
1476 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 16, NO. 6, DECEMBER 2008

Efficient Self-Evolving Evolutionary Learning
for Neurofuzzy Inference Systems

Cheng-Jian Lin, Member, IEEE, Cheng-Hung Chen, Student Member, IEEE, and Chin-Teng Lin, Fellow, IEEE

Abstract—This study proposes an efficient self-evolving evolu-
tionary learning algorithm (SEELA) for neurofuzzy inference sys-
tems (NFISs). The major feature of the proposed SEELA is that it
is based on evolutionary algorithms that can determine the num-
ber of fuzzy rules and adjust the NFIS parameters. The SEELA
consists of structure learning and parameter learning. The struc-
ture learning attempts to determine the number of fuzzy rules. A
subgroup symbiotic evolution is adopted to yield several variable
fuzzy systems, and an elite-based structure strategy is adopted to
find a suitable number of fuzzy rules for solving a problem. The
parameter learning is to adjust parameters of the NFIS. It is a
hybrid evolutionary algorithm of cooperative particle swarm op-
timization (CPSO) and cultural algorithm, called cultural CPSO
(CCPSO). The CCPSO, which uses cooperative behavior among
multiple swarms, can increase the global search capacity using the
belief space. Experimental results demonstrate that the proposed
method performs well in predicting time series and solving nonlin-
ear control problems.

Index Terms—Cooperative particle swarm optimization
(CPSO), cultural algorithm (CA), elite-based structure strategy
(ESS), neurofuzzy inference system (NFIS), symbiotic evolution.

I. INTRODUCTION

N EUROFUZZY inference systems (NFISs) [1]–[7] have
become a popular research topic. Such systems bring not

only the low-level learning and computational power of neural
networks into fuzzy systems, but also the high-level human-like
thinking and reasoning of fuzzy systems to neural networks. Re-
cently, genetic fuzzy systems [8]–[10] have received increasing
attention mainly because they combine the approximate reason-
ing method of fuzzy systems with the learning capabilities of
evolutionary algorithms.

An NFIS requires technologies to train the system param-
eters and find the global solution while optimizing the overall
structure. Many recent developments in evolutionary algorithms
have provided several strategies for NFIS design. Three main

Manuscript received August 23, 2007; revised December 12, 2007; accepted
February 16, 2008. Current version published December 19, 2008. This work
was supported in part by the National Science Council, Taiwan, under Grant
NSC 95-2221-E-324-028-MY2 and Grant NSC-96-2221-E-009-058 and in part
by the Taiwan Information Security Center (TWISC) under the National Science
Council Grant NSC96-2219-E-009-013.

C.-J. Lin is with the Department of Computer Science and Information
Engineering, National Chin-Yi University, Taiping City 411, Taiwan (e-mail:
cjlin@ncut.edu.tw).

C.-H. Chen is with the Department of Electrical and Control Engineering, Na-
tional Chiao-Tung University, Hsinchu 300, Taiwan (e-mail: chchen.ece93g@
nctu.edu.tw).

C.-T. Lin is with the Department of Computer Science and the Department of
Electrical and Control Engineering, National Chiao-Tung University, Hsinchu
300, Taiwan, and also with the Brain Research Center, University System of
Taiwan, Hsinchu 300, Taiwan (e-mail: ctlin@mail.nctu.edu.tw).

Digital Object Identifier 10.1109/TFUZZ.2008.2005935

strategies, including Pittsburgh-type, Michigan-type, and the
iterative rule learning genetic fuzzy systems, focus on gener-
ating and learning fuzzy rules in genetic fuzzy systems. First,
the Pittsburgh-type genetic fuzzy system [11] was character-
ized by using a fuzzy system as an individual in genetic op-
erators. Second, the Michigan-type genetic fuzzy system was
used for generating fuzzy rules in [12] and [13], where each
fuzzy rule was treated as an individual. Thus, the rule genera-
tion methods in [12] and [13] were referred to as fuzzy classifier
systems. Third, the iterative rule learning genetic fuzzy sys-
tem [14]–[16] was adopted to search one adequate rule set for
each iteration of the learning process. Moreover, Ishibuchi et al.
[17]–[20] proposed genetic algorithms (GAs) for constructing
a fuzzy system consisting of a small number of linguistic rules.
Mitra and coworkers [21]–[25] presented some approaches that
exploit the benefits of soft computation tools for rule genera-
tion. Moriarty and Miikkulainen [26] proposed a reinforcement
learning method, called symbiotic, adaptive neuro-evolution,
which evolves a population of neurons through GAs to form a
neural network. The GA adopted by Juang et al. [27] is based
on symbiotic evolution that, when applied in fuzzy controller
design, complements the local mapping property of a fuzzy rule.
Lin and Xu [28] presented a group-based symbiotic evolution
learning method that uses a group-based population to evaluate
the fuzzy rule locally. Each group that represents a set of the
individuals performs the evolution process in each generation.
Additionally, Harik et al. [29] applied a compact GA that adopts
a probability distribution to represent a population over the set
of solutions, and uses probability vectors to estimate gene val-
ues as 1 or 0. Lin and Xu [30] proposed a hybrid evolutionary
learning algorithm that uses probability vectors to ensure that
the best group can be reproduced many times in each generation.
Therefore, this study proposes a structure learning strategy. The
strategy adopts a subgroup symbiotic evolution (SSE) to yield
several variable fuzzy systems, and uses an elite-based structure
strategy (ESS) to find a suitable number of fuzzy rules using
probability values.

Moreover, a novel optimization algorithm called particle
swarm optimization (PSO) performs better than the backprop-
agation algorithm. PSO is an evolutionary computation tech-
nique that was developed by Kennedy and Eberhart [31], [32].
The underlying concept of the PSO algorithm is the social be-
havior in animals, such as bird flocking, fish schooling, and
swarming. PSO has been successfully applied to many opti-
mization problems, such as control problems [33]–[35] and
feedforward neural network design [36], [37]. However, PSO
suffers from the burden of many dimensions, such that its perfor-
mance falls as the dimensionality of the search space increases.

1063-6706/$25.00 © 2008 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 22:17 from IEEE Xplore. Restrictions apply.

LIN et al.: EFFICIENT SELF-EVOLVING EVOLUTIONARY LEARNING FOR NEUROFUZZY INFERENCE SYSTEMS 1477

Therefore, Bergh and Engelbrecht [38] proposed a cooperative
approach that employs cooperative behavior, called coopera-
tive particle swarm optimization (CPSO), which uses multiple
swarms to improve upon traditional PSO. However, the CPSO
still uses the formula (the local best (Lbest) position of each
particle and global best (Gbest) position in the swarm) of the
traditional PSO to evolve, and therefore, may find a subopti-
mal solution. This study presents a novel parameter learning
strategy, called cultural CPSO (CCPSO), which combines the
CPSO and the cultural algorithm (CA), to increase global search
capacity, thus avoiding trapping in a suboptimal solution, and
ensuring that a nearby global optimal solution can be found.

This study proposes an efficient self-evolving evolutionary
learning algorithm (SEELA) for NFISs. The NFIS is based on
our previous research [39], and combines a fuzzy system with
a functional link neural network (FLNN) [40]. The consequent
part of the fuzzy rules that corresponds to an FLNN comprises
the functional expansion of input variables.

