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Abstract

In this paper, a type of compensation-based recurrent fuzzy neural network (CRFNN) for identifying dynamic sys-
tems is proposed. The proposed CRFNN uses a compensation-based fuzzy reasoning method, and has feedback con-
nections added in the rule layer of the CRFNN. The compensation-based fuzzy reasoning method can make the fuzzy
logic system more adaptive and effective, and the additional feedback connections can solve temporal problems. The
CRFNN model is proven to be a universal approximator in this paper. Moreover, an online learning algorithm is pro-
posed to automatically construct the CRFNN. The results from simulations of identifying dynamic systems have shown
that the convergence speed of the proposed method is faster than the convergence speed of conventional methods and
that only a small number of tuning parameters are required.
� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In the field of artificial intelligence, neural networks are essentially low-level computational structures
and algorithms that offer good performance when they deal with sensory data. However, it is difficult to
understand the meaning of each neuron and each weight in the networks. Generally, fuzzy systems are easy
to appreciate because they use linguistic terms and if-then rules. However, they lack the learning capacity to
fine-tune fuzzy rules and membership functions. Therefore, fuzzy neural networks combine the benefits of
neural networks and fuzzy systems to solve the problems they are given [1]. Recently, fuzzy neural networks
have been shown to obtain successful results in the identification of dynamic systems [1–5].
0377-2217/$ - see front matter � 2004 Elsevier B.V. All rights reserved.
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Fuzzy neural networks have emerged as a powerful approach to solving many engineering problems
[1–5]. Lin and Lee [1] brought the low-level learning and computational power of neural networks to fuzzy
systems and integrated the high-level human-like thinking and reasoning capability of fuzzy systems into
neural networks. Jang [2] proposed a model, called the adaptive-network-based fuzzy inference system
(ANFIS) architecture, to represent fuzzy models. Through backpropagation training, ANFIS is adapted
to refine, or derive; the fuzzy if-then rules using system input–output data. A modified fuzzy ART mech-
anism is employed for domain partitioning. The idea of utilizing fuzzy ART concepts for structure learning
was proposed by Lin and Lin [3]. The self-constructing neural fuzzy inference network (SONFIN) and the
self-constructing fuzzy neural network (SCFNN) were proposed in [4,5] to perform the structure and
parameter learning phases concurrently. However, a major disadvantage of the existing fuzzy neural net-
works is that their application domain is limited to static problems because of their internal feedforward
network structure, which causes inefficiency for temporal problems. Hence, a recurrent fuzzy neural net-
work capable of solving temporal problems is needed.

For a dynamic system, the output is a function of past inputs or past outputs or both; identification of
this system is not as direct as identification of a static system. To deal with temporal problems of dynamic
systems, the commonly used model is a neural network [6] or a fuzzy neural network [2–5]. If a feedforward
network is adopted for this task, we should know the number of delayed inputs and outputs in advance.

The problem with this approach is that the exact order of the dynamic system is usually unknown. To solve
this problem, recurrent networks for processing dynamic systems can be used. Interest in these networks has
been steadily growing in recent years [7–9]. However, recurrent networks deal with optimal fuzzy member-
ship functions and defuzzification schemes for applications by using learning algorithms to adjust the param-
eters of fuzzy membership functions and defuzzification functions. Unfortunately, for optimal fuzzy logic
reasoning and fuzzy operators, only static fuzzy operators are often used to make fuzzy reasoning. For exam-
ple, commonly used fuzzy operators are MIN, MAX, product, and algebraic sum. Intuitively, it is not adap-
tive and not optimal for a complete fuzzy system to use an unchangeable pair of fuzzy operators.

Zimmermann and Zysno [10] first defined the essence of compensatory operations. Zhang and Kandel
[11] proposed more extensive compensatory operations based on the pessimistic operation and the optimis-
tic operation. Recently, many researchers [12–14] have used the compensatory operation on fuzzy systems
successfully. Therefore, in this paper, we propose a fuzzy neural network model that cannot only adaptively
adjust fuzzy membership functions but can also dynamically optimize the adaptive fuzzy operators.

In this paper, a compensation-based recurrent fuzzy neural network (CRFNN) is proposed. The
CRFNN is a recurrent multilayer connectionist network for fuzzy reasoning and can be constructed from
a set of fuzzy rules. At the same time, the compensatory fuzzy inference method uses adaptive fuzzy oper-
ations of fuzzy neural networks to make the fuzzy logic system more adaptive and effective.

An online learning algorithm is proposed to automatically construct the CRFNN. It consists of structure
learning and parameter learning. The structure learning algorithm determines whether to add a new node to
satisfy the fuzzy partition of the input data. The backpropagation learning algorithm is used for tuning
input membership functions.

Therefore, the proposed CRFNN model has three advantages. First, it does not require a human ex-
pert�s assistance, and its structure is obtained from the input data. Second, it converges quickly, and only
a small number of tuning parameters are required. Third, it can deal with temporal problems for dynamic
system identification.
2. The compensatory operation

Zhang and Kandel [11] proposed compensatory operations based on the pessimistic operation and the
optimistic operation. The pessimistic operation could map the inputs xi to the pessimistic output by making
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a conservative decision for the pessimistic situation or for even the worst case. For example,
p(x1, x2, . . . , xN) = MIN(x1, x2, . . . , xN) or Pxi. Actually, the t-norm fuzzy operation is a pessimistic
operation.

