
1362 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 16, NO. 5, OCTOBER 2008

A Functional-Link-Based Neurofuzzy Network
for Nonlinear System Control

Cheng-Hung Chen, Student Member, IEEE, Cheng-Jian Lin, Member, IEEE, and Chin-Teng Lin, Fellow, IEEE

Abstract—This study presents a functional-link-based neuro-
fuzzy network (FLNFN) structure for nonlinear system control.
The proposed FLNFN model uses a functional link neural network
(FLNN) to the consequent part of the fuzzy rules. This study uses
orthogonal polynomials and linearly independent functions in a
functional expansion of the FLNN. Thus, the consequent part of
the proposed FLNFN model is a nonlinear combination of input
variables. An online learning algorithm, which consists of structure
learning and parameter learning, is also presented. The structure
learning depends on the entropy measure to determine the num-
ber of fuzzy rules. The parameter learning, based on the gradient
descent method, can adjust the shape of the membership function
and the corresponding weights of the FLNN. Furthermore, results
for the universal approximator and a convergence analysis of the
FLNFN model are proven. Finally, the FLNFN model is applied
in various simulations. Results of this study demonstrate the effec-
tiveness of the proposed FLNFN model.

Index Terms—Entropy, functional link neural networks
(FLNNs), neurofuzzy networks (NFNs), nonlinear system control,
online learning.

I. INTRODUCTION

NONLINEAR system control is an important tool that
is adopted to improve control performance and achieve

robust fault-tolerant behavior. Among nonlinear control tech-
niques, those based on artificial neural networks and fuzzy sys-
tems have become popular topics of research in recent years
[1], [2] because classical control theory usually requires that a
mathematical model be used in designing a controller. However,
the inaccuracy of the mathematical modeling of plants usually
degrades the performance of the controller, especially for non-
linear and complex control problems [3]. On the contrary, both
the fuzzy system controller and the artificial neural network con-
troller provide key advantages over traditional adaptive control
systems. Although traditional neural networks can learn from
data and feedback, the meaning associated with each neuron
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and each weight in the network is not easily interpreted. Alter-
natively, the fuzzy systems are easily appreciated, because they
use linguistic terms and the structure of IF–THEN rules. How-
ever, the learning capacity of fuzzy systems is less than that of
neural networks. According to the literature review mentioned
before, neurofuzzy networks (NFNs) [4]–[13] provide the ad-
vantages of both neural networks and fuzzy systems, unlike pure
neural networks or fuzzy systems alone. NFNs bring the low-
level learning and computational power of neural networks into
fuzzy systems and give the high-level human-like thinking and
reasoning of fuzzy systems to neural networks.

Two typical types of NFNs are the Mamdani-type and the
Takagi–Sugeno–Kang (TSK)-type. For Mamdani-type NFNs
[7]–[9], the minimum fuzzy implication is adopted in fuzzy rea-
soning. For TSK-type NFNs [10]–[13], the consequence part
of each rule is a linear combination of input variables. Many
researchers [12], [13] have shown that TSK-type NFNs offer
better network size and learning accuracy than Mamdani-type
NFNs. In the typical TSK-type NFN, which is a linear polyno-
mial of input variables, the model output is approximated locally
by the rule hyperplanes. Nevertheless, the traditional TSK-type
NFN does not take full advantage of the mapping capabilities
that may be offered by the consequent part. Introducing a non-
linear function, especially a neural structure, to the consequent
part of the fuzzy rules has yielded the neural networks designed
on approximate reasoning architecture (NARA) [14] and the
coactive neurofuzzy inference system (CANFIS) [15] models.
These models [14], [15] apply multilayer neural networks to the
consequent part of the fuzzy rules. Although the interpretabil-
ity of the model is reduced, the representational capability of
the model is markedly improved. However, the multilayer neu-
ral network has such disadvantages as slower convergence and
greater computational complexity. Therefore, this study uses the
functional link neural network (FLNN) [16], [17] to the conse-
quent part of the fuzzy rules, called a functional-link-based NFN
(FLNFN). The consequent part of the proposed FLNFN model
is a nonlinear combination of input variables, which differs
from the other existing models [8], [12], [13]. The FLNN is a
single-layer neural structure capable of forming arbitrarily com-
plex decision regions by generating nonlinear decision bound-
aries with nonlinear functional expansion. The FLNN [18] was
conveniently used for function approximation and pattern clas-
sification with faster convergence rate and less computational
loading than a multilayer neural network. Moreover, using the
functional expansion can effectively increase the dimensionality
of the input vector, so the hyperplanes generated by the FLNN
will provide a good discrimination capability in input data
space.
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This study presents an FLNFN structure for nonlinear sys-
tem control. The FLNFN model, which combines an NFN with
an FLNN, is designed to improve the accuracy of functional
approximation. Each fuzzy rule that corresponds to an FLNN
consists of a functional expansion of input variables. The or-
thogonal polynomials and linearly independent functions are
adopted as FLNN bases. An online learning algorithm, consist-
ing of structure learning and parameter learning, is proposed to
construct the FLNFN model automatically. The structure learn-
ing algorithm determines whether or not to add a new node
that satisfies the fuzzy partition of input variables. Initially, the
FLNFN model has no rules. The rules are automatically gen-
erated from training data by entropy measure. The parameter
learning algorithm is based on backpropagation to tune the free
parameters in the FLNFN model simultaneously to minimize an
output error function. The advantages of the proposed FLNFN
model are summarized as follows.

