the IA structure. In a normal evolution algorithm, a single individual is
responsible for the overall performance, with an affinity value assigned to that individual according to its performance.
The traditional IA uses each antibody to represent a population as a full solution to a problem. Symbiotic evolution
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Fig. 3. A representation of a fuzzy system using ISPSO.

assumes that each individual (sub-antibody) in a population represents only a partial solution to a problem. Complex
solutions combine several individuals in the population. The goal of each individual is to form a partial solution that
can be combined with other partial solutions currently in the population to build an effective full solution. The structure
of the antibodies in the symbiotic evolution is shown in Fig. 3. In this figure, we will reserve the best parameters of
fuzzy system (i.e., the best sub-antibodies) by the cooperative best (Cbest).

As shown in [16,31], partial solutions can be characterized as specializations. The specialization property ensures
diversity and prevents a population from converging to a suboptimal solution. A single partial solution cannot occupy
a population since there must be other specializations present.

A detailed ISPSO of the TSK-type neuro-fuzzy network is presented in Fig. 4. The whole learning process is described
step-by-step below.

3.1. Initial population production

The coding step is concerned with the membership functions and the corresponding parameters of the consequent
part of a fuzzy rule that represent sub-antibodies suitable for ISPSO. We will discuss this first. The initialization step
assigns the population values before the evolution process begins. This step in ISPSO codes a rule of a TSK-type
neuro-fuzzy network into a sub-antibody. Fig. 5 shows an example of a rule of the TSK-type neuro-fuzzy network
coded into a sub-antibody, where i and j represent the ith dimension and the jth rule, respectively. In this paper, a
Gaussian membership function is used with variables representing the mean and deviation of the membership function.
Each fuzzy rule in Fig. 1 has the form in Eq. (2), where mij and �if represent a Gaussian membership function with
mean and deviation of the ith dimension and jth rule node.



2896 C.-J. Lin / Fuzzy Sets and Systems 159 (2008) 2890–2909

Begin

Production initial 
population

Randomly select sub-
antibodies from each 
subgroup to compose 

fuzzy system

Calculate
affinities value by 

the TSK-type 
neuro-fuzzy

network

Are all the 
antibodies
selected?

NO YES

Affinities
assignment for all 

the antibodies 

Reproduction

Crossover

Chaos PSO 
mutation

End

Termination?

YES

NO

Sort the 
antibodies by 
affinity value 

Fig. 4. Flowchart of the proposed ISPSO designs method.
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Fig. 5. Coding a fuzzy rule into a sub-antibody in the ISPSO method.

The number of fuzzy rules and approximate estimates of the corresponding parameters, such as means and variances,
describing the fuzzy term sets in the precondition parts need to be extracted from given input–output pairs. Thus,
the choice of clustering technique in neuro-fuzzy networks is an important consideration. This is due to the use of
partition-based clustering techniques, such as fuzzy C-means (FCM) [12], possibilistic C-means (PCM) [21], linear
vector quantization (LVQ) [11], fuzzy Kohonen partitioning (FKP), and pseudo FKP [2], to perform cluster analysis.
However, such clustering techniques require prior knowledge such as the number of clusters present in a data set. To
solve the above problem, online-based cluster techniques were proposed [18,38]. But there still is a problem with these
methods; namely, the clustering methods [18,38] only consider the total variations of the mean and variance in all
dimensions of the input data. This is because the cluster numbers increase quickly.
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In this paper, we use the self-clustering algorithm (SCA) [28,26] to partition the input space to create fuzzy rules
(i.e., generate first initial sub-antibody). It is an online and distance-based connectionist clustering algorithm, which is
unlike the traditional clustering techniques [12,21,11,2,18,38]. The tendency of the traditional clustering techniques is
to consider the total variations in all dimensions of the input data that will cause clusters to extend too fast. According
to the above-mentioned problems, the SCA method considers the variation of each dimension for the input data. The
online SCA is a fast, one-pass algorithm that dynamically estimates the number of clusters in a set of data and finds
the current centers of clusters in the input data space. In any cluster, the maximum distance between an example point
and the cluster center is less than a threshold value. This clustering algorithm sets clustering parameters and affects the
number of clusters to be estimated.

In the clustering process, the data examples come from a data stream. The clustering process starts with an empty
set of clusters. The clusters will be updated and changed depending on the position of the current example in the input
space. In the last step, the SCA generates the first initial sub-antibody of each rule utilizing a real variable string, and
the other sub-antibodies of a population of each rule are generated to add a random value by the first sub-antibody.