The proposed SEELA consists of structure learning to de-
termine the number of fuzzy rules, and parameter learning to
adjust the NFIS parameters. The structure learning adopts an
SSE to yield several variable fuzzy systems, and uses an ESS
to find a suitable number of fuzzy rules. The SSE in which
each subparticle represents a single fuzzy rule differs from orig-
inal symbiotic evolution. A fuzzy system with R-rules is con-
structed by selecting and combining R subparticles from each
subgroup, and allowing the rule itself to evolve. The ESS adopts
probability values to find a suitable number of fuzzy rules of
a fuzzy system using the fitness values of variable fuzzy sys-
tems. The parameter learning is performed using an efficient
hybrid method called CCPSO that combines CPSO and CAs.
The proposed CCPSO method with cooperative behavior among
multiple swarms increases the global search capacity using the
belief space. Cooperative behavior among multiple swarms in-
volves interaction by exchanging information with each other to
solve a problem. The belief space is the information repository
in which the individuals can store their experiences for other
individuals to learn from them indirectly.

The advantages of the proposed method are summarized as
follows: 1) the proposed SEELA uses SSE and ESS to deter-
mine the number of fuzzy rules; 2) the proposed SEELA adopts
CCPSO to adjust the NFIS parameters. The proposed CCPSO
method with cooperative behavior among multiple swarms in-
creases the global search capacity using the belief space; 3) as
demonstrated in Section 5, the proposed SEELA can obtain a
smaller rms error than the other methods.

The rest of this paper is organized as follows. Section II de-
scribes the basic concept of symbiotic evolution, PSO, and CA.
Section III presents the structure of the NFIS. Next, Section IV
presents the SEELA. The results of the simulation of predictive
applications and nonlinear control problems are described in
Section V. Section VI draws conclusions.

II. SYMBIOTIC EVOLUTION, PARTICLE SWARM OPTIMIZATION,
AND CULTURAL ALGORITHM

This section describes basic concepts concerning symbiotic
evolution, PSO, and the CA. The specialization property of

symbiotic evolution, PSO, and CA is consistent with the learning
algorithm property of the NFIS. Therefore, the development of
an NFIS based on symbiotic evolution, PSO, and the CA is
valuable.

A. Symbiotic Evolution

The notion of symbiotic evolution [26], [27] is similar to the
implicit fitness sharing used in an immune system model. The
authors evolve artificial antibodies to match or detect artificial
antigens. Each antibody can only match a single antigen, and
different antibodies are needed to effectively protect against
various antigens. These antibodies are used to separate the pop-
ulation into subpopulations and change the way fitness values
are assigned by fitness sharing. In the proposed method, an anti-
body is selected for replacement by randomly choosing a subset
of the population, and then, selecting the member of that subset
that is most similar to the new antibody. Therefore, summing
the fitness values of all possible combinations of that antibody
with other current antibodies and dividing the sum by the total
number of combinations yields the fitness of an antibody.

Partial solutions can be characterized as specializations in
[26] and [27]. The specialization property ensures diversity,
which prevents a population from converging to suboptimal
solutions. A single partial solution cannot “take over” a popula-
tion since there must be other specializations present. Unlike the
standard evolutionary approach, which always causes a given
population to converge, hopefully at the global optimum but
often at a local one, the symbiotic evolution finds solutions in
different, unconverted populations [26], [27].

The basic idea of symbiotic evolution is that an individual is
used to represent a single fuzzy rule. A fuzzy system is formed
when several individuals, who are randomly selected from a pop-
ulation, are combined. With the fitness assignment performed by
symbiotic evolution and with the local property of a fuzzy rule,
symbiotic evolution and the fuzzy system design can comple-
ment each other. If a normal GA evolution scheme is adopted
for fuzzy system design, most of the overall performance of
the fuzzy system is known, and less of the performance of each
fuzzy rule. The best method to replace the unsuitable fuzzy rules
that degrade the overall performance of a fuzzy system is to use
crossover operations, followed by observing the performance of
the offspring.

B. Particle Swarm Optimization

In 1995, Kennedy and Eberhart introduced the PSO algo-
rithm [31], [32]. The PSO is a population-based optimization
approach, in which the population is called a swarm. Further-
more, each swarm consists of many particles. Each particle has
a velocity vector vi and a position vector xi , which represents
a possible solution. Consider an optimization problem that re-
quires the simultaneous optimization of variables. A collection
or swarm of particles is defined, in which each particle is as-
signed a random position in the P -dimensional problem space
so that the position of each particle corresponds to a candidate
solution to the optimization problem. Then, the particles move
rapidly around and search the solution space using the moving

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 22:17 from IEEE Xplore. Restrictions apply.

1478 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 16, NO. 6, DECEMBER 2008

Fig. 1. Diagram of the updated velocity in the PSO.

velocity of each particle. PSO applies a simple rule. Each of
these particle positions is scored to obtain a fitness value, based
on how to define the solution of the problem. The Lbest position
of each particle and the Gbest position in the swarm are used to
yield a new velocity for each particle

vi(k + 1) = ω ∗ vi(k) + φ1 ∗ Rand() ∗ (Lbest − xi(k))

+ φ2 ∗ Rand() ∗ (Gbest − xi(k)) (1)

where ω, φ1 , and φ2 are called the coefficient of the inertia
term, the cognitive term, and the society term, respectively. In
the original PSO algorithm, ω is set in range [0.9, 1.2], and φ1
and φ2 are both set to 2. Rand() yields uniformly distributed
random numbers in [0, 1]. The term vi is limited to the range
±vmax . If the velocity violates this limit, then it is set to the
actual limit. Fig. 1 presents the concept of the updated velocity.

Changing the velocity enables each particle to search around
its individual best position and Gbest position. Based on the
updated velocities, each particle changes its position according
to

xi(k + 1) = xi(k) + vi(k + 1). (2)

C. Cultural Algorithm

CAs [41], [42] involve acquiring the belief space from the
evolving population space, and then, exploiting that informa-
tion to guide the search. Fig. 2 presents the CA components.
CAs can be described in terms of two basic components—the
belief space and the population space. The belief space is the
information repository in which the individuals can store their
experiences for other individuals to learn from them indirectly.
In CAs, the information acquired by an individual can be shared
with the entire population, unlike in most evolutionary tech-
niques, in which the information can be shared only with the
offspring of the individual. The population space comprises a
set of possible solutions to the problem, and can be modeled
using any population-based approach. The belief space and the
population space are linked using a scheme that states rules that

Fig. 2. Framework of the CA.

govern the individuals of the population space that can con-
tribute to the belief space based on its experiences (according
to the acceptance function), and the belief space can influence
the new individuals of the population space (according to the
influence function).

The acceptance function selects the top 20% of individuals
that can directly affect the formation of the current belief space.
The influence function adopts the normative knowledge con-
taining the intervals for the variables where good solutions have
been found, in order to move novel solutions toward those in-
tervals. The following expression shows the influence of the
normative knowledge on the variation operators:

xi =

xi + |Rand() · (u − l)| , if xi < l

xi − |Rand() · (u − l)| , if xi > u

xi + Rand()·(u−l)
m , otherwise

(3)

where xi is the ith variable of the individual; u and l are the
upper and lower bounds of all individuals of the belief space,
respectively, and m is the number of all individuals of the belief
space.

III. STRUCTURE OF AN NFIS

This section describes the NFIS model, which uses a nonlin-
ear combination of input variables (FLNN). The NFIS is based
on our previous research [39]. Each fuzzy rule corresponds to
a sub-FLNN [40], comprising a functional link. Fig. 3 presents
the structure of the proposed NFIS model.

