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Abstract

In this paper, we propose a self-adaptive neural fuzzy network with group-based symbiotic evolution (SANFN-GSE) method. A
self-adaptive learning algorithm consists of two major components. First, a self-clustering algorithm (SCA) identifies a parsimonious
internal structure. An internal structure is said to be parsimonious in the sense that the number of clusters (fuzzy rules) is equal to
the true number of clusters in a given training data set. The proposed SCA is an online method and is a distance-based connectionist
clustering method. Unlike the traditional cluster techniques that only consider the total variation to updates the only one mean
and deviation. The proposed SCA method considers the variation of each dimension for the input data. Second, a group-based
symbiotic evolution learning (GSE) method is used to adjust the parameters for the desired outputs. The GSE method is different
from traditional GAs (genetic algorithms), with each chromosome in the GSE method representing a fuzzy system. Moreover, in
the GSE method, there are several groups in the population. Each group represents a set of the chromosomes that belong to a cluster
computing by the SCA. In this paper we used numerical time series examples (one-step-ahead prediction, Mackey-Glass chaotic
time series, and sunspot number forecasting) to evaluate the proposed SANFN-GSE model. The performance of the SANFN-GSE
model compares excellently with other existing models in our time series simulations.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, neural fuzzy networks [19,10] have become a popular research topic [3,10,19]. They are widely
applied in fields such as time series prediction [14], control problem [18], and pattern recognition [4]. The reason is
that neural fuzzy networks combine the semantic transparency of rule-based fuzzy systems with the learning capability
of neural networks. The main advantage of the neural fuzzy network is that the black box nature of the neural network
paradigm is resolved, as the connectionist structure of a neural fuzzy network essentially defines the IF-THEN rules.
Moreover, a neural fuzzy network can adjust the parameter of the fuzzy rules using neural-network-based learning
algorithms.
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Several approaches that are used to generate the fuzzy IF-THEN rules from numerical data have been proposed
[3,4,10,14,18,19]. These methods were developed for supervised learning; that is, the desired output is clearly given
for each input pattern in order to guide the network’s learning.

The training of the parameter is the problem in designing a neural fuzzy system. To solve this problem, back-
propagation (BP) training is widely used. It is a powerful training technique that can be applied to networks with
a forward structure. Since the steepest descent technique is used in BP training to minimize the error function, the
algorithms may reach the local minima very fast and never find the global solution. In addition, the performance of BP
training depends on the initial values of the system parameter, and for different network topologies one has to derive
new mathematical expressions for each network layer.

Considering the disadvantages mentioned above, one may be faced with suboptimal performances, even for a suitable
neural fuzzy network topology. Hence, techniques capable of training the system parameters and finding a global
solution while optimizing the overall structure are needed. In that respect, genetic algorithms (GAs) appear to be
better candidates than backpropagation algorithm and several GA-based approaches have appeared in the literature
[9,11,13,16]. Karr [13] used a GA to generate membership functions for a fuzzy system. In Karr’s work, a user needs
to declare an exhaustive rule set and then use a GA to design only the membership functions. In [9], a fuzzy controller
design method that used GAs to find the membership functions and the rule sets simultaneously was proposed. In [13]
and [9], the input space was partitioned into a grid. The number of fuzzy rules (i.e., the length of each chromosome
in the GA) increased exponentially as the dimension of the input space increased. In [9], a GA was used to tune the
consequent parameters of TSK-type fuzzy rules [3], as well as the membership functions in the precondition parts.
Juang [11] proposed a TSK-type recurrent fuzzy network with a genetic algorithm for control problems.

However, these approaches encountered one or more of the following major problems: (1) all the fuzzy rules were
encoded into one chromosome; (2) the initial values in the population were generated randomly according to a fixed
range and cannot evaluate each fuzzy rule locally; (3) the initial numbers of fuzzy rule were obtained by trial and error;
(4) the input space was partitioned into a grid; and (5) the mutational value was always generated according to the
constant range.

In this paper, we propose a self-adaptive neural fuzzy network with group-based symbiotic evolution (SANFN-
GSE) for solving the above problems. Moreover, in this paper, we used time series problems to evaluate the proposed
SANFN-GSE model. The idea of prediction topic has been extensively explored for many years under the title of
time series analysis [2,19,26]. Traditionally, the prediction is based on the statistical model that is either linear or
nonlinear [17]. Recently, there are several researches using evolution based neural fuzzy network for predicting time
series [14,6,21]. These researchers have discussed that the network paradigm is a very useful model for predicting the
time series problems and is especially for predicting nonlinear time series. About this, in this paper we used numerical
time series examples (one-step-ahead prediction, Mackey-Glass chaotic time series, and sunspot number forecasting)
to evaluate the proposed SANFN-GSE model.

The proposed SANFN-GSE consists of two major components. First, a structure learning scheme is used to determine
proper input space partitioning and to find the mean and deviation of each cluster. Second, a supervised learning scheme
is used to adjust the parameters for the desired outputs. The proposed structure learning algorithm uses the self-clustering
algorithm (SCA) to perform structure learning and the new symbiotic evolution algorithm called group-based symbiotic
evolution (GSE) uses to perform parameter learning.