3.2. Affinity value assignment step

The affinity value of each sub-antibody is computed by summing up the affinity values of all the feasible combinations
of that rule with all other randomly selected rules and then dividing the sum by the total number of combinations. The
details for assigning the affinity value are described step-by-step as follows:

Step 1: Randomly select R fuzzy rules (sub-antibodies) from each group of rules with size ps to build a fuzzy system.
Step 2: Evaluate every fuzzy system that is generated from step 1 to obtain an affinity value. The affinity value is

designed according to the follow formulation:

Affinity value = 1

1 +
√

1
Nt

∑Nt
k=1(yk − yd

k )2
, (8)

where yk represents the kth model output, yd
k represents the desired output, and Nt represents the number of the training

data.
Step 3: Divide the affinity value by R and accumulate the divided affinity value to the selected R rules with their

affinity value records that were initially set to zero.
Step 4: Repeat the above steps until each rule (sub-antibody) in each group of rules has been selected a sufficient

number of times. Record the number of fuzzy systems in which each sub-antibody has participated.
Step 5: Divide the accumulated affinity value of each sub-antibody by the number of times it has been selected.
Step 6: Sort these sub-antibodies in each group of rules according to decreasing affinity values.

3.3. Reproduction step

Reproduction is a process in which individual strings are copied according to their affinity values. In this the-
sis, we use the roulette-wheel selection method [9]—a simulated roulette is spun—for this reproduction process
(see Fig. 6). In Fig. 6, the intermediate population is P ′, which is generated from identical copies of a sub-antibody
sampled by spinning the roulette wheel a sufficient number of times. The better performing sub-antibody (of higher
affinity value) in the top-half of the population advances to the next generation (see Fig. 7). The other half of the
population is generated by the top-half of the parent generation to perform crossover, which is chosen by tournament
selection and chaos PSO mutation operations. A flowchart of the reproduction, crossover, and mutation steps is shown
in Fig. 7.

3.4. Crossover step

Reproduction directs the search toward the best existing sub-antibodies but does not create any new ones. In nature,
an offspring has two parents and inherits genes from both. In this paper, we use tournament selection [9], which selects
the top-half of the best performing sub-antibodies [16]. The process is that we randomly pick three sub-antibodies and
select the sub-antibody with the best affinity value. This process is repeated until we have two different sub-antibodies
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Fig. 7. A flowchart of the reproduction, crossover and mutation steps.

from the top-half of the best performing group of rules for the crossover step. The sub-antibodies are crossed and
separated using a two-point crossover; that is, the new sub-antibodies are created by exchanging the site’s values with
the selected sites of the old sub-antibodies. After this operation, the sub-antibodies with poor performances are replaced
by the newly produced offspring.

3.5. Mutation step

Although reproduction and crossover will produce many new strings, they do not introduce any new information to
all the groups of rules at the site of the sub-antibodies. The parameters (�, r1 and r2) of the traditional PSO are the key
factors that affect convergence. In fact, parameters of the traditional PSO cannot ensure the optimization’s ergodicity
entirely in phase space because they are absolutely random. We use a method that introduces chaotic mapping with
certainty, ergodicity and the stochastic property into PSO to improve global convergence. The parameters are modified
by the following equation:

ri(t + 1) = � ∗ ri(t) ∗ (1 − ri(t)), 0�r(0)�1, i = 1, 2, 3, (9)

where � is the control parameter. Although the above equation is deterministic, it exhibits chaotic dynamics when
� = 4 and r(0) /∈ {0, 0.25, 0.5, 0.75, 1}. That is, it exhibits sensitive dependence on initial conditions, which is a basic
characteristic of chaos.
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On the other hand, the weight scale operator � will affect the performance of the algorithms. A large scale contributes
to the search for the global optimal solution in an expansive area. However, its precision is not that good for rough
search. A small scale improves the precision of the optimal solution, but the algorithm may be trapped in a local
optimization [6]. Thus, Shi and Eberhart [35] significantly improved the performance of the traditional PSO with a
linearly varying weight over the generations. The improvement linearly varies from 0.9 at the beginning of the search
to 0.4 at the end. Therefore, we use an adaptive weight scale, which can be expressed as follows:

� = �max − �max − �min

iterationmax
× iterationN, (10)

where �max and �min denote the maximum and minimum of �, respectively, iterationmax denotes the total number of
evolution generations, and iterationN denotes the current number of evolution generations.