1) The consequent of the fuzzy rules of the proposed model
is a nonlinear combination of input variables. This study
uses the FLNN to the consequent part of the fuzzy rules.
The local properties of the consequent part in the FLNFN
model enable a nonlinear combination of input variables
to be approximated more effectively.

2) The online learning algorithm can automatically construct
the FLNFN model. No rules or memberships exist initially.
They are created automatically as learning proceeds, as
online incoming training data are received and as structure
and parameter learning are performed.

3) The FLNFN model is proven to be a universal approxi-
mator by Stone–Weierstrass theorem and its convergence
properties are proven by the Lyapunov theorem in the
Appendix.

4) As demonstrated in Section IV, the proposed FLNFN
model is a more adaptive and effective controller than
the other models.

This paper is organized as follows. Section II describes the
structure of the suggested model. Section III presents the online
structure and parameter learning algorithms. Next, Section IV
presents the results of simulations of various problems. Finally,
Section V draws conclusions and discusses future works.

II. STRUCTURE OF FUNCTIONAL-LINK-BASED

NEUROFUZZY NETWORK

This section describes the structure of FLNNs and the struc-
ture of the FLNFN model. In FLNNs, the input data usually
incorporate high-order effects, and thus, artificially increase the
dimensions of the input space using a functional expansion. Ac-
cordingly, the input representation is enhanced and linear sep-
arability is achieved in the extended space. The FLNFN model
adopted the FLNN, generating complex nonlinear combinations
of input variables to the consequent part of the fuzzy rules. The
rest of this section details these structures.

A. Functional Link Neural Networks

The FLNN is a single-layer network in which the need for
hidden layers is removed. While the input variables generated

Fig. 1. Structure of an FLNN.

by the linear links of neural networks are linearly weighted,
the functional link acts on an element of input variables by
generating a set of linearly independent functions (i.e., the use
of suitable orthogonal polynomials for a functional expansion)
and then evaluating these functions with the variables as the
arguments. Therefore, the FLNN structure considers trigono-
metric functions. For example, for a two-dimensional input
X = [x1 , x2 ]T , the enhanced input is obtained using trigono-
metric functions in Φ = [1, x1 , sin(π x1), cos(π x1), . . . , x2 ,
sin(π x2), cos(π x2), . . .]T . Thus, the input variables can be
separated in the enhanced space [16]. In the FLNN structure
with reference to Fig. 1, a set of basis functions Φ and a fixed
number of weight parameters W represent fW (x). The theory
behind the FLNN for multidimensional function approximation
has been discussed elsewhere [19] and is analyzed later.

Consider a set of basis functions B = {φk ∈ Φ(A)}k∈K ,
K = {1, 2, . . .}, with the following properties: 1) φ1 = 1; 2)
the subset Bj = {φk ∈ B}M

k=1 is a linearly independent set,
meaning that if

∑M
k=1 wkφk = 0, then wk = 0 for all k =

1, 2, . . . ,M ; and 3) supj [
∑j

k=1 ‖φk‖2
A ]1/2 < ∞.