With the proposed self-clustering algorithm (SCA) method, a flexible partitioning of the input space is achieved, and
the number of rules is relatively small compared to the grid partition. Moreover, the proposed group-based symbiotic
evolution method (GSE) is different from traditional GAs, with each chromosome in GAs representing a fuzzy system.
In the GSE, each chromosome represents only one fuzzy rule, and an n-rule fuzzy system is constructed by selecting and
combining n chromosomes from a given population. The GSE method, promotes both cooperation and specialization,
which ensures diversity and prevents a population from converging to suboptimal solutions. Compared with the normal
symbiotic evolution, there are several groups in the population in the proposed GSE method. Each group represents a
set of the chromosomes that belong to a cluster. Each group will perform the reproduction and crossover operations
in each generation. The advantages of the proposed SANFN-GSE model are summarized as follows: (1) the proposed
SCA method can online cluster the input partitions and considers the variation of each dimension for the input data;
(2) the GSE method used group-based population to evaluate the fuzzy rule locally; (3) the initial and mutational value
was generated according to each clusters’ mean and deviation computing by the SCA; and (4) the SANFN-GSE model
converges more quickly than existing evolution methods.
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This paper is organized as follows. Section 2 introduces the general neural fuzzy network. A self-adaptive learning
algorithm is proposed in Section 3. In Section 4, the proposed SANFN-GSE model is evaluated using three different
prediction cases, and its performances are benchmarked against other structures. Finally, conclusions on the proposed
algorithm are summarized in the last section.

2. The general neural fuzzy network

In this section, the general neural fuzzy network is introduced. A neural fuzzy network consists of a set of fuzzy
IF-THEN rules that describe the input–output mapping relationship of the network. The antecedents of fuzzy rules
partition the input space into a number of linguistic term sets while the consequent constituent can be chosen as a fuzzy
membership function (Mamdani model) [19], a singleton value [20,24], or a function of a linear combination of input
variables (TSK model) [3]. No matter which type of neural fuzzy networks is chosen, different consequent constituents
result in different types of fuzzy models.

For simplicity, the singleton consequent of fuzzy rules is adopted in this paper. The fuzzy rule with singleton
consequent can be given in the following form:

Rj : IF x1 is A1j and x2 is A2j . . . and xn is Anj

THEN y′ = bj , (1)

where xi is the input variable, y′ is the output variable, Aij is the linguistic term of the precondition part, bj is the
constant consequent part, and n is the number of input variables.

The structure of a general neural fuzzy network is shown in Fig. 1, where n and R are, respectively, the number of
input variables and the number of rules. The network is called a self-adaptive neural fuzzy network with group-based
symbiotic evolution (SANFN-GSE) in this paper. It is a four-layer network structure. The functions of the nodes in
each layer are described as follows:

Layer 1: No function is performed in this layer. The node only transmits input values to layer 2.

u
(1)
i = xi. (2)

Layer 2: Nodes in this layer correspond to one linguistic label of the input variables in layer 1; that is, the membership
value specifying the degree to which an input value belongs to a fuzzy set is calculated in this layer. For an external
input xi , the following Gaussian membership function is used:

u
(2)
ij = exp

(
−[u(1)

i − mij ]2

�2
ij

)
, (3)

where mij and �ij are, respectively, the center and the width of the Gaussian membership function of the jth term of
the ith input variable xi .

Layer 3: The output of each node in this layer is determined by the fuzzy AND operation. Here, the product operation
is utilized to determine the firing strength of each rule. The function of each rule is

u
(3)
j =

∏
i

u
(2)
ij . (4)

Layer 4: Nodes in this layer perform defuzzification. The mathematical function of each node is:

u(4) =
∑

j u
(3)
j wj∑

j u
(3)
j

, (5)

where the weight wj is the output action strength associated with the jth rule and u(4) is the output of the network.
In the next section, we shall discuss our development of an efficient learning algorithm for establishing the internal

structure of the SANFN-GSE model.
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Fig. 1. Structure of a general neural fuzzy network.

3. A self-adaptive learning algorithm for the SANFN-GSE model

A self-adaptive learning algorithm consists of two major components. First, there is a self-clustering algorithm (SCA)
which identifies a parsimonious internal structure. The internal structure is said to be parsimonious in the sense that
the number of clusters (fuzzy rules) is equal to the true number of clusters in a given training data set. Second, there is
a group-based symbiotic evolution learning method which is used to adjust the parameters for the desired outputs. The
group-based symbiotic evolution method is different from the traditional symbiotic evolution, with each population
in the GSE method was divided to several groups. Each group represents a set of the chromosomes that belong to a
cluster computing by the SCA. Each group will perform the reproduction and crossover operations in each generation.
A detailed self-adaptive learning algorithm of the SANFN-GSE model is presented in Fig. 2.

3.1. The self-clustering algorithm

When the parsimonious SANFN-GSE is being established, a number of fuzzy rules and approximate estimates of the
corresponding parameters, such as means and deviations, describing the fuzzy term sets in the antecedent parts need to
be extracted from given input–output training pairs. Thus, the choice of clustering technique in neural fuzzy networks
is an important consideration. This is due to the use of partition-based clustering techniques, such as fuzzy C-means
(FCM) [8], linear vector quantization (LVQ) [7], fuzzy Kohonen partitioning (FKP), and pseudo FKP [1], to perform
cluster analysis. However, such clustering techniques require prior knowledge such as the number of clusters present
in a data set. To solve the above problem, online-based cluster techniques were proposed [14,27]. But there still is a
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Fig. 2. The self-adaptive learning algorithm for the SANFN-GSE model.

problem with these methods; namely, the clustering methods [14,27] only consider the total variations of the mean and
deviation in all dimensions of the input data. This is because the cluster numbers increase quickly.