In recent years, many researchers [42,8] have proposed carrying out stability analysis of the dynamics of PSO in
order to understand how it searches for a globally optimal solution and to devise a strategy to tune its parameters. In this
paper, we propose the new velocity update function �vi(k +1) to improve performance. We hope it will accelerate every
sub-antibodies in a direction. The velocity of the sub-antibody at the (k + 1)th iteration is redefined in the following
equation:

→
vi(k + 1) = � × →

vi(k) + �1 × rand() × (Lbest − →
xi(k))

+�2 × rand() × (Gbest − →
xi(k)) + �3 × rand() × (Cbest − →

xi(k)), (11)

where � is the coefficient of inertia, �1 is the cognitive study, �2 is the society study, and �3 is the group study.

3.6. Promotion and suppression of sub-antibodies

In order to eliminate antigens and keep diversity to a certain degree, we use information entropy theory to measure
the diversity of sub-antibodies. If the affinity between two sub-antibodies is greater than the suppression threshold Thaff ,
these two sub-antibodies are similar, and the sub-antibody of lower affinity value is eliminated. The sub-antibodies
with high antigenic affinity are transformed into memory cells; others with low antigenic affinity are eliminated.
Fig. 8 shows the IA composed of N sub-antibodies having L genes.

From information entropy theory, we get

IEl (N) =
N∑
i=l

−Pil log Pil, (12)
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where Pil is the probability that the ith allele comes out at the lth gene. The diversity of the genes is calculated using
Eq. (12). The average entropy value IE(N) of diversity can be also computed as follows:

IE(N) = 1

N

L∑
l=1

IEl (N), (13)

where L is the size of the gene in a sub-antibody. There are two kinds of affinities in ISPSO. One explains the relationship
between a sub-antibody and an antigen using Eq. (8). The other accounts for the degree of association between the
jth sub-antibody and the kth sub-antibody and measures how similar these two sub-antibodies are. It can be calculated
by using

Affinity_Abjk = 1

1 + IE(2)
. (14)

4. Simulation results

In order to demonstrate the performance of the proposed ISPSO approach, experiments were conducted on the
prediction and skin color detection problems using two different data sets. The initial parameters before training are
given in Table 1. All the programs were developed using Visual C + + 6.0, and each problem was simulated 50 times
on a Pentium IV 3.2 GHz desktop computer.

4.1. Example 1: prediction of the chaotic time series

We used the Mackey–Glass equation to generate time series data. The chaotic time series is a non-linear, delay-
differential equation whose dynamics exhibit chaotic behavior. The Mackey–Glass chaotic time series x(t) in consid-
eration here is generated from the following delay-differential equation:

dx(t)

dt
= 0.2x(t − �)

1 + x10(t − �)
− 0.1x(t). (15)

Crowder [9] extracted 1000 input–output data pairs {x, yd} which consist of four past values of x(t), i.e.,

[x(t − 18), x(t − 12), x(t − 6), x(t); x(t + 6)], (16)

where � = 17 and x(0) = 1.2. There are four inputs to the TSK-type neuro-fuzzy network, corresponding to the
values of x(t), and one output representing the value x(t + �t), where �t is a time prediction into the future. For the
simulation, three cross-validation [1,33] groups of training and testing data are used. They are CV1, CV2, and CV3.
The training and testing windows are labeled as such in Fig. 9.

In this example, through the SCA, the number of fuzzy rules we can get is seven. The number of sub-antibodies for
a group of rules is set 20. Fifty experiments were run. Each experiment ran 500 epochs. In order to demonstrate the
performance of the ISPSO method, we used ISPSO method to update the parameter � with chaos PSO (i.e., Eq. (9)) and

Table 1
The initial parameters before training

Parameters Value

Coding type Real number
[�min,�max] [0.4,0.9]
�1, �2 1
�3 2
Weight value (�) 0.6
Suppression threshold (Thaff ) 0.9
Crossover rate 0.5
Mutation rate 0.2
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Fig. 9. Three cross-validation groups of training and testing data.

Table 2
Comparison results of various updated formula of ISPSO

RMS error

CV1 CV2 CV3 Average

ISPSO With chaos PSO and adaptive weight (�) value 0.0056 0.0043 0.0052 0.0051
With traditional PSO and adaptive weight (�) value 0.007 0.0061 0.0066 0.0066
With traditional PSO and fix weight (�) value 0.0072 0.007 0.0068 0.007

adaptive weight (�) value (i.e., Eq. (10)), to update the parameter � of traditional PSO and adaptive weight (�) value,
and to update the parameter � of traditional PSO and fix weight (�) value, respectively. However, the comparison
results are tabulated in Table 2.