The optimistic operation can map the inputs xi to the optimistic output by making an optimistic decision
for the optimistic situation or for even the best case. For example, o(x1, x2, . . . , xN) = MAX(x1, x2, . . . , xN).
Actually, the t-conorm fuzzy operation is an optimistic operation. The compensatory operation can map
the pessimistic input x1 and the optimistic input x2 to make a relatively compromised decision for the sit-
uation between the worst case and the best case. For example, cðx1; x2Þ ¼ x1�c

1 xc
2, where c 2 [0, 1] is called the

compensatory degree.
The general fuzzy if-then rule is as follows:
Rule-j : IF x1 is A1j and . . . . . . and xN is ANj THEN y is wj; ð1Þ
where xi and y are the input dimensions and output variables, respectively; Aij is the linguistic term of the
precondition part with membership function lAij

; wj is the constant consequent; i is the input dimension,
i = 1, . . . , N; N is the number of existing dimensions; j is the number of rules, j = 1, . . . , R; and R is the
number of existing rules.

For an input fuzzy set A 0 in U, the jth fuzzy rule (1) can generate an output fuzzy set b0j in v by using the
sup-dot composition
lb0j
¼ sup

x2U
½lA1j�����ANj!bj

ðx; yÞ � lA0 ðxÞ�; ð2Þ
where x = (x1, x2, . . . , xN). lA1j�����ANj
ðxÞ is defined in a compensatory operation,
lA1j�����ANj
ðxÞ ¼ ðujÞ1�cjðvjÞcj ; ð3Þ
where cj 2 [0, 1] is a compensatory degree. The pessimistic operation and the optimistic operation are as
follows:
uj ¼
YN
i¼1

lAij
ðxiÞ; ð4Þ

vj ¼
YN
i¼1

lAij
ðxiÞ

" #1=N

: ð5Þ
For simplicity, we can rewrite
lA1j�����ANj
ðxÞ ¼

YN
i¼1

lAij
ðxiÞ

" #1�cjþcj=N

: ð6Þ
Since lA0 ðxiÞ ¼ 1 for the singleton fuzzifier and lb0j
ðyÞ ¼ 1, according to (2) we have
lb0j
ðyÞ ¼

YN
i¼1

lAij
ðxiÞ

" #1�cjþcj=N

: ð7Þ
Therefore, we can rewrite the fuzzy if-then rule as follows:
Rule-j : ½IF x1 is A1j and . . . . . . and xN is ANj�1�cjþcj=N THEN y is wj: ð8Þ
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3. Structure of the compensation-based recurrent fuzzy neural network

The structure of the CRFNN is shown in Fig. 1, in which Aij by a Gaussian-type membership function,
lAij
ðxiÞ, defined by
lAij
ðxiÞ ¼ exp � ½xi � mij�2

r2
ij

( )
; ð9Þ
where mij and rij are, respectively, the mean and variance of the Gaussian membership function of the jth
term of the ith input variable xi. Defining the number and the locations of the membership functions leads
to a partition of the premise space @ ¼ @1 � � � � � @n.

The collection of fuzzy sets Aj = {A1j, . . . , Anj} pertaining to the premise part of Rule-j forms a fuzzy re-
gion Aj that can be regarded as a multi-dimensional fuzzy set whose membership function is determined by
lAj
ðxðtÞÞ ¼

Yn

i¼1

lAij
ðxiðtÞÞ: ð10Þ
The above equation provides the degree to which a particular input vector x(t) belongs to the fuzzy region
Aj. For the internal variable sj, the following sigmoid function is used:
sj ¼
1

1þ expf�hjg
; ð11Þ
where hj ¼ lAj
(x(t � 1)) Æ hj is the feedback units acting as memory elements, and hj is the feedback weight.

Therefore, we can rewrite Eq. (10) as follows:
lAj
ðxðtÞÞ ¼

Yn

i¼1

lAij
ðxiðtÞÞ � sj: ð12Þ
Due to the compensatory operation of the grades of the membership functions lAij
ðxiðtÞÞ in Eq. (12), for

simplicity, we can rewrite it as
Fig. 1. Structure of the proposed CRFNN.
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lAj
ðxðtÞÞ ¼

Yn

i¼1

lAij
ðxiÞ � sj

" #1�cjþcj=n

: ð13Þ
Therefore, we can rewrite the fuzzy if-then rule as follows:
Rule-j : ½IF x1ðtÞ is A1j and . . . . . . and xnðtÞ is Anj and hjðtÞ is G�1�cjþcj=n

THEN y 0ðt þ 1Þ is wj and hjðt þ 1Þ is hj; ð14Þ
where Rule-j denotes the jth fuzzy rule, x(t) = [x1(t), x2(t), . . . , xn(t)]T is the input vector to the model at time
t with xiðtÞ 2 @i � Rði ¼ 1; . . . ; nÞ, hj(t) is the internal variable at time t, y 0(t + 1) is the jth output of the
local model for Rule-j, Aij and G are fuzzy sets, wj is the consequent part of Rule-j, and hj is the fuzzy sin-
gleton. The output of the model at time t is y(t) and is labeled

P
. It is the sum of all incoming signals:
yðtÞ ¼
XR

j¼1

lAj
ðxðtÞÞ � wj; ð15Þ
where the weight wj is the output action strength of the output associated with the jth rule.
Finally, the overall representation of the input x and the output y is
yðtÞ ¼
XR

j¼1

wj �

Qn
i¼1 exp � ðxiþðtÞ�mijÞ2

r2
ij

� �
1þ exp½�lAj

ðxiðt � 1ÞÞ � hj�

8>><
>>:

9>>=
>>;

1�cjþcj=n

; ð16Þ
where cj ¼ c2
j=c2

j þ d2
j is the compensatory degree, mij, rij, hij, cj, dj, and wj are the tuning parameters, and
lAj
ðxðt � 1ÞÞ ¼

Qn
i¼1 exp � ðxiðt�1Þ�mijÞ2

r2
ij

� �
1þ exp½�lAj

ðxiðt � 2ÞÞ � hj�

8>><
>>:

9>>=
>>;

1�cjþcj=n

: ð17Þ
Explicitly, using the CRFNN, the same inputs at different times yield different outputs.
As above, the CRFNN consists of four layers and R · (N · 2 + 3 + M) parameters, where N, R, and M

denote the number of inputs, rules, and outputs, respectively. The proposed CRFNN can be shown to be a
universal uniform approximation for continuous functions over compact sets. The detailed proof is shown
in the Appendix A. We have the following result.