Let B = {φk}M
k=1 be a set of basis functions to be considered,

as shown in Fig. 1. The FLNN comprises M basis functions
{φ1 , φ2 , . . . , φM } ∈ BM . The linear sum of the jth node is
given by

ŷj =
M∑

k=1

wkjφk (X) (1)

where X ∈ A ⊂ �N , X = [x1 , x2 , . . . , xN ]T is the input vector
and Wj = [wj1 , wj2 , . . . , wjM ]T is the weight vector associ-
ated with the jth output of the FLNN. ŷj denotes the local output
of the FLNN structure and the consequent part of the jth fuzzy
rule in the FLNFN model. Thus, (1) can be expressed in matrix
form as ŷj = WjΦ, where Φ = [φ1(x), φ2(x), . . . , φN (x)]T

is the basis function vector, which is the output of the func-
tional expansion block. The m-dimensional linear output may
be given by ŷ = WΦ, where ŷ = [ŷ1 , ŷ2 , . . . , ŷm ]T , m de-
notes the number of functional link bases, which equals the
number of fuzzy rules in the FLNFN model, and W is an
(m×M )-dimensional weight matrix of the FLNN given by
W = [w1 ,w2 , . . . ,wM ]T . The jth output of the FLNN is given
by ŷj ′ = ρ(ŷj ), where the nonlinear function ρ(·) = tanh(·).
Thus, the m-dimensional output vector is given by

Ŷ = ρ(ŷ) = fW (x) (2)

where Ŷ denotes the output of the FLNN. In the FLNFN model,
the corresponding weights of functional link bases do not exist in
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Fig. 2. Structure of proposed FLNFN model.

the initial state, and the amount of the corresponding weights of
functional link bases generated by the online learning algorithm
is consistent with the number of fuzzy rules. Section III details
the online learning algorithm.

B. Structure of FLNFN Model

This subsection describes the FLNFN model, which uses a
nonlinear combination of input variables (FLNN). Each fuzzy
rule corresponds to a sub-FLNN, comprising a functional link.
Fig. 2 presents the structure of the proposed FLNFN model.

The FLNFN model realizes a fuzzy IF–THEN rule in the
following form.

Rule j:

IF x1 is A1j and x2 is A2j · · · and xi is Aij · · · and xN is AN j

THEN ŷj =
M∑

k=1

wkjφk

= w1j φ1 + w2j φ2 + · · · + wM jφM (3)

where xi and ŷj are the input and local output variables, respec-
tively; Aij is the linguistic term of the precondition part with
Gaussian membership function, N is the number of input vari-
ables, wkj is the link weight of the local output, φk is the basis
trigonometric function of input variables, M is the number of
basis function, and rule j is the jth fuzzy rule.

The operation functions of the nodes in each layer of the
FLNFN model are now described. In the following description,
u(l) denotes the output of a node in the lth layer.

No computation is performed in layer 1. Each node in this
layer only transmits input values to the next layer directly

u
(1)
i = xi. (4)

Each fuzzy set Aij is described here by a Gaussian member-
ship function. Therefore, the calculated membership value in
layer 2 is

u
(2)
ij = exp

(
− [u(1)

i − mij ]2

σ2
ij

)
(5)

where mij and σij are the mean and variance of the Gaussian
membership function, respectively, of the jth term of the ith
input variable xi .

Nodes in layer 3 receive one-dimensional membership de-
grees of the associated rule from the nodes of a set in layer 2.
Here, the product operator described earlier is adopted to per-
form the precondition part of the fuzzy rules. As a result, the
output function of each inference node is

u
(3)
j =

∏
i

u
(2)
ij (6)
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where the
∏

i u
(2)
ij of a rule node represents the firing strength

of its corresponding rule.
Nodes in layer 4 are called consequent nodes. The input to a

node in layer 4 is the output from layer 3, and the other inputs
are calculated from the FLNN that has not used the function
tanh(·), as shown in Fig. 2. For such a node

u
(4)
j = u

(3)
j

M∑
k=1

wkjφk (7)

where wkj is the corresponding link weight of the FLNN and
φk is the functional expansion of input variables. The func-
tional expansion uses a trigonometric polynomial basis func-
tion, given by [x1 sin(π x1) cos(π x1)x2 sin(π x2) cos(π x2)]
for two-dimensional input variables. Therefore, M is the num-
ber of basis functions, M = 3 × N, where N is the number of
input variables. Moreover, the output nodes of the FLNN depend
on the number of fuzzy rules of the FLNFN model.

The output node in layer 5 integrates all of the actions rec-
ommended by layers 3 and 4 and acts as a defuzzifier with

y = u(5) =

∑R
j=1 u

(4)
j∑R

j=1 u
(3)
j

=

∑R
j=1 u

(3)
j

(∑M
k=1 wkjφk

)
∑R

j=1 u
(3)
j

=

∑R
j=1 u

(3)
j ŷj∑R

j=1 u
(3)
j

(8)

where R is the number of fuzzy rules and y is the output of the
FLNFN model.