In this paper, we use a self-clustering algorithm (SCA) to partition the input space to create fuzzy rules. The
proposed SCA is an online and distance-based clustering method which is unlike the traditional clustering techniques
[1,7,8,14,27]. The tendency of the traditional clustering techniques is to consider the total variations in all dimensions
of the input data that will cause clusters to extend too fast. According to the above-mentioned problems, the proposed
SCA method considers the variation of each dimension for the input data.

The main advantage of the proposed method is that the SCA is a one-pass algorithm that dynamically estimates
the number of clusters in a set of data and finds their current means in the input data space. For the above rea-
son, the SCA can cluster the input space quickly. The details of the SCA algorithm are described in the following
steps:

Step 0: Create the first cluster C1 by simply taking the position of the first input data as the first cluster mean Cci_1
where i means the ith input variables. And setting a dimension distance value to 0 (see Fig. 3(a)).

Step 1: If all of the training input data have been processed, the algorithm is finished. Otherwise, the current input
example, xi[k], is taken and the distances between this input example and all already created cluster mean Cci_ j
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Fig. 3. A brief clustering process using SCA with samples in 2-D space.

are calculated:

Di_ j [k] = ‖xi[k] − Cci_ j‖, (6)

where j = 1, 2, . . . , R denotes the jth cluster, k = 1, 2, 3, . . . , N represents the kth input, and i = 1, 2, . . . , n

represents the ith dimension.
Step 2: If the distance calculation in Eq. (6) is equal to or less than all of the dimension distances CDi_ j that represent

the ith dimension distance in the jth cluster (set to 0 initially), then the current input example belongs to a cluster with
the minimum distance:

D min
j

[k] = min

(
n∑

i=1

‖xi[k] − Cci_ j‖
)

, (7)

D min
i_ j

[k] = ‖xi[k] − Cci_ j‖, (8)

where j in Eq. (8) represents the jth cluster that is computed using Eq. (7). The use of Eqs. (7) and (8) is to find the
minimum sum of all the dimension distances in a cluster with the kth input data. The constraint is described as follows:

D min
i_ j

[k]�CDi_ j . (9)

If no new clusters are created or no existing clusters are updated (the cases of (x1[4], x2[4]) and (x1[6], x2[6]) in
Fig. 3(b)), the algorithm returns to Step 1. Otherwise, the algorithm goes to the next step.

Step 3: Find a cluster from all existing cluster centers by calculating Si_ j [k] = Di_ j [k] + CDi_ j , j = 1, 2, . . . , R,
and then choosing the cluster center with the minimum value:

S min
i_ j

[k] = D min
i_ j

[k] + CDi_ j , where j = 1, 2, . . . , R. (10)
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In Eqs. (8) and (9), the minimum distance from any cluster mean to the examples that belong to this cluster is not
greater than the threshold Dthr , though the algorithm does not keep any information of passed examples. However, we
find that the formulation only considers the distance between the input data and the cluster mean in Eq. (10). But the
special situation [4] shows that the distances between the given point xi[10] and both cluster means Cci_1 and Cci_2
are the same as in Fig. 4. In the aforementioned technique, the cluster C2, which has small dimension distances CDi_2,
will be selected to expand according to Eq. (10). However this causes a problem in that the cluster numbers increase
quickly. To avoid this problem, we state a condition, as follows:

If there are two D minj [10] compute in Eq. (9) that D min1[10] = D min2[10] and (CD1_1 + CD2_1 > CD1_2 +
CD2_2)

Then D min
1_1

[10] = D1_1[10], (11)

D min
2_1

[10] = D2_1[10], (12)

where D min1[10] represents the minimum distance between the 10th input data and the mean of the 1st cluster that is
calculated by Eq. (9); D min2_1[10] represents dimension distance between the 2nd dimension of the 10th input data
and the 2nd dimension mean of the 1st cluster that is calculated by Eq. (10); D2_1[10] represents dimension distance
between the 2nd dimension of the 10th input data and the 2nd dimension mean of the 1st cluster that is calculated by
Eq. (8). In Eqs. (11) and (12), we find that when the distances between the input data and both clusters are the same,
the formulation will choose the cluster that has the large dimension distance CD1_1 and CD2_1.

Step 4: If S mini_ j [k] in Eq. (10) is greater than Dthr, the input example xi[k] does not belong to any existing
cluster. A new cluster is created in the same way as described in Step 0 (the cases of (x1[3], x2[3]) and (x1[8], x2[8]) in
Fig. 3(c)), and the algorithm returns to Step 1.

Step 5: If S mini_ j [k] is not greater than Dthr, the cluster is updated by moving its mean, Cci_ j , and increasing the
value of its dimension distances. The new mean is moved to the point on the line connecting the input data, and the
distance from the new mean to the point is equal to its dimension distance (the cases of (x1[5], x2[5]) and (x1[9], x2[9])
in Fig. 3(d)). The details for updating the equations are as follows:

If CDi_ j < (xi[k] − Cci_ j + CDi_ j )/2

Then CDi_ j = (xi[k] − Cci_ j + CDi_ j )/2, (13)

Cci_ j = xi[k] − CDi_ j if Cci_ j >= xi[k], (14)

Cci_ j = xi[k] + CDi_ j if Cci_ j < xi[k], (15)

where k = 1, 2, 3, . . . , N represents the kth input, j represents the jth cluster that has a minimum distance in Eq. (7),
x represents the input data, and i represents the ith dimension. After this step is performed, the algorithm returns to
step 1.
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The threshold parameter Dthr is an important parameter in the input space partition scheme. A low threshold value
leads to the learning of fine clusters (such that many fuzzy rules are generated), whereas a high threshold value leads
to the learning of coarse clusters (such that fewer fuzzy rules are generated). Therefore, the selection of the threshold
value Dthr critically affects the simulation results, and the threshold value is determined by practical experimentation
or trial-and-error tests.