The NFIS model realizes a fuzzy IF–THEN rule in the fol-
lowing form:

Rulej :

IF x̂1 is A1j and x̂2 is A2j · · · and x̂i is Aij · · · and x̂N is ANj

THEN ŷj =
M∑

k=1

wkjφk = w1j φ1 + w2j φ2 + · · · + wM jφM

(4)

where x̂i and ŷj are the input and local output variables, re-
spectively, Aij is the linguistic term of the precondition part
with a Gaussian membership function, N is the number of input
variables, wkj is the link weight of the local output, φk is the

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 22:17 from IEEE Xplore. Restrictions apply.

LIN et al.: EFFICIENT SELF-EVOLVING EVOLUTIONARY LEARNING FOR NEUROFUZZY INFERENCE SYSTEMS 1479

Fig. 3. Structure of the proposed NFIS model.

basis trigonometric function of input variables, M is the number
of basis functions, and Rulej is the jth fuzzy rule.

The operation functions of the nodes in each layer of the
NFIS model are now described. In the following description,
u(l) denotes the output of a node in the lth layer.

A. Layer 1 (Input Node)

No computation is performed in this layer. Each node in this
layer is an input node, which corresponds to one input variable,
and only transmits input values to the next layer directly

u
(1)
i = x̂i . (5)

B. Layer 2 (Membership Function Node)

Nodes in this layer correspond to a single linguistic label of
input variables in layer 1. Therefore, the calculated membership
value specifies the degree to which an input value belongs to
a fuzzy set in layer 2. The implemented Gaussian membership
function in layer 2 is

u
(2)
ij = exp

(
− [u(1)

i − mij]2

σ2
ij

)
(6)

where mij and σij are the mean and variance of the Gaussian
membership function, respectively, of the jth term of the ith
input variable x̂i .

C. Layer 3 (Rule Node)

Nodes in this layer represent the preconditioned part of a
fuzzy logic rule. They receive 1-D membership degrees of the
associated rule from the nodes of a set in layer 2. Here, the
product operator described earlier is adopted to perform the IF-
condition matching of the fuzzy rules. As a result, the output
function of each inference node is

u
(3)
j =

∏
i

u
(2)
ij (7)

where
∏

i u
(2)
ij of a rule node represents the firing strength of its

corresponding rule.

D. Layer 4 (Consequent Node)

Nodes in this layer are called consequent nodes. The input to
a node in layer 4 is the output from layer 3, and the other inputs
are nonlinear combinations of input variables from an FLNN.
For such a node,

u
(4)
j = u

(3)
j ·

M∑
k=1

wkjφk (8)

where wkj is the corresponding link weight of the FLNN and φk

is the functional expansion of input variables. The functional ex-
pansion uses a trigonometric polynomial basis function, given
by [x̂1 , sin(πx̂1), cos(πx̂1), x̂2 , sin(πx̂2), cos(πx̂2)] for 2-D
input variables. Therefore, M is the number of basis functions,

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 22:17 from IEEE Xplore. Restrictions apply.

1480 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 16, NO. 6, DECEMBER 2008

M = 3 × N , where N is the number of input variables. More-
over, the output nodes of an FLNN depend on the number of
fuzzy rules of the NFIS model.

E. Layer 5 (Output Node)

Each node in this layer corresponds to a single output variable.
The node integrates all of the actions recommended by layers 3
and 4 and acts as a center of area defuzzifier with

y = u(5) =

∑R
j=1 u

(4)
j∑R

j=1 u
(3)
j

=

∑R
j=1 u

(3)
j

(∑M
k=1 wkjφk

)
∑R

j=1 u
(3)
j

=

∑R
j=1 u

(3)
j ŷj∑R

j=1 u
(3)
j

(9)

where R is the number of fuzzy rules and y is the output of
the NFIS model. As described earlier, the number of tuning
parameters for the NFIS model is known to be 5 × N × R,
where N and R denote the number of inputs and existing rules,
respectively.

IV. SELF-EVOLVING EVOLUTIONARY LEARNING ALGORITHM

FOR THE NFIS MODEL

This section describes the proposed SEELA. The SEELA
comprises structure learning and parameter learning. The struc-
ture learning consists of an SSE and an ESS. In the SSE, the
fitness value of a rule (a subparticle) is computed as the sum of
the fitness values of all the feasible combinations of that rule
with all other randomly selected rules, and then, dividing this
sum by the total number of combinations. The concept of ESS
is based on the maturing phenomenon in society, where individ-
uals adapt to the environment as they acquire more knowledge
from the society. The ESS can find a suitable number of rules
and the combinations of rules according to probability values.

The parameter learning adopts a CCPSO to adjust the NFIS
parameters. The traditional PSO uses one swarm of particles
defined by the P -dimension vectors to evolve. The CPSO
method [38] can change a traditional PSO into P swarms of
1-D vectors, such that each swarm represents a dimension of
the original problem. Fig. 4(a) and (b) shows the framework of
the traditional PSO and CPSO methods. The key point is that,
instead of using one swarm (of I particles) to find the optimal
P -dimension vector, the vector is split into its components so
that P swarms (of I particles each) optimize a 1-D vector where
each 1-D vector represents each swarm, as shown in Fig. 4(b).
Notably, the function that is being optimized still requires a
P -dimension vector to be evaluated. Additionally, each swarm
aims to optimize a single component of the solution vector es-
sentially solving a 1-D optimization problem. Unfortunately,
the CPSO still employs just the Lbest position and the Gbest
position of the traditional PSO to the evolution process. The tra-
jectory of each particle in the search space is adjusted according
to the Lbest position of the particle and the Gbest position in the
same search space, but it is unable to yield high diversity of par-
ticles to increase the search space. That is, it is lacking enough
capability to satisfy the requirements of exploration [43], [44].

Fig. 4. Framework. (a) PSO. (b) CPSO.

Therefore, the CPSO may fall into a suboptimal solution. Re-
cently, CAs [41], [42] exploited the information of the specific
belief space to guide the feasible search space and can change
the direction of each individual in the solution space. Hence, the
proposed CCPSO method, which combines the CPSO and the
CA to increase the global search capacity, is proposed to avoid
trapping in a suboptimal solution and ensure the ability to search
for a near global optimal solution. Fig. 5 shows the framework
of the proposed CCPSO method, which is based on a CPSO, all
of whose parameters are simultaneously tuned using the belief
space of the CA. In the aforementioned scheme, the proposed
CCPSO method can avoid falling into a suboptimal solution
and ensures that the approximate global optimal solution can be
found.

The SEELA has three major phases: initialization, structure
learning, and parameter learning. First, the initialization phase
can create initial swarms and the belief space. Second, the struc-
ture learning phase includes SSE and ESS to determine the
number of fuzzy rules. Third, the parameter learning phase uses
CCPSO to adjust the NFIS parameters. The detailed flowchart
of the proposed SEELA method is presented in Fig. 6.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 22:17 from IEEE Xplore. Restrictions apply.

LIN et al.: EFFICIENT SELF-EVOLVING EVOLUTIONARY LEARNING FOR NEUROFUZZY INFERENCE SYSTEMS 1481

Fig. 5. Framework of the proposed CCPSO method.

Fig. 6. Flowchart of the proposed SEELA method.

Fig. 7. Coding a fuzzy rule into a subparticle in the proposed SEELA.