Theorem 1:.Universal approximation theorem. For any real continuous function g in a compact set U � RN

and for any given arbitrary e > 0, there is a model f such that
sup
x2U
kf ðxÞ � gðxÞk < e:
Here k•k can be any norm.

This theorem shows that if the CRFNN has a sufficiently large number of compensatory fuzzy rules, then it
can approximate any continuous function in CðRN Þ over a compact subset of RN . For system over identi-
fication, the theorem means that for any given continuous output trajectory yd(t) of any nonlinear dynamic
system over any compact time-interval t 2 [t0, T], the output y(t) of the CRFNN can approximate yd(t) uni-
formly with arbitrarily high accuracy.
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4. Learning algorithms of CRFNN

In this section, we present an online learning algorithm for constructing the CRFNN. The learning algo-
rithm consists of a structure learning phase and a parameter learning phase. The flow diagram of the learning
scheme for the CRFNN model is shown in Fig. 2. The structure learning algorithm determines whether to
add a new node, which would satisfy the fuzzy partitioning of the input data. The parameter learning is based
upon supervised learning algorithms. The backpropagation algorithm minimizes a given cost function by
adjusting the weights in the consequent part, the weights of the feedback, the compensatory degree, and
the parameters of the membership functions. Initially, there are no nodes in the network except the input–
output nodes, that is, there are no rules or memberships. They are created dynamically and automatically
as learning proceeds when online incoming training data are received and when the structure and parameter
Fig. 2. The flow diagram of the structure/parameter learning for the CRFNN model.
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learning processes are performed. The details of the structure learning phase and the parameter learning
phase are described in the rest of this section.
4.1. The structure learning phase

The first step in the structure learning is to determine whether to extract a new rule from the training
data, as well as to determine the number of fuzzy sets in the universal of discourse of each input variable,
since one cluster in the input space corresponds to one potential fuzzy logic rule, with mij and rij represent-
ing the mean and variance of that cluster. For each incoming pattern x, the strength a rule is fired can be
interpreted as the degree to which the incoming pattern belongs to the corresponding cluster. For compu-
tational efficiency, we can directly use a compensatory operator of the firing strength obtained from lAj

(x(t)) as the degree measure
F j ¼ lAj
ðxðtÞÞ ¼

Yn

i¼1

lAij
ðxiÞ � sj

" #1�cjþcj=n

; ð18Þ
where Fj 2 [0, 1]. Using this degree measure, we can obtain the following criterion for the generation of a
new fuzzy rule for new incoming data, described as follows. Find the maximum degree Fmax,
F max ¼ max
16j6RðtÞ

F j; ð19Þ
where R(t) is the number of existing rules at time t. If F max 6 F , then a new rule is generated, where
F 2 ð0; 1Þ is a prespecified threshold that should decay during the learning process limits the size of the
CRFNN.

In the structure learning step, the threshold parameter F is an important parameter. The threshold value
is set to between zero and one. A low threshold value leads to the learning of coarse clusters (i.e., less rules
are generated), whereas a high threshold value leads to the learning of fine clusters (i.e., more rules are gen-
erated). If the threshold value is equal to zero, all the training data belong to the same cluster in the input
space. Therefore, the selection of the threshold value F will critically affect the simulation results, and the
value will be based on practical experimentation or on trial-and-error tests.

Once a new rule is generated, the next step is to assign an initial mean and variance for the new mem-
bership function. Since our goal is to minimize an objective function, the mean and variance are all adjust-
able according to the current training pattern in the parameter learning. The mean and variance for the new
membership function are set as follows:
m
ðRðtþ1ÞÞ
ij ¼ xi; ð20Þ

r
ðRðtþ1ÞÞ
ij ¼ rinit; ð21Þ
where xi is the new data and rinit is a prespecified constant. Since the generation of a membership function

corresponds to the generation of a new fuzzy rule, the compensatory degree c
ðRðtþ1ÞÞ
j , d

ðRðtþ1ÞÞ
j , i.e.,

r
ðRðtþ1ÞÞ
j ¼ ðcðRðtþ1ÞÞ

j Þ2=ðcðRðtþ1ÞÞ
j Þ2 þ ðdðRðtþ1ÞÞ

j Þ2, the weight of the feedback h
ðRðtþ1ÞÞ
j , and the weight of the link

w
ðRðtþ1ÞÞ
j associated with a new fuzzy rule have to be determined. Generally, the compensatory degree

c
ðRðtþ1ÞÞ
j , d

ðRðtþ1ÞÞ
j , the weight of the feedback h

ðRðtþ1ÞÞ
j , and the weight of the link w

ðRðtþ1ÞÞ
j are selected with random

values in [�1, 1].
The whole algorithm for the generation of new fuzzy rules as well as of fuzzy sets in each input variable is