3.2. Genetic algorithm through group-based symbiotic evolution

3.2.1. Symbiotic evolution and fuzzy systems
The idea of symbiotic evolution was first proposed in an implicit fitness sharing algorithm that was used in an immune

system model [25]. The authors developed artificial antibodies to identify artificial antigens. Because each antibody
can match only one antigen, a different population of antibodies was required to effectively defend against a variety of
antigens.

Unlike traditional GAs that use each individual in a population as a full solution to a problem, symbiotic evolution
assumes that each individual in a population represents only a partial solution to a problem; complete solutions
combine several individuals in the population. In a normal evolution algorithm, a single individual is responsible for
the overall performance, with a fitness value assigned to that individual according to its performance. In symbiotic
evolution, the fitness of an individual (a partial solution) is calculated by summing up the fitness values of all possible
combinations of that individual with other current individuals (partial solutions) and dividing the sum by the total
number of combinations.

As shown in [12,22], partial solutions can be characterized as specializations. The specialization property ensures
diversity, which prevents a population from converging to suboptimal solutions. A single partial solution cannot “take
over” a population since there must be other specializations present. Unlike the standard evolutionary approach, which
always causes a given population to converge, hopefully at the global optimum, but often at a local one, the symbiotic
evolution finds solutions in different, unconverted populations [12,22].

The basic idea of symbiotic evolution is that an individual (i.e., a chromosome) is used to represent a single fuzzy
rule. A fuzzy system is formed when several individuals, which are randomly selected from a population, are combined.
With the fitness assignment performed by symbiotic evolution, and with the local property of a fuzzy rule, symbiotic
evolution and the fuzzy system design can complement each other. If a normal GA evolution scheme is adopted for
fuzzy system design, only the overall performance of the fuzzy system is known, not the performance of each fuzzy
rule. The best method to replace the unsuitable fuzzy rules that degrade the overall performance of a fuzzy system is
to use crossover operations, followed by observing the performance of the offspring.

3.2.2. A new symbiotic evolution for the SANFN-GSE model
After the initial SANFN-GSE structure has been identified according to the SCA clustering algorithm, the SANFN-

GSE then performs parameter identification. The parameter identification is used to tune the parameters of the existing
structure optimally in the sense that the best fit of the SANFN-GSE output to the training patterns is found. In this
paper, we proposed the group-based symbiotic evolution method (GSE) to tune the free parameters. Unlike the normal
symbiotic evolution, in the GSE method, there are several groups in the population. Each group represents a set of
the chromosomes that belong to a cluster. Each group will perform the reproduction and crossover operations in each
generation. In the GSE method, we restrict the top half of the population to reproducing the next generation. Moreover,
we also require that chromosomes from different groups cannot be selected for performing the crossover operation. In
the GSE method, each chromosome in the group must be selected at least one time for the fuzzy model to be constructed.
The advantages of the GSE method are as follows: (1) the GSE method used group-based population to evaluate the
fuzzy rule locally; and (2) the initial and mutational value was generated according to each cluster’s mean and deviation
computing by the SCA.

Like the traditional symbiotic evolution, the proposed GSE method consists of three major operators: reproduction,
crossover, and fitness assignment. Before the details of these three operators are introduced, the issues of clustering,
coding, initialization, and mutation are discussed. The clustering step uses the SCA technique to cluster the input
space. The coding step is concerned with the membership functions and fuzzy rules of a fuzzy system that represent
chromosomes suitable for group based symbiotic evolution. The initialization step assigns the population values before
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the evolution process begins. The fitness assignment gives a suitable fitness value to each fuzzy rule during the evolution
process. The whole learning process is described step by step as follows (see Fig. 2):

(a) Clustering step: The SCA clustering method, which was described in Section 3.1, is used to determine the number
of fuzzy rules and to estimate the corresponding parameters.

(b) Coding step: The first step in GAs is the coding of a fuzzy rule into a chromosome. Fig. 5 shows an example of
a fuzzy rule coded into a chromosome where i and j represents ith dimension and jth rule. In this paper, a Gaussian
membership function is used with variables representing the mean and deviation of the membership function. Fig. 5
describes a fuzzy rule that according to Eq. (1), where mij and �ij represent a Gaussian membership function with
mean and deviation, respectively, and wj represents the weight connected to the jth rule node. For each chromosome,
a gene is represented by a real number.