A. Initialization Phase

1) Coding Step: The foremost step in SEELA is the cod-
ing of a fuzzy rule into a subparticle. Fig. 7 shows an exam-
ple of the coding of parameters of a fuzzy rule into a sub-
particle where i and j represent the ith input variable and
the jth rule, respectively. In this study, a Gaussian mem-
bership function is adopted with variables that represent the
mean and deviation of the membership function. Fig. 7 rep-
resents a fuzzy rule given by (4), where mij and σij are the
mean and deviation of a Gaussian membership function, re-
spectively, and wkj represents the corresponding link weight
of the consequent part that is connected to the jth rule node.
In this study, a real number represents the position of each
subparticle.

2) Create Initial Swarms: Before the SEELA method is ap-
plied, every position xp,i(t) must be created randomly in the
range [0, 1] in each subgroup, where p = 1, 2, . . . , P represents
the pth swarm, i = 1, 2, . . . , I represents the ith particle, and t
denotes the t-th generation.

3) Create Initial Belief Spaces: The belief space is the in-
formation repository in which the particles can store their expe-
riences for other particles to learn from them indirectly. Create
P belief spaces, Bp(p = 1, 2, . . . , P). Each initial Bp is defined
as an empty set.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 22:17 from IEEE Xplore. Restrictions apply.

1482 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 16, NO. 6, DECEMBER 2008

Fig. 8. Structure of the subparticle in SSE.

B. Structure Learning Phase

1) Subgroup Symbiotic Evolution: In order to keep the same
rule numbers of each fuzzy system in each group, the size
α needs to be defined in each group, i.e., the size of each
group is α. Therefore, the size of all groups should be set to
α · (Rmax − Rmin + 1), where Rmax and Rmin represent the
maximum number of rules and the minimum number of rules,
respectively. In this step, the fitness value of a rule (a subpar-
ticle) is computed as the sum of the fitness values of all the
feasible combinations of that rule with all other randomly se-
lected rules, and then, dividing this sum by the total number of
combinations. Fig. 8 shows the structure of the subparticle in
the SSE. The stepwise assignment of the fitness value is shown
as follows.

Step 1: Randomly select R fuzzy rules (subparticle) from
each of the aforementioned subgroups, and compose
the fuzzy system using these R rules.

Step 2: Calculate the fitness value of the particles using the
NFIS thus composed. In this study, the fitness value
is given by the following formula:

F =

√√√√ 1
D

D∑
d=1

(yd − yd)2 (10)

where yd represents the dth model output, yd rep-
resents the dth desired output, and D represents the
number of training data.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 22:17 from IEEE Xplore. Restrictions apply.

LIN et al.: EFFICIENT SELF-EVOLVING EVOLUTIONARY LEARNING FOR NEUROFUZZY INFERENCE SYSTEMS 1483

Fig. 9. Coding probability values into BBs.

Step 3: Divide the fitness value by R and accumulate the
divided fitness value to the fitness record of the R se-
lected rules with their recorded fitness values initially
set to zero.

Step 4: Repeat the aforementioned steps until the space of
each group has been filled a sufficient number of
times, and record the number of fuzzy systems to
which each subparticle has contributed.

Step 5: Divide the accumulated fitness of each subparticle by
the number of times it has been selected.

Step 6: Sort these subparticles in each subgroup in the order
of increasing fitness.

2) Elite-Based Structure Strategy: The foremost step in ESS
is the coding of the probability value Vj into building blocks
(BBs), as shown in Fig. 9, where the probability value represents
the appropriate degree of rule numbers of a fuzzy system. In
Fig. 9, Rmax and Rmin are predefined to prevent less or more
fuzzy rules from being generated in a fuzzy system. According
to the results of the ESS, the appropriate rule numbers and rule
combinations can be found. The details of ESS are shown as
follows.

Step 1: Update probability values of BBs according to the
following equations:

Vj (ts + 1) = Vj (ts) if Avgj is the best
+ (Upt valuej · λ), performance

Vj (ts + 1) = Vj (ts), otherwise

(11)

where j = [Rmin , Rmax], Avgj =
∑α

α ′=1 Fα ′/α,

Upt valuej =
∑α

α ′=1 Fα ′ /
∑Rm a x

R ′=Rm in

∑α
α ′=1 Fα ′ ,

where Vj is a probability value in the BBs and
presents the appropriate rule numbers of a fuzzy
system, λ is a constant, Avgj is a average fitness
value in the jth group, Fα ′ is the fitness value of each
composed fuzzy system in each group, and α is the
size of each group.

Step 2: Find the appropriate rule numbers. The probability
values of BBs are initially set to zero. Repeat step
1 until Vj is greater than or equal to one. The fin-
ished prior step including subgroup symbiotic evolu-
tion and elite-based structure strategy is called one
structure learning. Therefore, the maximum number
of generations for structure learning should be set to
Ns . Accumulate probability values of each structure
learning in BBs and divide the accumulated probabil-
ity values by Ns to find the appropriate rule numbers
and rule combinations.

C. Parameter Learning Phase

The parameter learning phase adopts a CCPSO that com-
bines the CPSO and the CA. The parameter learning process is
described step-by-step as follows.

Step 1: Update Lbest position Lp,i and Gbest position Gp.
The Lbest position Lp,i is the best previous position
that yielded the best fitness value of the pth swarm of
the ith particle, and the Gbest position Gp is generated
by the whole Lbest position. In step 1, the first step
updates the Lbest position. Compare the fitness value
of each current particle with that of its Lbest position.
If the fitness value of the current particle exceeds
those of its Lbest position, then the Lbest position
is replaced with the position of the current particle.
The second step updates the Gbest position. Compare
the fitness value of all particles in their Lbest positions
with that of the particle in the Gbest position. If the fit-
ness value of the particle in the Lbest position is better
than those of the particles in the Gbest position, then
the Gbest position is replaced with the current Lbest
position

Lp,i(t + 1)=

{
xp,i(t), if F (xp,i(t))< F (Lp,i(t))

Lp,i(t), if F (xp,i(t))≥F (Lp,i(t))

Gp(t + 1)=arg min
Lp , i

F (Lp,i(t + 1)), 1 ≤ i ≤ I.

(12)

Step 2: Adjust each belief space Bp using an acceptance
function. The first part of step 2 sorts these parti-
cles in each Swarmp in the order of increasing fitness.
Then, the paragon of each Swarmp is put into the
belief space Bp using an acceptance function. This
function yields the number of particles that are used
to adjust each belief space and is shown as follows.
The number of accepted particles decreases as the
number of generations increases

Naccepted = n% · I +
n%
t

· I (13)

where n% is a parameter that is set by the user, and
must specify the top performing 20% [45], I is the
number of particles, and t represents the t-th gen-
eration. The second step adjusts Bp . The interval
of the belief space BIp is defined BIp = [lp , up] =
{x|lp ≤ x ≤ up, x ∈ �}, where lp is the lower bound
of the belief space Bp and up is the upper bound of
the belief space Bp . Then, the position of each par-
ticle in Bp is compared with the lower bound lp . If
the position of the particle is smaller than the lower
bound lp , then the lower bound lp is replaced with the
current position. Furthermore, the position of each
particle in the Bp is compared with the upper bound
up . If the position of the particle is greater than the
upper bound up , then the upper bound up is replaced
with the current position. These rules are given as

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 22:17 from IEEE Xplore. Restrictions apply.