as follows. Suppose no rules initially exist:
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Step 1: IF xi is the first incoming pattern THEN do
{Generate a new rule
with mean mi1 = xi, variance ri1 = rinit, compensatory degree c1 = random,
d1 = random, weight of feedback h1 = random, weight of link w1 = random

where rinit is a prespecified constant.
}

Step 2: ELSE for each newly incoming xi, do
{Find F max ¼ max16j6RðtÞF j

IF F max P F

do nothing

ELSE
{R(t+1) = R(t) + 1
generate a new rule
with mean m

Rðtþ1Þ
ij ¼ xi, variance r

Rðtþ1Þ
ij ¼ rinit, compensatory degree

c
Rðtþ1Þ
j ¼ random, d

Rðtþ1Þ
j ¼ random, weight of feedback h

Rðtþ1Þ
j ¼ random,

weight of link w
Rðtþ1Þ
j ¼ random

where rinit is a prespecified constant.}
}

4.2. The parameter learning phase

After the network structure is adjusted according to the current training pattern, the network then enters
the parameter learning phase to adjust the parameters of the network optimally based on the same training
pattern. Notice that the following parameter learning is performed on the whole network after structure
learning, regardless of whether the nodes (links) are newly added or originally exist. Since the learning pro-
cess involves the determination of the vector that minimizes a given cost function, the gradient of the cost
function with respect to the vector is computed, and the vector is adjusted along the negative gradient.
When the single output case is considered for clarity, our goal is to minimize the cost function E(t), defined
as
EðtÞ ¼ 1

2
½ydðtÞ � yðtÞ�2; ð22Þ
where yd(t) is the desired output and y(t) is the current output for each discrete time t. In each training cycle,
starting at the input variables, a forward pass is used to calculate the activity of all the current output y(t).

When the backpropagation learning algorithm is used, the weighting vector of the CRFNN is adjusted
such that the error defined in Eq. (22) is less than the desired threshold value after a given number of train-
ing cycles. The well-known backpropagation learning algorithm may be written briefly as
W ðt þ 1Þ ¼ W ðtÞ þ DW ðtÞ ¼ W ðtÞ þ g � oEðtÞ
oW

� �
; ð23Þ
where, in this case, g and W represent the learning rate and the tuning parameters of the CRFNN, respec-
tively. Let e(t) = yd(t) � y(t) and W = [m,r,h, c, d, w]T be the training error and weighting vector of the
CRFNN, respectively. Then the gradient of error E(Æ) in Eq. (22) with respect to an arbitrary weighting
vector W is
oEðtÞ
oW

¼ �eðtÞ oyðtÞ
oW

: ð24Þ
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From recursive applications of the chain rule, the error term for each layer is first computed. Then the
parameters in the corresponding layers are adjusted. With the CRFNN and the cost function as defined
in Eq. (22), we can derive the update rule for wj, cj, dj, and hj as follows:
wjðt þ 1Þ ¼ wjðtÞ � gw
oEðtÞ
owj

; ð25Þ

cjðt þ 1Þ ¼ cjðtÞ � gc
oEðtÞ
ocj

; ð26Þ

djðt þ 1Þ ¼ djðtÞ � gd
oEðtÞ
odj

; ð27Þ

hjðt þ 1Þ ¼ hjðtÞ � gh

oEðtÞ
ohj

; ð28Þ
where
oEðtÞ
owj

¼ �eðtÞ � lAj
ðxðtÞÞ;

oEðtÞ
ocj

¼ �eðtÞ � wj � lAj
ðxðtÞÞ � ln

Yn

i¼1

lAij
ðxiÞ � sj

" #
� 1

n
� 1

� �
� 2cðtÞd2ðtÞ
ðc2ðtÞ þ d2ðtÞÞ2

" #
;

oEðtÞ
odj

¼ �eðtÞ � wj � lAj
ðxðtÞÞ � ln

Yn

i¼1

lAij
ðxiÞ � sj

" #
� 1

n
� 1

� �
� � 2c2ðtÞdðtÞ

ðc2ðtÞ þ d2ðtÞÞ2

" #
;

oEðtÞ
ohj

¼ �eðtÞ � wj � 1� cj þ
cj

n

� �
�

Qn
i¼1

lAij
ðxiÞ

1þ exp½�lAj
ðxðt � 1ÞÞ � hj�

8>><
>>:

9>>=
>>;
�cjþcj=n

�

Qn
i¼1

lAij
ðxiÞ � lAj

ðxðt � 1ÞÞ � exp½�lAj
ðxðt � 1ÞÞ � hj�

h i
½1þ exp½�lAj

ðxðt � 1ÞÞ � hj��2

8>><
>>:

9>>=
>>;:
Similarly, the update laws for mij and rij are
mijðt þ 1Þ ¼ mijðtÞ � gm
oEðtÞ
omij

; ð29Þ

rijðt þ 1Þ ¼ rijðtÞ � gr

oEðtÞ
orij

; ð30Þ
where
oEðtÞ
omij

¼ �eðtÞ � wj � 1� cj þ
cj

n

� �
� lAj
ðxðtÞÞ � 2½xi � mij�

r2
ij

( )
;



C.-J. Lin, C.-H. Chen / European Journal of Operational Research 172 (2006) 696–715 705
oEðtÞ
orij

¼ �eðtÞ � wj � 1� cj þ
cj

n

� �
� lAj
ðxðtÞÞ � 2½xi � mij�2

r3
ij

( )
:

5. Simulation results

We evaluated the performance of the CRFNN for temporal problems. Several examples and perfor-
mance contrasts with some other recurrent fuzzy neural networks are presented in this section. The param-
eters (gm, gr, gh, gc, gd, gw, rinit, F ) were set in advance, and the number of training epochs for the CRFNN
in each example was determined based on the desired accuracy.