As described earlier, the number of tuning parameters for the
FLNFN model is known to be (2+3P)NR, where N , R, and
P denote the number of inputs, existing rules, and outputs, re-
spectively. The proposed FLNFN model can be demonstrated to
be a universal uniform approximation by the Stone–Weierstrass
theorem [20] for continuous functions over compact sets. The
detailed proof is given in the Appendix.

III. LEARNING ALGORITHMS OF THE FLNFN MODEL

This section presents an online learning algorithm for con-
structing the FLNFN model. The proposed learning algorithm
comprises a structure learning phase and a parameter learning
phase. Fig. 3 presents flow diagram of the learning scheme
for the FLNFN model. Structure learning is based on the en-
tropy measure used to determine whether a new rule should
be added to satisfy the fuzzy partitioning of input variables.
Parameter learning is based on supervised learning algorithms.
The backpropagation algorithm minimizes a given cost func-
tion by adjusting the link weights in the consequent part and the
parameters of the membership functions. Initially, there are no
nodes in the network except the input–output nodes, i.e., there
are no nodes in the FLNFN model. The nodes are created au-
tomatically as learning proceeds, upon the reception of online
incoming training data in the structure and parameter learning
processes. The rest of this section details the structure learning
phase and the parameter learning phase. Finally, in this section,
the stability analysis of the FLNFN model based on the Lya-

Fig. 3. Flow diagram of the structure/parameter learning for the FLNFN
model.

punov approach is performed to ensure that the convergence
property holds.

A. Structure Learning Phase

The first step in structure learning is to determine whether
a new rule should be extracted from the training data and to
determine the number of fuzzy sets in the universe of discourse
of each input variable, since one cluster in the input space cor-
responds to one potential fuzzy logic rule, in which mij and
σij represent the mean and variance of that cluster, respectively.
For each incoming pattern xi , the rule firing strength can be
regarded as the degree to which the incoming pattern belongs to
the corresponding cluster. The entropy measure between each
data point and each membership function is calculated based
on a similarity measure. A data point of closed mean will have
lower entropy. Therefore, the entropy values between data points
and current membership functions are calculated to determine
whether or not to add a new rule. For computational efficiency,
the entropy measure can be calculated using the firing strength
from u

(2)
ij as

EMj = −
N∑

i=1

Dij log2 Dij (9)

where Dij = exp(u(2)−1

ij ) and EMj ∈ [0, 1]. According to (9),
the measure is used to generate a new fuzzy rule, and new
functional link bases for new incoming data are described as
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follows. The maximum entropy measure

EMmax = max
1≤j≤R (T )

EMj (10)

is determined, where R(t) is the number of existing rules at
time t. If EMmax ≤ EM, then a new rule is generated, where
EM ∈ [0, 1] is a prespecified threshold that decays during the
learning process.

In the structure learning phase, the threshold parameter EM
is an important parameter. The threshold is set between zero
and one. A low threshold leads to the learning of coarse clusters
(i.e., fewer rules are generated), whereas a high threshold leads
to the learning of fine clusters (i.e., more rules are generated). If
the threshold value equals zero, then all the training data belong
to the same cluster in the input space. Therefore, the selection
of the threshold value EM will critically affect the simulation
results. As a result of our extensive experiments and by carefully
examining the threshold value EM, which uses the range [0, 1],
we concluded that there was a relationship between threshold
value EM and the number of input variables (N ). Accordingly,
EM = τN , where τ belongs to the range [0.26, 0.3].

Once a new rule has been generated, the next step is to assign
the initial mean and variance to the new membership function
and the corresponding link weight for the consequent part. Since
the goal is to minimize an objective function, the mean, variance,
and weight are all adjustable later in the parameter learning
phase. Hence, the mean, variance, and weight for the new rule
are set as

m
(R ( t + 1 ) )
ij = xi (11)

σ
(R ( t + 1 ) )
ij = σinit (12)

w
(R ( t + 1 ) )
kj = random[−1, 1] (13)

where xi is the new input and σinit is a prespecified constant.
The whole algorithm for the generation of new fuzzy rules and
fuzzy sets in each input variable is as follows. No rule is assumed
to exist initially.
Step 1: IF xi is the first incoming pattern THEN do

{Generate a new rule
with mean mi1 = xi , variance σi1 = σinit ,
weight wk1 = random[−1, 1]
where σinit is a prespecified constant.
}