1484 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 16, NO. 6, DECEMBER 2008

follows:

lp =
{

xp,i , if xp,i ≤ lp

lp , otherwise

up =
{

xp,i , if xp,i ≥ up

up , otherwise.
(14)

Step 3: Generate each new Swarmp using lp,up , Lp,i , and Gp.
In step 3, the first step adjusts every position of each
Swarmp using an influence function (15). This step
can change the direction of each particle in the so-
lution space, not easily being trapped at a local opti-
mum. Then, the second step updates velocity and po-
sition of each particle to generate each new Swarmp

using (16) and (17)

xp,i(t) =

{
xp,i(t)+ |Rand() · (up− lp)|, if xp,i < lp

xp,i(t)− |Rand() · (up− lp)|, if xp,i > up

(15)

vp,i(t + 1) = w · vp,i(t)

+ c1 · Rand() · [Lp,i(t + 1) − xp,i(t)]

+ c2 · Rand() · [Gp(t + 1) − xp,i(t)]

(16)

xp,i(t + 1) = xp,i(t) + vp,i(t + 1) (17)

where c1 and c2 denote acceleration coefficients;
Rand() is generated from a uniform distribution in
the range [0, 1], and w controls the magnitude of
vp,i(t).

D. Parameters Analysis of SEELA

This section analyzes all predefined parameters of SEELA.
These parameters are explained as follows:
Notation Description

Rmin the minimum number of fuzzy rules in SSE and ESS
Rmax the maximum number of fuzzy rules in SSE and ESS
α the size of each group in SSE and ESS
λ a constant value can influence the updated rate of Vj

in (11)
Ns the maximum number of generations for structure

learning
n% a parameter of acceptance function determines the

number of individuals that can enter the belief space
in (13)

w the coefficient of the inertia term can control the
magnitude of velocity in (16)

c1 the coefficient of the cognitive term for local best in
(16)

c2 the coefficient of the society term for global best in
(16)

Rmin , Rmax , α, λ, and Ns influence structure learning, and
n%, w, c1 , and c2 influence parameter learning of SEELA. Rmin ,
Rmax , α, and Ns depend on the complexity of the problem. The

TABLE I
INITIAL PARAMETERS BEFORE TRAINING

selection of parameter λ critically affects the analysis of Vj . The
parameter λ, which uses the range (0, 1], was carefully examined
in extensive experiments, and defined as [0.01, 0.5]. The variable
n% is a parameter of the acceptance function given by the user in
(0, 50%]; Saleem [45] suggests using 20%. The variables w, c1 ,
and c2 are three coefficients of updated velocity. The determi-
nation of these three coefficients are based on practical experi-
mentation and then defined by the user in [0.4, 0.9], [1, 2], and
[1, 2].

V. EXPERIMENTAL RESULTS

This section discusses three examples that were considered to
evaluate the NFIS model with the SEELA method. The first ex-
ample involves predicting a chaotic time series [46], the second
example involves forecasting the number of sunspots [47], and
the third example involves controlling backing up the truck [48].
Table I presents the initial parameters before training used in the
three simulations.

A. Example 1: Prediction of Chaotic Time Series

The Mackey–Glass chaotic time series x(t) was generated
using the following delay differential equation:

dx(t)
dt

=
0.2x(t − τ)

1 + x10(t − τ)
− 0.1x(t). (18)

Cowder [46] extracted 1000 input–output data pairs {x, yd}
using four past values of x(t)

[x(t − 18), x(t − 12), x(t − 6), x(t);x(t + 6)] (19)

where τ = 17 and x(0) = 1.2. Four inputs to the NFIS model
corresponded to these values of x(t), and one output was x(t +
∆t), where ∆t is the time interval into the future. The first 500
pairs [from x(1) to x(500)] were the training dataset, while the
remaining 500 pairs [from x(501) to x(1000)] were the testing
data used to validate the proposed method. For the simulation,

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 22:17 from IEEE Xplore. Restrictions apply.

LIN et al.: EFFICIENT SELF-EVOLVING EVOLUTIONARY LEARNING FOR NEUROFUZZY INFERENCE SYSTEMS 1485

Fig. 10. Three cross-validation groups of training and testing data.

Fig. 11. Results of probability values of the ESS step in the proposed SEELA
in CV1.

three cross-validation groups of training and testing data are
used. They are CV1, CV2, and CV3. The training and testing
windows are labeled in Fig. 10.

Fig. 11 shows the result of probability values after structure
learning in CV1. As shown in Fig. 11, nine rules are adopted us-
ing ESS. The learning stage entered parameter learning through
the CCPSO method. The learning proceeded for 1000 genera-
tions, and was performed ten times. The final rms error of the
prediction output is about 0.00747 in CV1.

In this example, PSO [31], CPSO [38], and GA [49] were
applied to the same problem to show the effectiveness and ef-
ficiency of the NFIS model with the SEELA method. In the
PSO and CPSO, the coefficient w was set to 0.4, the cognitive
coefficient c1 was set to 1.6, and the society coefficient c2 was
set to 2. Nine rules are set to construct the fuzzy model. The
learning proceeded for 1000 generations, and was performed

ten times. Fig. 12 plots the learning curves of the NFIS model
with the SEELA method, PSO, CPSO, and GA in CV1. The
proposed method yields better prediction results than the other
methods. Table II shows that the performance of the SEELA
was compared with those of PSO [31], CPSO [38], and GA [49]
in CV1, CV2, and CV3. Table III lists the generalization capa-
bilities of other methods [1], [6], [27], [46]. The generalization
capabilities were measured by using each model to predict 500
points immediately following the training dataset. The results
show that the proposed NFIS model with the SEELA method
offers a smaller rms error than other methods.

B. Example 2: Forecast of the Number of Sunspots

The number of sunspots varied nonlinearly from 1700 to
2004, in nonstationary, and non-Gaussian cycles that are difficult
to predict [47]. In this example, the NFIS model with the SEELA
method was used to forecast the number of sunspots. The inputs
xi of the NFIS model are defined as x1(t) = yd

1 (t − 1), x2(t) =
yd

1 (t − 2), and x3(t) = yd
1 (t − 3), where t represents the year

and yd
1 (t) is the number of sunspots in the year t. In this example,

the number of sunspots of the first 151 years (from 1703 to 1853)
was used to train the NFIS model with the SEELA method while
the number of sunspots of all 302 years (from 1703 to 2004)
was used to test the trained NFIS model.

The learning stage involved parameter learning by the CCPSO
method. Fig. 13 shows the result of probability values after
structure learning. As shown in Fig. 13, nine rules are adopted
according to ESS. The learning proceeded for 1000 generations,

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 22:17 from IEEE Xplore. Restrictions apply.

1486 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 16, NO. 6, DECEMBER 2008

TABLE II
COMPARISON OF BEST PERFORMANCE OF SEELA, PSO, CPSO, AND GA IN EXAMPLE 1

TABLE III
COMPARISON OF PERFORMANCE OF VARIOUS EXISTING MODELS

Fig. 12. Learning curves of best performance of the proposed SEELA method,
PSO [31], CPSO [38], and GA [49] in CV1.

and was performed ten times. The final rms error of the forecast
output is about 8.78006.

In this example, as in Example 1, the performance of the
NFIS model with the SEELA method was compared with those
of other methods. In PSO [31], CPSO [38], and GA [49], the
parameters are the same as in Example 1. Nine rules are used
to construct the fuzzy model. The learning proceeded for 1000

Fig. 13. Results of probability values of the ESS step in the proposed SEELA.

Fig. 14. Learning curves of best performance of the proposed SEELA method,
PSO [31], CPSO [38], and GA [49].