Example 1. Identification of dynamic system. In this example, a nonlinear plant with multiple time delays is
guided by the following differential equation:
ypðt þ 1Þ ¼ f ðypðtÞ; ypðt � 1Þ; ypðt � 2Þ; upðtÞ; upðt � 1ÞÞ ð31Þ
where
f ðx1; x2; x3; x4; x5Þ ¼
x1x2x3x5ðx3 � 1Þ þ x4

1þ x2
2 þ x2

3

:

Here, the current output of the plant depends on three previous outputs and two previous inputs. In [6], the
feedforward neural network, with five input nodes for feeding the appropriate past values of yp and u were
used. In our model, only two input values, yp(t) and u(t), were fed to the CRFNN to determine the output
yp(t + 1). The training inputs were independent and had an identically distributed (i.i.d.) uniform sequence
over [�2, 2] for about half of the training time and a single sinusoid signal given by 1.05 sin(pt/45) for the
remaining training time. There was no repetition of these 900 training data, that is, we had different train-
ing sets for each epoch. The check input signal u(t), as shown in the equation below, was used to determine
the identification results.
uðtÞ ¼

sin p�t
25

� 	
; 0 < t < 250;

1:0; 250 6 t < 500;

�1:0; 500 6 t < 750;

0:3 sin p�t
25

� 	
þ 0:1 sin p�t

32

� 	
þ 0:6 sin p�t

10

� 	
; 750 6 t < 1000:

8>>><
>>>:
In training the CRFNN, we used 10 epochs. Each epoch consisted of 900 time steps. The learning rate
gw = gc = gd = gm = gr = gh = 0.05, rinit = 0.2, and the prespecified threshold F ¼ 10�4 were used. After
training, the final root-mean-square error (rms error) was 0.0011, and three fuzzy logic rules were gener-
ated. These designed three rules are

Rule 1: IF [u(t) is l(�0.0313, 0.3149) and y(t) is l(0.1539, 0.7908) and h(t) is G]0.8138

THEN y(t + 1) is 0.4686 and h(t + 1) is 0.4686.
Rule 2: IF [u(t) is l(0.6041, 0.3120) and y(t) is l (1.0319, 0.4989) and h(t) is G]0.6453

THEN y(t + 1) is 0.9018 and h(t + 1) is �0.5938.
Rule 3: IF [u(t) is l(�1.3234, 0.6565) and y(t) is l(�1.1754, 0.7360) and h(t) is G]0.5324

THEN y(t + 1) is �1.3784 and h(t + 1) is 0.0816.

Fig. 3(a) illustrates the distribution of some of the training patterns and the final assignment of the rules
in the [u(t), y(t)] plane. This is due to the parameter learning process, which adjusts the mean and variance



Fig. 3. Simulation results of the CRFNN for dynamic system identification in Example 1. (a) The input training patterns and the final
assignment of rules for the distribution of the membership functions on the y(t) and u(t) dimensions. (b) The outputs of the plant and
the CRFNN. (c) The error between the CRFNN output and the desired output. (d) The learning curve of the CRFNN and the RFNN
[8].
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of each membership function at each time step to minimize the output cost function. The membership func-
tions in the u(t) and y(t) dimensions are shown in Fig. 3(a). Fig. 3(b) shows results using the CRFNN for
identification. The results show that the CRFNN model has perfect identification capability. Fig. 3(c) illus-
trates the error between the desired output and the CRFNN output.



Table 1
Performance comparison of various recurrent methods with respect to the identification problem in Example 1

CRFNN RSONFIN [7] RFNN [8] TRFN-S [9]

Number of parameters 24 36 24 33
RMS error (training) 0.0011 0.0248 0.0030 0.0084
RMS error (testing) 0.0019 0.0780 0.0033 0.0346
Epochs 10 10 10 10
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Recently, Lin and Wai [8] proposed a model called the recurrent fuzzy neural network (RFNN) archi-
tecture for learning and tuning a fuzzy identifier. Our model is similar to the RFNN except for the rule
layer. The rule layer of the RFNN performs the product operation while the rule layer of our model per-
forms compensatory and product operations. Furthermore, users need not give any a priori knowledge or
even any initial information in our proposed model.

Fig. 3(d) shows the learning curves of the CRFNN model and the RFNN [8] model. We compared the
speed (CPU time) of our model with that of the RFNN [8]. The learning time of the CRFNN and RFNN
model needed 7.609 and 7.672 seconds, respectively, for ten epochs. The computation time was measured
on a personal computer with an Intel Pentium 4 (1500 MHz) CPU inside. In this simulation, the proposed
CRFNN model converged faster than the RFNN [8] model.

We also compared the performance of our model with that of other existing recurrent methods
(RSONFIN [7], RFNN [8], TRFN-S [9]). The performance indices considered included the numbers
of adjustable parameters, the rms error (training and testing), and the numbers of epochs. The compar-
ison results are tabulated in Table 1. As shown in Table 1, the numbers of adjustable parameters
and the rms error of the CRFNN are smaller than other recurrent models under the same training
epochs.

Example 2. Identification of a chaotic system. The discrete time Henon system is repeatedly used in the
study of chaotic dynamics and is not too simple in the sense that it is of the second order with one delay and
two parameters [15]. This chaotic system is described by
yðt þ 1Þ ¼ �P � y2ðtÞ þ Q � yðt � 1Þ þ 1:0 for t ¼ 1; 2; . . . ð32Þ
which, with P = 1.4 and Q = 0.3, produces a chaotic strange attractor, as shown in Fig. 4(a). For this train-
ing, the input of the CRFNN was y(t � 1) and the output was y(t). We first randomly took the training
data (1000 pairs) from a system over the interval [�1.5, 1.5]. Then the CRFNN was used to approximate
the chaotic system.