Step 2: ELSE for each newly incoming xi , do
{Find EMmax = max

1≤j≤R ( t )

EMj

IF EMmax ≥ EM
do nothing
ELSE
{R(t+1) = R(t) +1
generate a new rule
with mean miR ( t + 1 ) = xi , variance σiR ( t + 1 ) = σinit ,
weight wkR ( t + 1 ) = random[−1, 1]
where σinit is a prespecified constant.}
}

B. Parameter Learning Phase

After the network structure has been adjusted according to the
current training data, the network enters the parameter learning
phase to adjust the parameters of the network optimally based
on the same training data. The learning process involves deter-
mining the minimum of a given cost function. The gradient of
the cost function is computed and the parameters are adjusted
with the negative gradient. The backpropagation algorithm is
adopted for this supervised learning method. When the single-
output case is considered for clarity, the goal to minimize the
cost function E is defined as

E(t) =
1
2
[y(t) − yd(t)]2 =

1
2
e2(t) (14)

where yd(t) is the desired output and y(t) is the model output for
each discrete time t. In each training cycle, starting at the input
variables, a forward pass is adopted to calculate the activity of
the model output y(t).

When the backpropagation learning algorithm is adopted,
the weighting vector of the FLNFN model is adjusted such
that the error defined in (14) is less than the desired threshold
value after a given number of training cycles. The well-known
backpropagation learning algorithm may be written briefly
as

W (t + 1) = W (t) + ∆W (t) = W (t) +
(
−η

∂E(t)
∂W (t)

)
(15)

where, in this case, η and W represent the learning rate and the
tuning parameters of the FLNFN model, respectively. Let W =
[m,σ,w]T be the weighting vector of the FLNFN model. Then,
the gradient of error E(·) in (14) with respect to an arbitrary
weighting vector W is

∂E(t)
∂W

= e(t)
∂y(t)
∂W

. (16)

Recursive applications of the chain rule yield the error term
for each layer. Then the parameters in the corresponding layers
are adjusted. With the FLNFN model and the cost function as
defined in (14), the update rule for wj can be derived as

wkj (t + 1) = wkj (t) + ∆wkj (t) (17)

where

∆wkj (t) = −ηw
∂E

∂wkj

= −ηw e

(
u

(3)
j φk∑R

j=1 u
(3)
j

)
.

Similarly, the update laws for mij and σij are

mij (t + 1) = mij (t) + ∆mij (t) (18)

σij (t + 1) = σij (t) + ∆σij (t) (19)
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Fig. 4. Conventional online training scheme.

where

∆mij (t) = −ηm
∂E

∂mij

= −ηm e

(
u

(4)
j∑R

j=1 u
(3)
j

)(
2(u(1)

i − mij )
σ2

ij

)

∆σij (t) = −ησ
∂E

∂σij

= −ησ e

(
u

(4)
j∑R

j=1 u
(3)
j

)(
2(u(1)

i − mij )2

σ3
ij

)

where ηw , ηm , and ησ are the learning rate parameters of the
weight, the mean, and the variance, respectively. In this study,
both the link weights in the consequent part and the parameters
of the membership functions in the precondition part are ad-
justed by using the backpropagation algorithm. Recently, many
researchers [13], [21] tuned the consequent parameters using ei-
ther LMS or recursive least squares (RLS) algorithms to obtain
optimal parameters. However, they still used the backpropaga-
tion algorithm to adjust the precondition parameters.

C. Convergence Analysis

The selection of suitable learning rates is very important. If
the learning rate is small, convergence will be guaranteed. In this
case, the speed of convergence may be slow. However, the learn-
ing rate is large, and then the system may become unstable. The
Appendix derives varied learning rates, which guarantee con-
vergence of the output error based on the analyses of a discrete
Lyapunov function, to train the FLNFN model effectively. The
convergence analyses in this study are performed to derive spe-
cific learning rate parameters for specific network parameters
to ensure the convergence of the output error [22], [23]. More-
over, the guaranteed convergence of output error does not imply
the convergence of the learning rate parameters to their opti-
mal values. The following simulation results demonstrate the
effectiveness of the online learning FLNFN model based on the
proposed delta adaptation law and varied learning rates.

IV. SIMULATION RESULTS

This study demonstrated the performance of the FLNFN
model for nonlinear system control. This section simulates var-
ious control examples and compares the performance of the
FLNFN model with that of other models. The FLNFN model
is adopted to design controllers in four simulations of nonlinear

system control problems—a water bath temperature control sys-
tem [24], control of a bounded-input–bounded-output (BIBO)
nonlinear plant [22], control of the ball and beam system [25],
and multiinput–multioutput (MIMO) plant control [2].