TABLE IV
COMPARISON OF BEST PERFORMANCE OF SEELA, PSO, CPSO, AND GA IN

EXAMPLE 2

generations, and was performed ten times. Fig. 14 plots the
learning curves of the NFIS model with SEELA, PSO [31],
CPSO [38], and GA [49] methods. The proposed method yields
better forecast results than the other methods. Table IV presents

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 22:17 from IEEE Xplore. Restrictions apply.

LIN et al.: EFFICIENT SELF-EVOLVING EVOLUTIONARY LEARNING FOR NEUROFUZZY INFERENCE SYSTEMS 1487

Fig. 15. Diagram of simulated truck and loading zone.

Fig. 16. Results of probability values of the ESS step in the proposed SEELA.

the rms error for training and forecasting and the average error.
As presented in Table IV, the proposed NFIS model with SEELA
method outperforms the other methods.

C. Example 3: Control of Backing Up the Truck

Backing a truck into a loading dock is difficult. It is a non-
linear control problem for which no traditional control method
exists [48]. Fig. 15 shows the simulated truck and loading zone.
The truck position is exactly determined by three state variables
φ, x, and y, where φ is the angle between the truck and the
horizontal, and the coordinate pair (x, y) specifies the position
of the center of the rear of the truck in the plane. The steering
angle θ of the truck is the controlled variable. Positive values
of θ represent clockwise rotations of the steering wheel and
negative values represent counterclockwise rotations. The truck
is placed at some initial position and is backed up while being
steered by the controller. The objective of this control problem
is to use backward-only motions of the truck to make the truck
arrive in the desired loading dock (xdesired , ydesired) at a right
angle (φdesired = 90◦). The truck moves backward as the steer-
ing wheel moves through a fixed distance (df) in each step. The
loading region is limited to the plane [0,100] × [0,100].

The input and output variables of the NFIS must be specified.
The controller has two inputs, truck angle φ and cross position
x. When the clearance between the truck and the loading dock
is assumed to be sufficient, the y coordinate is not considered
as an input variable. The output of the controller is the steering
angle θ. The ranges of the variables x, φ, and θ are as follows:

0 ≤ x ≤ 100 (20)

−90◦ ≤ φ ≤ 270◦ (21)

−30◦ ≤ θ ≤ 30◦. (22)
Fig. 17. Trajectories of truck, starting at three initial positions under the control
of the NFIS-SEELA after learning using training trajectories.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 22:17 from IEEE Xplore. Restrictions apply.

1488 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 16, NO. 6, DECEMBER 2008

TABLE V
COMPARISONS OF BEST PERFORMANCE OF VARIOUS EXISTING MODELS IN EXAMPLE 3

The equations of backward motion of the truck are

x(k + 1) = x(k) + df cos θ(k) + cos φ(k)

y(k + 1) = y(k) + df cos θ(k) + sin φ(k)

φ(k + 1) = tan−1
[
lsin φ(k) + df cos φ(k)sin θ(k)
lcos φ(k) − df sin φ(k)sin θ(k)

]
(23)

where l is the length of the truck. Equation (23) yields the next
state from the present state.

Learning involves several attempts, each starting from an
initial state and terminating when the desired state is reached;
the NFIS is thus trained. Fig. 16 shows the result of probability
values after structure learning. As shown in Fig. 16, nine rules
are adopted according to ESS. The learning proceeded for 500
generations, and was performed ten times. The final rms error
of the forecast output is about 0.0391. Fig. 17(a)–(c) plots the
trajectories of the moving truck controlled by the NFIS, starting
at initial positions (x, y, φ) = (a) (40, 20, −30◦), (b) (70, 20,
−30◦), and (c) (80, 20, 150◦), after the training process has been
terminated. We compare the performance of our method with
those of other existing methods [4], [27], [50]. The comparison
results are tabulated in Table V. According to these results, the
proposed NFIS-SEELA outperforms various existing models.

VI. CONCLUSION AND FUTURE WORKS

This study proposed an efficient SEELA for NFISs. The major
novelty of the proposed SEELA is that it is based on evolution-
ary algorithms that can determine the number of fuzzy rules and
adjust the NFIS parameters. The experimental results demon-
strated that the proposed SEELA method can obtain a smaller
rms error than the generally used PSO and CPSO.

Three advanced topics for the proposed SEELA method
should be addressed in future research. First, the computational
complexity of the SEELA method should be decreased in SSE.
The crowding distance operator [51] presented in the nondomi-
nated sorting genetic algorithm II (NSGA-II) can be adopted for
like fast nondominated sorting in the solution space according
to each objective function. Second, the fitness function of the
SEELA method uses only the error term to evaluate the perfor-
mance of fuzzy systems, and does not address the number of
fuzzy rules. Ishibuchi et al. [17]–[20] proposed multiobjective
optimization methods to simultaneously evaluate the number of
fuzzy rules and the performance of fuzzy systems. Third, there
are nine parameters in the SEELA method that influence the
accuracy and complexity of the final NFIS and training dura-

tion. These parameters should be automatically selected using
an effective method in the future. Khosla et al. [52] presented
a systematic method based on the Taguchi approach reasoning
scheme for identifying the strategy parameters for the evolu-
tionary algorithm. The Taguchi approach provides systematic,
simple, and efficient methodology using fractional factorial de-
sign to study a large number of parameters with only a few
well-defined experimental sets.

REFERENCES

[1] J.-S. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,”
IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665–685, May/Jun.
1993.

[2] N. Kasabov, Foundations of Neural Networks, Fuzzy Systems and Knowl-
edge Engineering. Cambridge, MA: MIT Press, 1996.

[3] C. T. Lin and C. S. G. Lee, Neural Fuzzy Systems: A Neural-Fuzzy Syner-
gism to Intelligent Systems. Englewood Cliffs, NJ: Prentice-Hall, May
1996.

[4] C. J. Lin and C. T. Lin, “An ART-based fuzzy adaptive learning control
network,” IEEE Trans. Fuzzy Syst., vol. 5, no. 4, pp. 477–496, Nov. 1997.

[5] C. F. Juang and C. T. Lin, “An online self-constructing neural fuzzy
inference network and its applications,” IEEE Trans. Fuzzy Syst., vol. 6,
no. 1, pp. 12–31, Feb. 1998.

[6] N. K. Kasabov and Q. Song, “DENFIS: Dynamic evolving neural-fuzzy
inference system and its application for time-series prediction,” IEEE
Trans. Fuzzy Syst., vol. 10, no. 2, pp. 144–154, Apr. 2002.

[7] C. J. Lin and C. C. Chin, “Prediction and identification using wavelet-
based recurrent fuzzy neural networks,” IEEE Trans. Syst., Man, Cybern.,
vol. 34, no. 5, pp. 2144–2154, Oct. 2004.

[8] O. Cordon, F. Herrera, F. Hoffmann, and L. Magdalena, Genetic Fuzzy
Systems. Singapore: World Scientific, 2001.

[9] O. Cordon, F. Gomide, F. Herrera, F. Hoffmann, and L. Magdalena, “Ten
years of genetic fuzzy systems: Current framework and new trends,” Fuzzy
Sets Syst., vol. 141, no. 1, pp. 5–31, 2004.

[10] F. Herrera, “Genetic fuzzy systems: Status, critical considerations and
future directions,” Int. J. Comput. Intell. Res., vol. 1, no. 1, pp. 59–67,
2005.

[11] S. H. Stewart, S. Taylor, J. M. Baker, F. Hoffmann, and G. Pfister, “Evo-
lutionary design of a fuzzy knowledge base for a mobile robot,” Int. J.
Approx. Reason., vol. 17, no. 4, pp. 447–469, Nov. 1997.