In applying the CRFNN to this example, we used only 100 epochs. Here, the initial point was

[y(1), y(0)]T = [0.4, 0.4]T. The learning rate gw = gc = gd = gm = gr = gh = 0.05, rinit = 0.1, and the pre-

specified threshold F ¼ 10�4 were used. After training, 8 fuzzy logic rules were generated. The phase plane
of this chaotic system after training for the FNN [5] and the CRFNN are shown in Fig. 4(b) and (c), respec-
tively. From the simulation results shown in Fig. 4(b), we can see that the FNN is inappropriate for chaotic
dynamics system because of its static mapping. In Table 2, the comparison shows that the rms error (train-
ing and testing) of the proposed model is smaller than the RFNN model and the FNN model. We also com-
pared the speed (CPU time) of our model with those of the RFNN [8] and FNN [5]. The computation time
was measured on a personal computer with an Intel Pentium 4 (1500 MHz) CPU inside. From the compar-
isons, we can find that the proposed CRFNN model only needs fewer CPU time than the compared net-
works [5,8] under the same adjustable parameters and training epochs.



Fig. 4. Simulation results for identification of a chaotic system. (a) Check data of this chaotic system. (b) Result of identification using
the FNN for the chaotic system. (c) Result of identification using the CRFNN for the chaotic system.
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Example 3. Control of water bath temperature system. The goal of this experiment was to control the
temperature of a water bath system given by
dyðtÞ
dt
¼ uðtÞ

C
þ Y 0 � yðtÞ

RC
; ð33Þ



Table 2
Performance comparison of various methods with respect to the identification problem in Example 2

CRFNN RFNN [8] RFNN [8] FNN [5] FNN [5]

Number of rules 8 8 12 8 16
Number of parameters 48 32 48 24 48
RMS error (training) 0.0034 0.0141 0.0094 0.1338 0.0733
RMS error (testing) 0.0036 0.0145 0.0112 0.1577 0.0748
CPU time (second) 2835.1 2713.5 2995.7 101.6 2836.3
Epochs 100 100 100 100 100
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where y(t) is the system output temperature in �C; u(t) is the heat flowing inward the system; Y0 is the room
temperature; C is the equivalent system thermal capacity; and R is the equivalent thermal resistance be-
tween the system borders and surroundings.

Assuming that R and C are essentially constant, we can rewrite the system in Eq. (33) as a discrete-time
form with some reasonable approximation. The system
yðt þ 1Þ ¼ e�aTsyðkÞ þ
d
a ð1� e�aTsÞ
1þ e0:5yðkÞ�40

uðkÞ þ ½1� e�aTs�y0 ð34Þ
is obtained, where a and d are some constant values describing R and C. The system parameters used in this
example were a = 1.0015e�4, d = 8.67973e�3, and Y0 = 25.0 (�C), which were obtained from a real water
bath plant in [16]. The input u(k) was limited to 0 and 5 V. The sampling period was Ts = 30. The system
configuration is shown in Fig. 5, where yref is the desired temperature of the controlled plant.

When the online training scheme for the CRFNN model was implemented, a sequence of random input
signals urd(k) limited to 0 and 5 V was injected directly into the simulated system described in Eq. (34). The
120 training patterns were chosen from the input–output characteristics in order to cover the entire refer-
ence output. The initial temperature of the water was 25 �C, and the temperature rose progressively when
random input signals were injected. For the CRFNN model, after 10,000 training iterations, 9 fuzzy rules
were generated (see Fig. 5).

For the CRFNN model, two groups of computer simulations were conducted on the water bath temper-
ature control system. Each simulation was performed over 120 sampling time steps. The first task was to
control the simulated system to follow three set-points.
yref ðkÞ ¼
35 �C; for k 6 40;

55 �C; for 40 < k 6 80;

75 �C; for 80 < k 6 120:

8><
>: ð35Þ
The regulation performance of the CRFNN model is shown in Fig. 6.
y(k+1)

Online Learning

Algorithm

Water

Bath System

Z-1

CRFNN 

Model

u(k)

y(k)

yref(k+1)

Fig. 5. Flow diagram for using CRFNN model to solve the temperature control problem.



Fig. 6. Final regulation performance of the CRFNN model for a water bath system.
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A second set of simulations was carried out to study the noise-rejection ability of the CRFNN model
when unknown impulse noise was imposed on the process. An impulse noise value of �5 �C was added
to the plant output at the sixtieth sampling instant. A set point of 50 �C was performed in this set of sim-
ulations. For the CRFNN model, the same training scheme, training data, and learning parameters used in
the first set of simulations were used. The behaviors of the CRFNN model under the influence of impulse
noise are shown in Fig. 7.

For the manually designed fuzzy controller [19], the input variables are chosen as e(t) and ce(t), where
e(t) is the performance error indicating the error between the desired water temperature and the actual mea-
sured temperature and ce(t) is the rate of change in the performance error e(t). The output or the controlled
linguistic variable is the voltage signal u(t) to the heater. Seven fuzzy terms are defined for each linguistic
variable. These fuzzy terms consist of negative large (NL), negative medium (NM), negative small (NS),
Fig. 7. Behavior of the CRFNN model under the impulse noise for a water bath system.
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zero (ZE), positive small (PS), positive medium (PM), and positive large (PL). Each fuzzy term is specified
by a Gaussian membership function. According to common sense and engineering judgment, 25 fuzzy rules
are specified.