In this example, we compared a TSK-type neuro-fuzzy network using the proposed ISPSO method, the PSO method
[19], and the IA method [7], respectively. The prediction outputs of the chaotic time series are shown in Fig. 10(a). The
prediction errors between the proposed model and the desired output are shown in Fig. 10(b). Figs. 10(c) and (d) show
the prediction results and the prediction errors of the IA method [7]. Figs. 10(e) and (f) show the prediction results and
the prediction errors of the PSO method [19]. The learning curves of the proposed ISPSO method, the IA method, and
the PSO method are shown in Fig. 11. Furthermore, we also compared our proposed method with TGA [23], GFPE
[20], GEFREX [34], and ANFIS [13]. The results of comparison with other existing methods are tabulated in Table 3.
We find that the proposed method obtains better prediction results than other existing methods.

4.2. Example 2: skin color detection problem

Current human recognition methods, such as fingerprinting, retinal scanning, and voice detection have become
mature technologies. The aforementioned detection processes generally require a cooperative subject, views from
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Fig. 10. (a) The prediction results of the ISPSO method in CV1. (b) The prediction errors of the ISPSO method. (c) The prediction results of the IA
method [7] in CV1. (d) The prediction errors of the IA method [7]. (e) The prediction results of the PSO method [19] in CV1. (f) The prediction
errors of the PSO method [19].
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Fig. 11. The learning curves of the proposed ISPSO method, the IA method, and the PSO method.

Table 3
Performance comparison of various existing methods

Method RMS error

ISPSO 0.0051
PSO [19] 0.039
IA [7] 0.034
TGA [23] 0.036
GFPE [20] 0.026
GEFREX [34] 0.0061
ANFIS [13] 0.07

Fig. 12. A flowchart of the skin color detection system.

certain aspects, and physical contact with close subject proximity. Often people feel that these detection systems
violate their privacy. Skin color detection is a non-contact detection method.

In skin color detection, users pass through detection areas, with a computer system scanning the face in a non-
intrusive manner. Skin color detection plays an important role in applications such as face recognition and face image
database management, and it is also a crucial step to detect faces in identification applications.
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Table 4
Experimental results using cross-validation model

CV1 (%) CV2 (%) CV3 (%) Average (%)

RMS error (training) 98.89 97.63 95.72 97.41
RMS error (testing) 93.47 91.83 92.11 92.47
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Fig. 13. The accuracy rate of training data with different generations for 50 runs.

Table 5
The best, worst, and average accuracy rate of training data with different generations for 50 runs

Generations

10 (%) 50 (%) 100 (%) 150 (%) 200 (%)

Best accuracy rate (training) 98.12 98.57 99.12 99.12 99.13
Worst accuracy rate (training) 74.80 78.67 82.21 82.23 82.24
Average accuracy rate (training) 94.66 97.91 98.89 98.89 98.90

Fig. 12 shows a flowchart of a skin color detection system. The detection process is as follows. We take a color image
and perform lighting compensation to delete many lighting conditions caused by chrominance. Because the RGB color
space cannot clearly segment the skin tone regions, we transform the RGB color space into the YCbCr color space.
Then, using skin tone cluster as a characteristic in the YCbCr color space, we get the Y, Cb, and Cr information of
the color image as the features into the classifier. After classifier computation, the output consists of skin or non-skin
information used to detect the facial region.

We used the California Institute of Technology (CIT) face database on http://www.vision.caltech.edu/
Image_Datasets/faces/. The database has 450 color images, the size of each being 320 ∗ 240 pixels, and contains
27 different people and a variety of lighting, backgrounds and facial expressions.

Three input dimensions (Y, Cb, and Cr) were used in this experiment. We chose 6000 training data and 6000 testing
data. We used the CIT database to produce both the training data and the testing data. We chose 3000 skin and 3000
non-skin pixels as the training data in the color images. Also, we chose other 3000 skin and 3000 non-skin pixels as the
testing set. The three cross-validation groups are denoted as CV1, CV2, and CV3, respectively. Each cross-validation
group consists of training and test sets that are randomly generated. We set four rules constituting a TSK-type neuro-
fuzzy network. The number of antibodies for a group of rules was set to 10. The experimental results are tabulated in
Table 4 using cross-validation model. With the same initial condition, the accuracy rate of training data with different
generations for 50 runs is shown in Fig. 13 and tabulated in Table 5. Therefore, we observe that 100 generations for
training are enough.

http://www.vision.caltech.edu/Image{protect LY1	extunderscore }Datasets/faces/
http://www.vision.caltech.edu/Image{protect LY1	extunderscore }Datasets/faces/
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Fig. 14. The learning curves of the four methods using the CIT database.