A. Example 1: Control of Water Bath Temperature System

The goal of this section is to elucidate the control of the
temperature of a water bath system according to

dy(t)
dt

=
u(t)
C

+
Y0 − y(t)

TRC
(20)

where y(t) is the output temperature of the system in degrees
Celsius, u(t) is the heat flowing into the system, Y0 is the room
temperature, C is the equivalent thermal capacity of the system,
and TR is the equivalent thermal resistance between the borders
of the system and the surroundings.

TR and C are assumed to be essentially constant, and the sys-
tem in (20) is rewritten in discrete-time form to some reasonable
approximation. The system

y(k + 1) = e−αT sy(k) +
δ/α(1 − e−αT s)
1 + e0.5y (k)−40 u(k)

+ [1 − e−αT s ]y0 (21)

is obtained, where α and δ are some constant values of TR and C.
The system parameters used in this example are α = 1.0015e−4 ,
δ = 8.67973e−3 , and Y0 = 25.0 (◦C), which were obtained from
a real water bath plant considered elsewhere [24]. The input u(k)
is limited to 0, and 5 V represents the voltage unit. The sampling
period is Ts = 30.

The conventional online training scheme is adopted for on-
line training. Fig. 4 presents a block diagram for the conven-
tional online training scheme. This scheme has two phases—the
training phase and the control phase. In the training phase, the
switches S1 and S2 are connected to nodes 1 and 2, respec-
tively, to form a training loop. In this loop, training data with
input vector I(k) = [yp(k + 1)yp(k)] and desired output u(k)
can be defined, where the input vector of the FLNFN controller
is the same as that used in the general inverse modeling [26]
training scheme. In the control phase, the switches S1 and S2
are connected to nodes 3 and 4, respectively, forming a control
loop. In this loop, the control signal û(k) is generated according
to the input vector I ′(k) = [yref (k + 1)yp(k)], where yp is the
plant output and yref is the reference model output.

A sequence of random input signals urd(k) limited to 0 and
5 V is injected directly into the simulated system described in
(21), using the online training scheme for the FLNFN controller.
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The 120 training patterns are selected based on the input–outputs
characteristics to cover the entire reference output. The temper-
ature of the water is initially 25 ◦C, and rises progressively when
random input signals are injected. After 10 000 training itera-
tions, four fuzzy rules are generated. The obtained fuzzy rules
are as follows.

Rule 1: IF x1 is µ(32.416, 11.615) and x2 is µ (27.234, 7.249)

THEN ŷ1 = 32.095x1 + 74.849 sin(π x1) − 34.546 cos(π x1)

−17.026x2 − 41.799 sin(π x2) + 35.204 cos(π x2).

Rule 2: IF x1 is µ(34.96, 9.627) and x2 is µ(46.281, 13.977)

THEN ŷ2 = 21.447x1 + 11.766 sin(π x1) − 77.705 cos(π x1)

−52.923x2 − 61.827 sin(π x2) + 70.946 cos(π x2).

Rule 3: IF x1 is µ(62.771, 6.910) and x2 is µ(62.499, 15.864)

THEN ŷ3 = 25.735x1 − 10.907 sin(π x1) − 46.359 cos(π x1)

−40.322x2 + 36.752 sin(π x2) + 103.33 cos(π x2).

Rule 4: IF x1 is µ(79.065, 8.769) and x2 is µ(64.654, 9.097)

THEN ŷ4 = 46.055x1 − 37.223 sin(π x1) − 57.759 cos(π x1)

−5.8152x2 + 61.065 sin(π x2) + 34.838 cos(π x2).

This study compares the FLNFN controller to the PID con-
troller [27], the manually designed fuzzy controller [4], the
FLNN [17], and the TSK-type NFN [12]. Each of these con-
trollers is applied to the water bath temperature control system.
The performance measures include the set points regulation, the
influence of impulse noise, and a large parameter variation in
the system, and the tracking capability of the controllers.

The first task is to control the simulated system to follow
three set points

yref (k) =




35 ◦C, for k ≤ 40
55 ◦C, for 40 < k ≤ 80
75 ◦C, for 80 < k ≤ 120.