For the manually designed fuzzy controller [19], the numbers of rules and membership functions have to
be decided and tuned by hand. For the manually designed fuzzy controller, therefore, they usually require a
long time in design for achieving good performance. In the CRFNN controller, however, no controller
parameters have to be decided in advance. We only need to choose propose training patterns of the
CRFNN controller. Although the structure of CRFNN controller is more complicated than the manually
designed fuzzy controller, in general, the CRFNN controller usually spends a relatively short time in design
for achieving good performance. This study attempted to emphasize the methodology and control abilities
of the proposed CRFNN model. In the future, we will apply the proposed CRFNN model to a real water
bath temperature control system.
6. Discussion

In this section, we summarize the features of the proposed CRFNN model. First, compensatory fuzzy
operators are used in the CRFNN model. A new adaptive fuzzy reasoning method using compensatory fuz-
zy operators makes the fuzzy logic system more adaptive and effective. Since the compensatory fuzzy logic
system is a universal approximator, we developed a compensatory learning algorithm for the CRFNN
model. The CRFNN model cannot only adaptively adjust fuzzy membership functions but can also dynam-
ically optimize the adaptive fuzzy reasoning by using the compensatory learning algorithm. Because the
conventional fuzzy neural network can only adjust fuzzy membership functions by using fixed fuzzy oper-
ations such as MIN and MAX, the CRFNN model with adaptive fuzzy reasoning is more effective and
adaptive than the conventional fuzzy neural network [8] with non-adaptive fuzzy reasoning. Since the com-
pensatory parameters in a fuzzy neural network have physical meanings, these parameters can be initialized
by a heuristic algorithm so as to train the model more quickly.

The second feature of the CRFNN model is its distributed representation of the input patterns. This is
achieved by the fuzzification process through the adaptive input membership functions. With the adaptive
input membership functions, the input space is divided into overlapping small regions and, more impor-
tantly, this partitioning is not performed in advance, but is dynamically and appropriately adjusted during
the learning process. As a result, each region varies in size and the degree of overlapping between regions is
also adjustable. This is in contrast to [2,18,19].

The third feature of the CRFNN model is its dynamic online learning ability to find proper fuzzy logic
rules. There are no rules in the CRFNN model initially. They are created dynamically as learning proceeds
when online incoming training data are received by performing the following learning processes simulta-
neously: (1) input space partitioning; (2) fuzzy rules construction; and (3) parameter identification.

The fourth feature of the proposed CRFNN model is its ability to solve temporal problems. Recurrent
networks have self-loops and backward connections in their topologies, and these feedback loops are used
to memorize past information. Therefore, they can be used to deal with temporal problems. From the sim-
ulation results (see Table 2), we can see that the non-recurrent network [5] is inappropriate for recurrent
dynamics system because of its static mapping.
7. Conclusions and future works

In this paper, a compensation-based recurrent fuzzy neural network was proposed for identifying dy-
namic systems. The CRFNN is a recurrent multilayered connectionist network for realizing fuzzy inference
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using dynamic fuzzy rules. The network consists of four layers, including two hidden layers and a feedback
network. The CRFNN was proved to be a universal approximator. An online learning algorithm that con-
sists of structure learning and parameter learning was proposed to automatically construct the CRFNN.
The structure learning algorithm determines whether to add a new node, which would satisfy the fuzzy par-
tition of the input data. The backpropagation learning algorithm is used for tuning input membership func-
tions. Simulations demonstrated that the proposed CRFNN model is quite effective in many temporal
problems.

Two advanced topics on the proposed CRFNN model should be addressed in future research. First,
since the backpropagation technique is used to minimize the error function, the results may reach the local
minima solution. We will adopt genetic algorithms (GA) to solve the local minima problem. GA is a par-
allel and global search technique. Because it simultaneously evaluates many points in the search space, it is
more likely to converge toward the global solution. Second, it would be better if the CRFNN model has the
ability to delete unnecessary or redundant rules. The fuzzy similarity measure [1] determines the similarity
between two fuzzy sets in order to prevent existing membership functions from being too similar.
Acknowledgment

This research is supported by the National Science Council of ROC under grant NSC 93-2213-E-324-
008.
Appendix A. Proof of the universal approximation theorem

Theorem 1 will be proven using the Stone–Weierstrass theorem. The structure of the proposed CRFNN
is illustrated in Fig. 1. The single output of the CRFNN can be expressed as
yðxÞ ¼
XR

j¼1

lAj
ðxÞ � wj; ðA:1Þ
where x 2 RN is the input variable of the CRFNN,
lAj
ðxÞ ¼

YN
i¼1

lAij
ðxiÞ � sj

" #1�cjþ
cj
N

; ðA:2Þ
where
lAij
ðxiÞ ¼ exp � ½xiðtÞ � mij�2

r2
ij

 !
; ðA:3Þ

sj ¼
1

1þ expð�hjÞ
; ðA:4Þ
where hj ¼ lAj
(x(t � 1)) Æ hj denotes the input of layer 3, the link weight wj is the output action strength, the

mij; rij 2 R, and Y is the family of function y : RN ! R.

Theorem 2:.Stone–Weierstrass Theorem [17]. Let A be a set of real continuous functions on a compact set U.

If (1) U is an algebra. That is, if f1, f2 2 A, and c 2 R, then f1 þ f2 2 A, f1 Æ f2 2 A, and cf1 2 A; (2) A

separates points on U, i.e., for x,y 2 U, x5y, there exists f1 2 A such that f1(x) 5 f2(y); and (3) A vanishes at
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no point of U, i.e., for each x 2 U there exists f1 2 A such that f1(x) 5 0, then the uniform closure of A

consists of all real continuous functions on U.