Table 6
Performance comparison with various existing models from the CIT database

Method ISPSO EGA [25] TSE [16]

Training data 6000 6000 6000
Best and worst accuracy rate (training) Best Worst Best Worst Best Worst

99.12% 81.97% 96.65% 80.1% 83.73% 73.25%
Average training accuracy rate 98.89% 93.33% 79.05%
Best and worst accuracy rate (testing) Best Worst Best Worst Best Worst

99.38% 89.93% 95.43% 85.9% 79.78% 67.3%
Average testing accuracy rate 93.47% 90.19% 74.33%
Generations 100 100 100

Method TGA [23] PSO [19] IA [7]
Training data 6000 6000 6000
Best and worst accuracy rate (training) Best Worst Best Worst Best Worst

83.28% 61.38% 81.13% 65.27% 82.51% 68.71%
Average training accuracy rate 70.4% 71.33% 73.68%
Best and worst accuracy rate (testing) Best Worst Best Worst Best Worst

79.48% 60.23% 77.68% 63.71% 79.25% 65.4%
Average Testing accuracy rate 65.34% 67.01% 70.47%
Generations 100 100 100

We also compared our method with other methods. The total 100 generations for training are set. The learning
curves are shown in Fig. 14. In Fig. 14, we find that the performance of the proposed ISPSO method is superior
to the other methods. In this example, the performance of the ISPSO method is compared with the PSO method
[19], and the IA method [7], the efficient genetic algorithms (EGA) [25], traditional symbiotic evolution (TSE) [16],
and traditional genetic algorithm (TGA) [23]. The EGA method [25] exploited the sequential-search-based efficient
generation method to generate an initial population and determines the most efficient mutation points. The TSE method
[16] was based upon symbiotic evolution which complements the local mapping property of a fuzzy rule. The TGA
method [23] was proposed for automatically designing complete fuzzy systems using a GA and a penalty strategy to
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Fig. 15. Original face database from California Institute of Technology (CIT).

determine membership function shape and position, number of fuzzy rules, and consequent parameters simultaneously.
The comparison items include the training and testing accuracy rates (e.g. best, worst and average situations), training
and testing errors, and cost. The comparison results with various existing models are tabulated in Table 6.
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Fig. 16. Results of skin color detection with three dimension input (Y, Cb, Cr).
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The CIT face database consists of complex backgrounds and diverse lighting. Hence, from the comparison data listed
in Table 6, the average of the test accuracy rate is 90.19% for EGA, 74.33% for TSE, 65.34% for TGA, 67.01% for
PSO, 70.47% for IA and 93.47% for the proposed ISPSO. This demonstrates that the CIT database is more complex
and does not lead to a decrease in the accuracy rate. The proposed ISPSO method maintains a superior accuracy rate.
The color images from the CIT database are shown in Fig. 15. A well-trained network can generate binary outputs (1/0
for skin/non-skin) to detect a facial region. Fig. 16 shows that our approach accurately determines a facial region.

5. Conclusion

This paper proposed a new learning algorithm that can be used to design TSK-type neuro-fuzzy networks. We
proposed the immune-based symbiotic particle swarm optimization (ISPSO) for use in TSK-type neuro-fuzzy networks
for solving the prediction and skin color detection problems. In order to avoid trapping in a local optimal solution and to
ensure the search capability of a near global optimal solution, mutation plays an important role in ISPSO. The proposed
ISPSO embeds the symbiotic evolution scheme in an IA and utilizes PSO to improve the mutation mechanism. The
advantages of the proposed method are summarized as follows: (1) we employed the advantages of PSO to improve the
mutation mechanism; (2) the complicated problems with symbiotic evolution can be better solved; (3) there is more of
a likelihood to get a global optimum compared to heuristic methods; (4) the experimental results show that our method
achieves faster learning and a higher design accuracy rate in many problems. The proposed learning algorithm has
great potential to be further applied to many ill-conditioned problems.
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