(c) Initialization step: Before the SANFN-GSE model is designed, individuals forming an initial population should be
generated. In the traditional symbiotic evolution, an initial population is generated randomly according to a fixed range.
In this study, the initial population was generated randomly according to the range of the mean and dimension distance
of every input dimension, which were computed by the SCA clustering method. This will reduce the generations for
searching the solutions on the fixed range. Assume that there are R fuzzy rules (i.e., clusters) generated by using the
SCA. In this study, a group represents a set of chromosomes that belong to a fuzzy rule. Therefore, there are R groups
in a population. About this, the GSE method can evaluate the fuzzy rule locally. The structure of the chromosomes in
the GSE method is shown in Fig. 6. The following formulations show how to generate the initial population:

Mean: Chrc_ j [p] = Cci_ j + random[CDi_ j , −CDi_ j ],
where i = 1, 2, . . . , n and p = 2∗i − 1. (16)
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Deviation: Chc_ j [p] = random[0, |Cci_ j − Cci+1_ j |],
where p = 2∗i. (17)

Weight: Chrc_ j [p] = random[−2, 2],
where p = 2∗n + 1, (18)

where Chrc_ j represents cth chromosome from the jth group; p represents the pth gene in the cth chromosome; i and
j represent the ith input dimension and the jth cluster; and Cci_ j and Di_ j represent the ith dimension mean and the
ith dimension distance in the jth cluster that are computed by Eqs. (15)–(17), respectively.

The size of the population depends on the complexity of a problem. Besides the population size, some other parameters
need to be set. These are the number of fuzzy systems to be formed and evaluated in every generation and the mutation
rate and crossover rate and theses parameters also depend on the complexity of a problem.

(d) Fitness assignment step: As previously stated, for the GSE method, the fitness value of a rule (an individual)
is calculated by summing up the fitness values of all the possible combinations in the chromosomes that are selected
randomly from R groups. The details for assigning the fitness value are described step by step as follows:

Step 1: Randomly choose R fuzzy rules from the R groups in the population with size Nf .
Step 2: Evaluate every fuzzy system that is generated from step 1 to obtain a fitness value.
Step 3: Divide the fitness value by R and accumulate the divided fitness value to the selected rules with their fitness

value records that were set to zero initially.
Step 4: Repeat the above steps until each rule (individual) in a population has been selected a sufficient number of

times, and record the number of fuzzy systems in which each individual has participated.
Step 5: Divide the accumulated fitness value of each individual by the number of times it has been selected. The

average fitness value represents the performance of a rule. In this paper, the fitness value is designed according the
follow formulation:

Fitness Value = 1/(1 + E(y, ȳ)), (19)

where E(y, ȳ) = (yi − ȳi )
2 for i = 1, 2, . . . , N, (20)

where yi represents the true value of the ith output, ȳi represents the predicted value, E(y, ȳ) is a error function and N
represents a numbers of the training data of each generation. The average fitness value represents the performance of
a rule. The flowchart of the major operations in the GSE is presented in Fig. 7.

(e) Reproduction step: Reproduction is a process in which individual strings are copied according to their fitness value.
This operator is an artificial version of neural selection. A fitness value is assigned to each individual using a fitness
assignment method in which high numbers denote a good fit. In this study, we use the roulette-wheel selection method
[5]—a simulated roulette is spun—for this reproduction process (see Fig. 8). In Fig. 8, the intermediate population
is P ′, which is generated from identical copies of a chromosome sampled by spinning the roulette wheel a sufficient
number of times. The best performing individuals in the top half of the population [12] advances to the next generation.
The other half is generated to perform crossover operations on individuals in the top half of the parent generation. In
the reproduction step, we must keep the same number of chromosomes in the top half of the population for each group.

(f) Crossover step: Reproduction directs the search toward the best existing individuals but does not create any new
individuals. In nature, an offspring has two parents and inherits genes from both. The main operator working on the
parents is the crossover operator, the operation of which occurred for a selected pair with a crossover rate that was set
to 0.5 in this study. The first step is to select the individuals from the population for the crossover. Tournament selection
[5] is used to select the top-half of the best performing individuals shown in Fig. 9. In the GSE method, we require
that the individuals from different groups cannot be selected for performing the crossover operation. The individuals
are crossed and separated using a two-point crossover operation, as shown in Fig. 10. In Fig. 10, new individuals are
created by exchanging the site’s values between the selected sites of parents’ individual. In the crossover step, we also
keep the same number of chromosomes in the other half of the population for each group. After this operation, the
individuals with poor performances are replaced by the newly produced offspring.

(g) Mutation step: Although reproduction and crossover will produce many new strings, they do not introduce any
new information to the population at the site of an individual. Mutation is an operator that randomly alters the allele
of a gene. The mutation operation of an individual is shown in Fig. 11. Unlike the traditional symbiotic evolution that
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generated the mutation value according to the constant range. In the GSE, the mutation value is generated according to
Eqs. (16)–(18). With mutation, new genetic materials can be introduced into the population. Mutation should be used
sparingly because it is a random search operator. In the following simulations, a mutation rate was set to 0.3.

The aforementioned steps are done repeatedly and stopped when the predetermined condition is achieved.
Recently, several researchers [3,10,19] try to emphasize the readability and human-understandable of the neuro-fuzzy

network. In [3], the authors proposed a neuro-fuzzy network to generated human-understandable fuzzy knowledge
based. In order to obtain readable knowledge from data, they proposed a new neuro-fuzzy model and its learning
algorithm that works in a parameter space with reduced dimensionality. The dimensionality of the new parameter space
is necessary and sufficient to generate human-understandable fuzzy rules, in the sense formally defined by a set of
properties. The learning procedure is based on a gradient descent technique and the proposed model is general enough
to be applied to other neuro-fuzzy architectures. In this paper, we use the SCA method to determine the number of
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Fig. 9. The tournament selection.
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Fig. 10. Two-point crossover operation.
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σ wj
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ijσ

Fig. 11. Mutation operation.

fuzzy rules and the GSE method to adjust the free parameters of fuzzy rules.