(22)

Fig. 5(a) presents the regulation performance of the FLNFN
controller. The regulation performance was also tested using the
FLNN controller, and the TSK-type NFN controller. Fig. 5(b)
plots the error curves of the FLNFN controller, the FLNN con-
troller, and the TSK-type NFN controller between k = 81 and
100. In this figure, the FLNFN controller obtains smaller errors
than the other two controllers. To test their regulation perfor-
mance, a performance index, the sum of absolute error (SAE),
is defined by

SAE =
∑

k

|yref (k) − y(k)| (23)

where yref (k) and y(k) are the reference output and the actual
output of the simulated system, respectively. The SAE values of
the FLNFN controller, the PID controller, the fuzzy controller,
the FLNN controller, and the TKS-type NFN controller are
352.8, 418.5, 401.5, 379.2, and 361.9, which are given in the
second row of Table I. The proposed FLNFN controller has a
much better SAE value of regulation performance than the other
controllers.

Fig. 5. (a) Final regulation performance of FLNFN controller in water bath
system. (b) Error curves of the FLNFN controller, TSK-type NFN controller,
and FLNN controller between k = 81 and k = 100.

The second set of simulations is performed to elucidate the
noise rejection ability of the five controllers when some un-
known impulse noise is imposed on the process. One impulse
noise value of –5 ◦C is added to the plant output at the 60th sam-
pling instant. A set point of 50 ◦C is adopted in this set of sim-
ulations. For the FLNFN controller, the same training scheme,
training data, and learning parameters were used as in the first
set of simulations. Fig. 6(a) and (b) presents the behaviors of
the FLNFN controller under the influence of impulse noise and
the corresponding errors, respectively. The SAE values of the
FLNFN controller, the PID controller, the fuzzy controller, the
FLNN controller, and the TSK-type NFN controller are 270.4,
311.5, 275.8, 324.51, and 274.75, which are shown in the third
row of Table I. The FLNFN controller performs quite well. It
recovers very quickly and steadily after the occurrence of the
impulse noise.

One common characteristic of many industrial-control pro-
cesses is that their parameters tend to change in an unpredictable
way. The value of 0.7u(k − 2) is added to the plant input after
the 60th sample in the third set of simulations to test the robust-
ness of the five controllers. A set point of 50 ◦C is adopted in this
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TABLE I
COMPARISON OF PERFORMANCE OF VARIOUS CONTROLLERS IN EXAMPLE 1

Fig. 6. (a) Behavior of FLNFN controller under impulse noise in water bath
system. (b) Error curves of FLNFN controller, TSK-type NFN controller, and
FLNN controller.

set of simulations. Fig. 7(a) presents the behaviors of the FLNFN
controller when the plant dynamics change. Fig. 7(b) presents
the corresponding errors of the FLNFN controller, the FLNN
controller and the TSK-type NFN controller. The SAE values
of the FLNFN controller, the PID controller, the fuzzy con-
troller, the FLNN controller, and the TSK-type NFN controller

Fig. 7. (a) Behavior of FLNFN controller when a change occurs in the water
bath system. (b) Error curves of FLNFN controller, TSK-type NFN controller,
and FLNN controller.

are 263.3, 322.2, 273.5, 311.5, and 265.4, which are shown in
the fourth row of Table I. The results present the favorable con-
trol and disturbance rejection capabilities of the trained FLNFN
controller in the water bath system.

In the final set of simulations, the tracking capability of the
FLNFN controller with respect to ramp-reference signals is
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Fig. 8. (a) Tracking of FLNFN controller when a change occurs in the water
bath system. (b) Error curves of FLNFN controller, TSK-type NFN controller,
and FLNN controller.

studied. Define

yref (k) =




34 ◦C, for k ≤ 30
(34 + 0.5(k − 30)) ◦C, for 30 < k ≤ 50
(44 + 0.8(k − 50)) ◦C, for 50 < k ≤ 70
(60 + 0.5(k − 70)) ◦C, for 70 < k ≤ 90
70 ◦C, for 90 < k ≤ 120

(24)

Fig. 8(a) presents the tracking performance of the FLNFN
controller. Fig. 8(b) presents the corresponding errors of the
FLNFN controller, the FLNN controller, and the TSK-type NFN
controller. The SAE values of the FLNFN controller, the PID
controller, the fuzzy controller, the FLNN controller, and the
TSK-type NFN controller are 44.2, 100.6, 88.1, 98.4, and 54.2,
which are shown in the fifth row of Table I. The results present
the favorable control and disturbance rejection capabilities of
the trained FLNFN controller in the water bath system. The
aforementioned simulation results, presented in Table I, demon-
strate that the proposed FLNFN controller outperforms other
controllers.