[12] A. Parodi and P. Bonelli, “A new approach to fuzzy classifier systems,” in
Proc. 5th Int. Conf. Genetic Algorithms, 1993, pp. 223–230.

[13] H. Ishibuchi, T. Nakashima, and T. Murata, “Performance evaluation of
fuzzy classifier systems for multi-dimensional pattern classification prob-
lems,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 29, no. 5, pp. 601–
618, Oct. 1999.

[14] O. Cordon, M. J. del Jesus, F. Herrera, and M. Lozano, “MOGUL: A
methodology to obtain genetic fuzzy rule-based systems under the iterative
rule learning approach,” Int. J. Intell. Syst., vol. 14, no. 11, pp. 1123–1153,
1999.

[15] A. Gonzalez and R. Perez, “SLAVE: A genetic learning system based on
an iterative approach,” IEEE Trans. Fuzzy Syst., vol. 7, no. 2, pp. 176–191,
Apr. 1999.

[16] L. Castillo, A. Gonzalez, and R. Perez, “Including a simplicity criterion in
the selection of the best rule in a genetic fuzzy learning algorithm,” Fuzzy
Sets Syst., vol. 120, no. 2, pp. 309–321, 2001.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 22:17 from IEEE Xplore. Restrictions apply.

LIN et al.: EFFICIENT SELF-EVOLVING EVOLUTIONARY LEARNING FOR NEUROFUZZY INFERENCE SYSTEMS 1489

[17] H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, “Selecting fuzzy
if–then rules for classification problems using genetic algorithms,” IEEE
Trans. Fuzzy Syst., vol. 3, no. 3, pp. 260–270, Aug. 1995.

[18] H. Ishibuchi, T. Murata, and I. B. Turksen, “Single-objective and two-
objective genetic algorithms for selecting linguistic rules for pattern clas-
sification problems,” Fuzzy Sets Syst., vol. 89, no. 2, pp. 135–150,
1997.

[19] H. Ishibuchi, T. Nakashima, and T. Murata, “Three-objective genetics-
based machine learning for linguistic rule extraction,” Inf. Sci., vol. 136,
no. 1–4, pp. 109–133, 2001.

[20] H. Ishibuchi and Y. Nojima, “Analysis of interpretability-accuracy tradeoff
of fuzzy systems by multiobjective fuzzy genetics-based machine learn-
ing,” Int. J. Approx. Reason., vol. 44, no. 1, pp. 4–31, 2007.

[21] S. Mitra and S. K. Pal, “Fuzzy multi-layer perceptron, inferencing and
rule generation,” IEEE Trans. Neural Netw., vol. 6, no. 1, pp. 51–63, Jan.
1995.

[22] S. Mitra and S. K. Pal, “Fuzzy self-organization, inferencing, and rule
generation,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 26,
no. 5, pp. 608–620, Sep. 1996.

[23] S. Mitra and Y. Hayashi, “Neurofuzzy rule generation: Survey in soft
computing framework,” IEEE Trans. Neural Netw., vol. 11, no. 3, pp. 748–
768, May 2000.

[24] S. Mitra, K. M. Konwar, and S. K. Pal, “Fuzzy decision tree, linguistic
rules and fuzzy knowledge-based network: Generation and evaluation,”
IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 32, no. 4, pp. 328–339,
Nov. 2002.

[25] S. K. Pal, S. Mitra, and P. Mitra, “Rough-fuzzy MLP: Modular evolution,
rule generation, and evaluation,” IEEE Trans. Knowl. Data Eng., vol. 15,
no. 1, pp. 14–25, Jan./Feb. 2003.

[26] D. E. Moriarty and R. Miikkulainen, “Efficient reinforcement learning
through symbiotic evolution,” Mach. Learn., vol. 22, pp. 11–32, 1996.

[27] C. F. Juang, J. Y. Lin, and C. T. Lin, “Genetic reinforcement learning
through symbiotic evolution for fuzzy controller design,” IEEE Trans.
Syst., Man, Cybern. B, Cybern., vol. 30, no. 2, pp. 290–302, Apr. 2000.

[28] C. J. Lin and Y. J. Xu, “A self-adaptive neural fuzzy network with group-
based symbiotic evolution and its prediction applications,” Fuzzy Sets
Syst., vol. 157, no. 8, pp. 1036–1056, Apr. 2006.

[29] G. R. Harik, F. G. Lobo, and D. E. Goldberg, “The compact genetic
algorithm,” IEEE Trans. Evol. Comput., vol. 3, no. 4, pp. 287–297, Nov.
1999.

[30] C. J. Lin and Y. J. Xu, “A hybrid evolutionary learning algorithm for
TSK-type fuzzy model design,” Math. Comput. Model., vol. 43, no. 5/6,
pp. 563–581, Mar. 2006.

[31] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. IEEE
Int. Conf. Neural Netw., Perth, W.A., Australia, vol. 4, Nov./Dec.1995,
pp. 1942–1948.

[32] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proc. 6th Int. Symp. Micro Mach. Hum. Sci., Nagoya, Japan,
Oct. 4–6, 1995, pp. 39–43.

[33] Z. L. Gaing, “A particle swarm optimization approach for optimum design
of PID controller in AVR system,” IEEE Trans. Energy Convers., vol. 19,
no. 2, pp. 384–391, Jun. 2004.

[34] H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi, “A
particle swarm optimization for reactive power and voltage control con-
sidering voltage security assessment,” IEEE Trans. Power Syst., vol. 15,
no. 4, pp. 1232–1239, Nov. 2000.

[35] M. A. Abido, “Optimal design of power-system stabilizers using parti-
cle swarm optimization,” IEEE Trans. Energy Convers., vol. 17, no. 3,
pp. 406–413, Sep. 2002.

[36] C. F. Juang, “A hybrid of genetic algorithm and particle swarm opti-
mization for recurrent network design,” IEEE Trans. Syst., Man Cybern.,
vol. 34, no. 2, pp. 997–1006, Apr. 2004.

[37] R. Mendes, P. Cortez, M. Rocha, and J. Neves, “Particle swarms for
feedforward neural network training,” in Proc. 2002 Int. Joint Conf. Neural
Netw., Honolulu, HI, vol. 2, pp. 1895–1899.

[38] F. Van Den Bergh and A. P. Engelbrecht, “A cooperative approach to
particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3,
pp. 225–239, Jun. 2004.

[39] C. H. Chen, C. T. Lin, and C. J. Lin, “A functional-link-based fuzzy
neural network for temperature control,” in Proc. 2007 IEEE Symp. Found.
Comput. Intell., Honolulu, HI, Apr. 1–5, pp. 53–58.

[40] J. C. Patra, R. N. Pal, B. N. Chatterji, and G. Panda, “Identification of
nonlinear dynamic systems using functional link artificial neural net-
works,” IEEE Trans. Syst., Man, Cybern., vol. 29, no. 2, pp. 254–262, Apr.
1999.

[41] R. G. Reynolds, “An introduction to cultural algorithms,” in Proc. 3rd
Annu. Conf. Evol. Program., A. V. Sebald and L. J. Fogel, Eds. River
Edge, NJ: World Scientific, 1994, pp. 131–139.

[42] X. Jin and R. G. Reynolds, “Using knowledge-based evolutionary com-
putation to solve nonlinear constraint optimization problems: A cultural
algorithm approach,” in Proc. IEEE Congr. Evol. Comput., Washington,
DC, 1999, vol. 3, pp. 1672–1678.