4. Illustrative examples

This section discusses three different examples that were used to evaluate the SANFN-GSE model. The first example
was performed to predict a chaotic signal that is described in [19], the second example was run to predict the chaotic
time series [6], and the third example was a sunspot number forecasting [21]. For the three computer simulations, the
initial parameters are given in Table 1 before training.
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Table 1
The initial parameters before training

Parameters Value

Population size 200
Fuzzy systems 200
Crossover rate 0.5
Mutation rate 0.3
Coding type Real number

Table 2
Means and dimension distances after SCA clustering

Cluster Cc1_ j CD1_ j

1 0.0274 0.0264
2 0.235 0.0538
3 0.5614 0.1288
4 0.90689 0.0429
5 0.77894 0.0623
6 0.32243 0.0084

4.1. Example 1: Prediction of a chaotic signal

In this example, the proposed SANFN-GSE model was used to predict a chaotic signal. The classical time series
prediction problem is a one-step-ahead prediction that is described in [19]. The following equations describe the logistic
function:

x(k + 1) = ax(k)(1 − x(k)), (21)

The behavior of the time series generated by this equation depends critically upon the value of the parameter a. If
a < 1, the system has a single fixed point at the origin, and from a random initial value between [0, 1] the time series
collapses to a constant value. For a > 3, the system generates a periodic attractor. Beyond the value a = 3.6, the
system becomes chaotic. In this study, we set the parameter value a to 3.8. The first 60 pairs (from x(1) to x(60)), with
the initial value x(1) = 0.001, were the training data set, while the remaining 100 pairs (from x(1) to x(100)), with
initial value x(1) = 0.9, were the testing data set used for validating the proposed method.

The proposed prediction is that we will find several chromosomes that form a SANFN-GSE to maximize the fitness
value. In this example we set the threshold value in SCA to 0.2. Table 2 shows the results after the SCA clustering
method was used, where Cci_ j and Di_ j represent the mean and dimension distance with ith input dimension and jth
cluster.

The learning stage entered parameter learning through GSE method. The evolution learning processed for 30 gener-
ations and was repeated 50 times. After 30 generations, the final average rms error of the predicted output approximates
0.00081. After 30 generations of training, the final six fuzzy rules were generated. They are given as follows:

Rule 1: IF x1 is �(−0.167857, 0.210462)THEN y′ = −0.541397
Rule 2: IF x1 is �(0.645200, 0.141451)THEN y′ = 0.071760
Rule 3: IF x1 is �(1.011675, 0.134370)THEN y′ = −0.321057
Rule 4: IF x1 is �(0.390224, 0.294088)THEN y′ = 0.319729
Rule 5: IF x1 is �(0.322841, 0.012615)THEN y′ = −0.011077
Rule 6: IF x1 is �(0.581367, 0.572351)THEN y′ = 0.657562,

where �(mij , �ij ) represents a Gaussian membership function with mean mij and deviation �ij in ith input dimension
and jth rule. Fig. 12(a) shows the prediction results of the desired output and the model output through the learning
process of 30 generations. The solid line represents the desired output of the time series, and the notation “*” represents
the output of the SANFN-GSE model. The prediction errors of the proposed method are shown in Fig. 12(b). The
experimental results demonstrate the perfect prediction capability of the SANFN-GSE model.
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Fig. 12. (a) The prediction results of the proposed method. (b) The prediction errors of the proposed method. (c) The prediction results of the
traditional symbiotic evolution model [12]. (d) The prediction errors of the traditional symbiotic evolution model [12]. (e) The prediction results of
the traditional genetic algorithm [21]. (f) The prediction errors of the traditional genetic algorithm [21].
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Fig. 13. The learning curves of the proposed method, the traditional symbiotic evolution model [12], and the traditional genetic algorithm [21].

In this example, in order to show the effectiveness and efficiency of the proposed SANFN-GSE model, we applied
the traditional symbiotic evolution (TSE) [12] and traditional genetic algorithm (TGA) [21] to the same problem. In
the TSE and TGA, the population sizes were set to 200, and the crossover and mutation probabilities were set to 0.5
and 0.3, respectively. We set six rules to construct the fuzzy model. In the TSE [12] and TGA [1], the evolution learning
processed for 30 generations and was repeated 50 times.

We now discuss the performance of the SANFN-GSE model compared with the performance of other methods [12,21].
First, we compared the performance of the SANFN-GSE model with that of the traditional symbiotic evolution model
[12]. Fig. 12(c) shows the prediction results of the traditional symbiotic evolution model. The prediction errors of the
traditional symbiotic evolution model are shown in Fig. 12(d). Second, the traditional genetic algorithm [21] that adopts
binary code is used for the prediction problem. Figs. 12(e) and (f) show the prediction results and the prediction errors
of the traditional genetic algorithm. As shown in Fig. 13, the prediction results of the SANFN-GSE model are better
than those of other methods.

Fig. 12 shows the learning curves of the SANFN-GSE model, the TSE [12], and the TGA [21]. In this figure, we find
that the proposed method converges quickly and obtains a lower rms error than other models. Computer simulations
demonstrated that the proposed method performs better than other existing models.

4.2. Example 2: Prediction of the chaotic time series

The Mackey-Glass chaotic time series x(t) in consideration here was generated from the following delay differential
equation:

dx(t)

dt
= 0.2x(t − �)

1 + x10(t − �)
− 0.1x(t). (22)

Crowder [6] extracted 1000 input–output data pairs {x, yd} which consist of four past values of x(t), i.e.