Lemma 1. Let Y be the family of y defined in (A.1), then Y � U, where U is a compact set.

Proof of Lemma 1. Here, the membership function
0 < lAij
ðxÞ ¼ exp �ðxi � mijÞ2

ðrijÞ2

" #
6 1
and, therefore, the continuous function lAj
ðxÞ is closed and bounded for all x 2 RN . That is, Y � A. h

Proof of Theorem 1. First, we prove that Y is an algebra. Let f1, f2 2 Y, so that we can write them as
f1ðxÞ ¼
XR1

j1¼1

w1j1
� l1Aj1

ðx1Þ ¼
XR1

j1¼1

w1j1
�
YN 1

i1¼1

l1Ai1j1
ðxi1Þ � sj

" #1�c1j1
þc1j1

=Nj

¼
XR1

j1¼1

w1j1
�

QN1

i1¼1 exp � xi1 ðtÞ�m1i1j1ð Þ2
r12

i1j1

� �

1þ exp �l1Aj1
ðxi1ðt � 1ÞÞ � h1j1

h i
2
664

3
775

1�c1j1
þc1j1

=N1

; ðA:5Þ

f2ðxÞ ¼
XR2

j2¼1

w2j2
� l2Aj2

ðxÞ ¼
XR2

j2¼1

w2j2
�
YN 2

i2¼1

l2Ai2j2
ðxi2Þ � sj

" #1�c2j2
þc2j2

=N2

¼
XR2

j2¼1

w2j2
�

QN2

i2¼1 exp � xi2 ðtÞ�m2i2j2ð Þ2
r22

i2j2

� �

1þ exp �l2Aj2
ðxi2ðt � 1ÞÞ � h2j2

h i
2
664

3
775

1�c2j2
þc2j2

=N2

; ðA:6Þ
where w1j and w2j 2 R, we therefore have
f1ðxÞ þ f2ðxÞ ¼
XR1

j1¼1

w1j1
l1Aj1

ðxÞ þ
XR2

j2¼1

w2j2
l2Aj2

ðxÞ ¼
XR1

j1¼1

XR2

j2¼1

w1j1
l1Aj1

ðxÞ þ w2j2
l2Aj2

ðxÞ
� �

: ðA:7Þ
Since l1Aj and l2Aj are Gaussian in form, i.e., this can be verified by straightforward algebraic operations;
hence, (A.7) is in the same form as (A.1), so that f1 + f2 2 Y. Similarly, we have
f1ðxÞf2ðxÞ ¼
XR1

j1¼1

w1j1
l1Aj1

ðxÞ �
XR2

j2¼1

w2j2
l2Aj2

ðxÞ ¼
XR1

j1¼1

XR2

j2¼1

w1j1
l1Aj1

ðxÞ � w2j2
l2Aj2

ðxÞ
� �

ðA:8Þ
which is also in the same form of (A.1); hence, f1f2 2 Y. Finally, for arbitrary c 2 R
c � f1ðxÞ ¼
XR1

j1¼1

c � w1j1
l1Aj1

ðxÞ ðA:9Þ
which is again in the form of (A.1); hence, c Æ f1 2 Y. Therefore, Y is an algebra.
Next, we prove that Y separates points on U. We prove this by constructing a required f; i.e., we specify

f 2 Y such that f(x 0) 5 f(y 0) for arbitrarily given x 0,y 0 2 U with x 0 5 y 0. We choose two fuzzy rules in the
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form of Eq. (14) for the fuzzy rule base. Let x0 ¼ ðx01; x02; . . . ; x0N Þ and y0 ¼ ðy01; y02; . . . ; y0N Þ. If x0i 6¼ y0i, we can
choose two fuzzy rules as the fuzzy rule base. Furthermore, let the Gaussian membership functions be
lAi1
ðxiÞ ¼ exp �ðxi � x0iÞ

2

r2

 !
; ðA:10Þ

lAi2
ðxiÞ ¼ exp �ðxi � y0iÞ

2

r2

 !
: ðA:11Þ
Then f can be expressed as
f ¼ w1 �
YN
i¼1

exp � xi � x0iÞ
2

r2

 !" #1�c1þ
c1
N

þ w2 �
YN
i¼1

exp �ðxi � y0iÞ
2

r2

 !" #1�c2þ
c2
N

; ðA:12Þ
where w1, w2 are the link weights. With this system, we have
f ðx0Þ ¼ w1 þ w2 �
YN
i¼1

exp �ðxi � y 0iÞ
r2

� �" #1�c2þ
c2
N

; ðA:13Þ

f ðy0Þ ¼ w1 �
YN
i¼1

exp �ðy
0
i � x0iÞ
r2

� �" #1�c1þ
c1
N

þ w2: ðA:14Þ
Since x 0 5 y 0, there must be some i such that x0i 6¼ y 0i, hence f(x 0) 5 f(y 0). Therefore, Y separates points on
U.

Finally, we prove that Y vanishes at no point of U. By (A.1), lAj
ðxÞ are constant and not equal to zero.

That is, for all x 2 RN , lAj
ðxÞ > 0. If we choose wj > 0 (j = 1, 2, . . . , R), then y > 0 for any x 2 RN . That is,

any y 2 Y with wj > 0 can serve as the required f. h

In summary, the CRFNN is a universal approximation. Using the Stone–Weierstrass theorem and the
fact that Y is a set of real continuous on U, we have proven the theorem.
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