[43] A. Silva, A. Neves, and E. Costa, “An empirical comparison of particle
swarm and predator prey optimization,” Lecture Notes Comput. Sci.,
vol. 2464, pp. 103–110, 2002.

[44] M. Mansour, S. F. Mekhamer, and N. E.-S. El-Kharbawe, “A modified
particle swarm optimizer for the coordination of directional overcurrent
relays,” IEEE Trans. Power Del., vol. 22, no. 3, pp. 1400–1410, Jul. 2007.

[45] S. M. Saleem, “Knowledge-based solution to dynamic optimization prob-
lems using cultural algorithms,” Ph.D. dissertation, Wayne State Univ.,
Detroit, MI, 2001.

[46] R. S. Cowder, “Predicting the Mackey–Glass time series with cascade-
correlation learning,” in Proc. 1990 Connectionist Models Summer School,
pp. 117–123.

[47] S. H. Ling, F. H. F. Leung, H. K. Lam, Y. S. Lee, and P. K. S. Tam, “A novel
genetic-algorithm-based neural network for short-term load forecasting,”
IEEE Trans. Ind. Electron., vol. 50, no. 4, pp. 793–799, Aug. 2003.

[48] D. Nguyen and B. Widrow, “The truck backer-upper: An example of self-
learning in neural network,” IEEE Control Syst. Mag., vol. 10, no. 3,
pp. 18–23, Apr. 1990.

[49] C. J. Lin, “A GA-based neural fuzzy system for temperature control,”
Fuzzy Sets Syst., vol. 143, no. 2, pp. 311–333, Apr. 2004.

[50] H. Nomura, I. Hayashi, and N. Wakami, “A learning method of fuzzy
inference rules by descent method,” in Proc. IEEE Conf. Fuzzy Syst., San
Diego, CA, Mar. 1992, pp. 203–210.

[51] K. Deb, A. Pratap, S. Agrawal, and T. Meyarian, “A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[52] A. Khosla, S. Kumar, and K. K. Aggarwal, “Identification of strategy
parameters for particle swarm optimizer through Taguchi method,” J.
Zhejiang Univ. Sci., vol. 7, no. 12, pp. 1989–1994, 2006.

Cheng-Jian Lin (S’93–M’95) received the B.S. de-
gree in electrical engineering from Ta-Tung Univer-
sity, Taipei, Taiwan, in 1986, and the M.S. and Ph.D.
degrees in electrical and control engineering from the
National Chiao-Tung University, Hsinchu, Taiwan, in
1991 and 1996, respectively.

From April 1996 to July 1999, he was an Associate
Professor in the Department of Electronic Engineer-
ing, Nan-Kai College, Nantou, Taiwan. From August
1999 to January 2005, he was an Associate Professor
in the Department of Computer Science and Infor-

mation Engineering, Chaoyang University of Technology, where he was a Full
Professor from February 2005 to July 2007 and the Chairman from 2001 to
2005, and the Library Director of the Poding Memorial Library from 2005 to
2007. From August 2007 to July 2008, he was a Professor in the Department
of Electrical Engineering, National University of Kaohsiung. He is currently
a Full Professor in the Department of Computer Science and Information En-
gineering, National Chin-Yi University of Technology, Taiping City, Taiwan.
From 2002 to 2005, he was the Associate Editor of the International Journal
of Applied Science and Engineering. His current research interests include soft
computing, pattern recognition, intelligent control, image processing, bioinfor-
matics, and field-programmable gate array (FPGA) design. He has authored or
coauthored more than 150 papers published in referred journals and conference
proceedings.

Prof. Lin is a member of the Phi Tau Phi, the Chinese Fuzzy Systems Associ-
ation (CFSA), the Chinese Automation Association, the Taiwanese Association
for Artificial Intelligence (TAAI), the IEEE Systems, Man, and Cybernetics
Society, and the IEEE Computational Intelligence Society. He was a member
of the Executive Committees of the TAAI from 2003 to 2008 and the CFSA
from 2007 to 2008. He has received several honors and awards, including
the 2006 Outstanding Paper Award of the 11th Conference on Artificial In-
telligence and Applications, the 2007 Outstanding Paper Award of the 12th
Conference on Artificial Intelligence and Applications, and the 2006 Best Paper
Award of the International Transactions on Computer Science and Engineering
(vol. 32, no. 1).

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 22:17 from IEEE Xplore. Restrictions apply.

1490 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 16, NO. 6, DECEMBER 2008

Cheng-Hung Chen (S’07) was born in Kaohsiung,
Taiwan, in 1979. He received the B.S. and M.S.
degrees in computer science and information engi-
neering from Chaoyang University of Technology,
Wufong, Taiwan, in 2002 and 2004, respectively, and
the Ph.D. degree in electrical and control engineering
from the National Chiao-Tung University, Hsinchu,
Taiwan, in 2008.

He is currently with the Department of Electrical
and Control Engineering, National Chiao-Tung Uni-
versity. His current research interests include fuzzy

systems, neural networks, evolutionary algorithms, intelligent control, and pat-
tern recognition.

Chin-Teng Lin (S’88–M’91–SM’99–F’05) received
the B.S. degree in control engineering from the Na-
tional Chiao-Tung University (NCTU), Hsinchu, Tai-
wan, in 1996, and the M.S.E.E. and Ph.D. degrees in
electrical engineering from Purdue University, West
Lafayette, IN, in 1989 and 1992, respectively.

Since August 1992, he has been with the Col-
lege of Electrical Engineering and Computer Sci-
ence, NCTU, where he was the Founding Dean of
the Computer Science College from 2005 to 2007,
and is currently the Provost of Academic Affairs and

the Chair Professor of Electrical and Control Engineering. He is also with the
Brain Research Center, University System of Taiwan, Hsinchu. He is the author
of Neural Fuzzy Systems (Prentice-Hall) and Neural Fuzzy Control Systems With
Structure and Parameter Learning (World Scientific). He has authored or coau-
thored over 110 journal papers published, including about 80 IEEE Transaction
papers. His current research interests include intelligent technology, soft com-
puting, brain–computer interfaces, intelligent transportation systems, robotics
and intelligent sensing, and nano-bio-information technologies and cognitive
science (NBIC).

Dr. Lin was a member of the Board of Governors (BoG) of the IEEE Systems,
Man, Cybernetics Society (SMCS) from 2003 to 2005. He is currently a BoG
member of the IEEE Circuits and Systems Society (CASS). From 2003 to 2005,
he was the IEEE Distinguished Lecturer. He is also the Deputy-Editor-in-Chief
(EIC) of the IEEE TRANSACTIONS OF CIRCUITS AND SYSTEMS, PART II. He
was the Program Chair of the 2006 IEEE International Conference on Systems,
Man, and Cybernetics, Taipei, Taiwan. From 2004 to 2005, he was the Presi-
dent of the BoG of the Asia Pacific Neural Networks Assembly (APNNA). He
has been receiving the Outstanding Research Award by the National Science
Council (NSC), Taiwan, since 1997 to present, and received the Outstanding
Professor Award by the Chinese Institute of Engineering (CIE) in 2000 and the
2002 Taiwan Outstanding Information-Technology Expert Award. He was also
elected to be one of 38th Ten Outstanding Rising Stars in Taiwan (2000). He is a
member of the Tau Beta Pi, the Eta Kappa Nu, and the Phi Kappa Phi honorary
societies.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 3, 2009 at 22:17 from IEEE Xplore. Restrictions apply.