[x(t − 18), x(t − 12), x(t − 6), x(t); x(t + 6)], (23)

where � = 17 and x(0) = 1.2. There were four inputs to the SANFN-GSE model, corresponding to these values of
x(t), and one output representing the value x(t + �t), where �t is a time prediction into the future. The first 500
pairs (from x(1) to x(500)) were the training data set, while the remaining 500 pairs (from x(501) to x(1000)) were
the testing data set used for validating the proposed method. In this example, we set the threshold value in SCA to
0.4. Table 3 shows the mean and deviation values after the SCA clustering method was used, where Cci_ j and Di_ j

represent the mean and dimension distance with ith input dimension and jth cluster.
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Table 3
Means and dimension distances after clustering by SCA

Cluster Cc1_i Cc2_ j Cc3_ j Cc4_ j CD1_ j CD2_ j CD3_ j CD4_ j

1 1.001 0.9601 0.9187 0.8793 0.0904 0.0907 0.0855 0.0770
2 0.7840 0.6323 0.7124 0.7475 0.1167 0.1045 0.0912 0.1165
3 0.8603 0.9112 0.9592 1.002 0.1103 0.1031 0.0929 0.0815
4 1.1365 1.1592 1.1679 1.1581 0.122 0.1070 0.0910 0.0778
5 1.1125 1.1034 1.1334 0.9919 0.1208 0.0762 0.0675 0.1087
6 0.9318 0.8663 0.8160 0.7832 0.0721 0.0603 0.0607 0.0759
7 0.7043 0.6654 0.6233 0.6149 0.0967 0.0994 0.0958 0.1219
8 0.6794 0.7629 0.8121 0.8234 0.0771 0.0587 0.0654 0.0995
9 1.2400 1.2619 1.2427 1.1932 0.0558 0.0428 0.0586 0.0891

10 0.5321 0.4853 0.5243 0.5582 0.0822 0.0509 0.0938 0.1163
11 0.5817 0.6185 0.6656 0.7647 0.0843 0.0696 0.0517 0.0792

The learning phase entered parameter learning through GSE method. The evolution learning processed for 500
generations and was repeated 50 times. After 500 generations of training, the final fuzzy rules were obtained. They are
described as follows:

Rule 1: IF x1 is �(1.147840, 0.039380) and x2 is �(1.030099, 1.158860) and
x3 is �(1.183048, 0.377265) and x4 is �(1.135862, 0.695881)
THEN y′ = −0.004662

Rule 2: IF x1 is �(0.988884, 0.131503) and x2 is �(0.617742, 0.094698) and
x3 is �(0.723764, 0.946031) and x4 is �(0.674479, 0.297900)
THEN y′ = −1.909980

Rule 3: IF x1 is �(0.493016, 0.505969) and x2 is �(0.603224,0.301429) and
x3 is �(0.797574, 1.036234) and x4 is �(0.963893, 0.818812)
THEN y′ = 0.121602

Rule 4: IF x1 is �(1.254618, 1.188000) and x2 is �(1.292633, 1.424605) and
x3 is �(1.332230, 1.184361) and x4 is �(1.392626, 0.412278)
THEN y′ = 0.565143

Rule 5: IF x1 is �(1.092013, 0.857488) and x2 is �(0.826633, 1.359844) and
x3 is �(1.016145, 1.289026) and x4 is �(1.150432, 0.785982)
THEN y′ = 0.216318

Rule 6: IF x1 is �(1.080345, 0.294261) and x2 is �(0.999115,0.172435) and
x3 is �(0.696495, 0.271626) and x4 is �(0.993496, 0.186253)
THEN y′ = 0.210649

Rule 7: IF x1 is �(0.707328, 1.035837) and x2 is �(0.712613, 0.379692) and
x3 is �(0.858039, 0.944639) and x4 is �(0.881292, 0.911557)
THEN y′ = 0.214920

Rule 8: IF x1 is �(0.611153, 0.518064) and x2 is �(0.721121, 1.046751) and
x3 is �(0.763731, 0.229884) and x4 is �(0.900132, 0.636204)
THEN y′ = 0.136141

Rule 9: IF x1 is �(1.113252, 1.348987) and x2 is �(1.187067, 0.784869) and
x3 is �(1.229577, 1.414364) and x4 is �(1.297621, 0.593058)
THEN y′ = 0.560923

Rule10: IF x1 is �(0.397857, 0.177363) and x2 is �(0.400806, 0.469635) and
x3 is �(0.501227, 0.208031) and x4 is �(0.882006, 0.711170)
THEN y′ = 0.311094

Rule11: IF x1 is �(0.353253, 0.470454) and x2 is �(0.468391, 0.938213) and
x3 is �(0.685677, 0.707227) and x4 is �(1.038509, 0.912712)
THEN y′ = 0.168185,
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Fig. 14. (a) The prediction results of the proposed method. (b) The prediction errors of the proposed method. (c) The prediction results of the
traditional symbiotic evolution model [12]. (d) The prediction errors of the traditional symbiotic evolution model [12]. (e) The prediction results of
the traditional genetic algorithm [21], (f) The prediction errors of the traditional genetic algorithm [21].
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Fig. 15. The learning curves of the proposed method, the traditional symbiotic evolution model [12], and the traditional genetic algorithm [21].

where �(mij , �ij ) represents a Gaussian membership function with mean mij and deviation �ij in ith input dimension
and jth rule. The final rms error of the prediction output approximates 0.0015. Fig. 14(a) shows the prediction outputs
of the chaotic time series from x(501) to x(1000), when 500 training data from x(1) to x(500) were used. The solid
line represents the desired output while the dotted line represents the model output. The prediction errors between the
proposed model and the desired output are shown in Fig. 14(b).

In this example, as with example 1, we also compared the performance of the SANFN-GSE model with other
methods [12,21]. In [21] and [12], the parameters are the same with example 1. We set eleven rules to construct the
fuzzy model. The evolution learning processed for 500 generations and was repeated 50 times. Figs. 14(c) and (d)
show the prediction results and the prediction errors of the traditional symbiotic evolution model [12]. Figs. 14(e)
and (f) show the prediction results and the prediction errors of the traditional genetic algorithm [21]. The learning
curves of the proposed SANFN-GSE model, the traditional symbiotic evolution model, and the traditional genetic
algorithm are shown in Fig. 15. We find that the proposed method obtains better prediction results than other existing
models.

For comparative analysis, we shall use the normalized root mean square error (NRMSE) [23], which is defined as
the RMSE divided by the standard deviation of the desired output:

NRMSE = 1

�t

[
1

Nt

Nt∑
l=1

(Yl(t + 6) − Yd
l (t + 6))2

]1/2

, (24)

where �2
t is the estimated variance of the data, Nt the number of the training data, Yd(t + 6) = x(t + 6) is the desired

value, and Y (t + 6) is the predicted value by the model with four inputs and one output. Table 4 lists the generalization
capabilities of other methods [6,15]. The generalization capabilities were measured by using each model to predict 500
points immediately following the training data set. Clearly, simulation results show that the proposed model can obtain
smaller NRMSE than other methods.

4.3. Example 3: Forecast of the sunspot number

The sunspot numbers from 1700 to 2004 exhibit nonlinear, nonstationary, and non-Gaussian cycles that are difficult
to predict [21]. In this example, we use the proposed SANFN-GSE model for forecasting the sunspot number. The
inputs xi of the proposed SANFN-GSE model are defined as x1(t) = yd

1 (t − 1), x2(t) = yd
1 (t − 2), and, x3(t) =

yd
1 (t − 3) where t represents the year and yd

1 (t) is the sunspot numbers at the t year. In this example, the first 180
years (from 1705 to 1884) of the sunspot numbers were used to train the proposed SANFN-GSE model while the
remaining 119 years (from 1885 to 2004) of the sunspot numbers were the used to test the proposed SANFN-GSE
model.
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Table 4
Performance comparison of various existing models

Method Training cases NRMSEtrain

SANFN-GSE 500 0.008
Back-propagation NN 500 0.02
Traditional symbiotic evolution 500 0.032
Six-order polynomial 500 0.04
Cascaded-correlation 500 0.06
Traditional genetic algorithm 500 0.26
Linear predictive 2000 0.55

Fig. 16. The learning curves of the proposed method, the traditional symbiotic evolution model [12], and the traditional genetic algorithm [21].

Table 5
Performance comparison of various existing models

Method Training cases RMSE Training error Forecasting error

SANFN-GSE 500 12.12 8.75 12.35
Symbiotic evolution [12] 500 15.26 10.05 15.05
Genetic algorithm [21] 500 17.47 12.27 19.81

In this example, we set the threshold value in SCA to 70. After clustering by SCA, the nine clusters (fuzzy rules)
were obtained. The learning phase entered parameter learning through GSE method. The evolution learning processed
for 500 generations and was repeated 50 times. After 500 generations of training, the final average rms error of the
prediction output approximates 12.12.

In this example, as with examples 1 and 2, we also compared the performance of the SANFN-GSE model with
the TGA [21] and TSE [12] method. In [21] and [12], the parameters are the same with examples 1 and 2. We
set nine rules to construct the fuzzy model. The evolution learning processed for 500 generations and was re-
peated 50 times. The learning curves of the proposed SANFN-GSE model, the TSE, and the TGA are shown in
Fig. 16.

Table 5 tabulated the rms error (governed by Eq. (19)), the training error (governed by
∑1884

t=1705 |yd
1 (t) − y1(t)|/180),

and the forecasting error (governed by
∑2004

t=1885 |yd
1 (t) − y1(t)|/119). As shown in Table 5, the proposed SANFN-GSE

model performs a better performance than other models.
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5. Conclusion

In this paper, a novel hybrid learning algorithm was proposed. First, a structure learning scheme is used in the
algorithm to determine proper input space partitioning and to find the mean and deviation of each cluster. With the
proposed self-clustering algorithm (SCA) method, a flexible partitioning of the input space is achieved. The number
of rules is relatively small compared to the grid partition. Second, a supervised learning scheme called group-based
symbiotic evolution algorithm (GSE) is proposed to adjust the parameters for the desired outputs. In the GSE method,
there are several groups in the population. Each group represents a set of the chromosomes that belong to a cluster
computing by SCA. The advantages of the proposed SANFN-GSE model are summarized as follows: (1) the proposed
SCA method can online cluster the input partitions and considers the variation of each dimension for the input data;
(2) the GSE method used group-based population to evaluate the fuzzy rule locally; (3) the initial and mutational value
was generated according to each clusters’ mean and deviation computing by the SCA; (4) the SANFN-GSE model
converges more quickly than existing evolution methods. In our simulations, the proposed SANFN-GSE model can
obtain a smaller rms error and a quicker convergence than other methods for time series prediction problems.
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