Fig. 9. Block diagram of FLNFN controller-based control system.

B. Example 2: Control of BIBO Nonlinear Plant

In this case, the plant is described by the difference equation

y(k + 1) =
y(k)

1 + y2(k)
+ u3(k). (25)

The reference model is described by the difference equation

yr (k + 1) = 0.6yr (k) + r(k) (26)

where r(k) = sin(2πk/10) + sin(2πk/25). Fig. 9 presents the
block diagram of the FLNFN-based control system. The inputs
to the FLNFN controller are the reference input, the previous
plant output, and the previous control signal; the output of the
FLNFN controller is the control signal to the plant. The online
algorithm developed in this study is adopted to adjust the struc-
ture and the parameters of the FLNFN controller such that the
error between the output of the plant and the desired output from
a reference model approaches a small value after some training
cycles.

After 500 training iterations, six fuzzy rules are generated. In
this example, the proposed FLNFN controller is compared to the
FLNN controller [17] and the TSK-type NFN controller [12].
Each of the controllers is applied to control the BIBO nonlin-
ear plant. In the following four cases, the FLNFN controller is
demonstrated to outperform the other models.

In the first case, the reference input is given by (26) and
the final result is shown in Fig. 10(a). Fig. 10(b) presents
the error curves of the FLNFN controller and the TSK-type
NFN controller. In this figure, the FLNFN controller yields
smaller errors than the TSK-type NFN controller. In the sec-
ond case, after 100 epochs, the reference input is changed to
r(k) = sin(2πk/25). Fig. 11(a) and (b) plots the result of the
FLNFN controller and the corresponding errors of the FLNFN
controller and the TSK-type NFN controller. In the third case,
after 100 epochs, the reference input is changed to an impulse
signal. Fig. 12(a) presents the simulation result. Fig. 12(b)
presents the corresponding errors of the FLNFN controller,
the FLNN controller, and the TSK-type NFN controllers. In
the fourth case, a disturbance of 2.0 is added to the system
between the 100th and the 150th epochs. In this case, the
FLNFN-based control system can recover from the disturbance
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Fig. 10. Final system response in first case of Example 2. (a) Dashed line
represents plant output and the solid line represents the reference model. (b)
Error curves of FLNFN controller and TSK-type NFN controller.

quickly, as shown in Fig. 13. The rms error is adopted to eval-
uate the performance. Table II presents the rms errors of the
FLNFN controller, the FLNN controller, and the TSK-type NFN
controller. Table II shows that, according to the simulation re-
sults, the proposed FLNFN controller outperforms the other
models.

C. Example 3: Control of Ball and Beam System

Fig. 14 presents the ball and beam system [25]. The beam is
made to rotate in the vertical plane by applying a torque at the
center of rotation and the ball is free to roll along the beam. The
ball must remain in contact with the beam.

The ball and beam system can be written in state space form
as




ẋ1

ẋ2

ẋ3

ẋ4


=




x2

B
(
x1x

2
4 − G sin x3

)
x4

0


+




0
0
0
1


u, y = x1 (27)

Fig. 11. Final system response in second case of Example 2. (a) Dashed line
represents plant output and the solid line represents the reference model. (b)
Error curves of FLNFN controller and TSK-type NFN controller.

where x = (x1 , x2 , x3 , x4)T ≡ (r, ṙ, θ, θ̇)T is the state of the
system and y = x1 ≡ r is the output of the system. The control
u is the angular acceleration (θ̈) and the parameters B = 0.7143
and G = 9.81 are set in this system. The purpose of control
is to determine u(x) such that the closed-loop system output y
converges to zero from different initial conditions.

According to the input/output linearization algorithm [25], the
control law u(x) is determined as follows: for state x, compute
v(x) = −α3φ4(x) − α2φ3(x) − α1φ2(x) − α0φ1(x), where
φ1(x) = x1 , φ2(x) = x2 , φ3(x) = −BG sin x3 , φ4(x) =
−BGx4 cos x3 , and αi’s are chosen such that s4 + α3s

3 +
α2s

2 + α1s + α0 is a Hurwitz polynomial. Compute a(x) =
−BG cos x3 and b(x) = BGx2

4 sin x3 ; then u(x) = [v(x) −
b(x)]/a(x).

In this simulation, the differential equations are solved us-
ing the second-/third-order Runge–Kutta method. The FLNFN
model is trained to approximate the aforementioned conven-
tional controller of a ball and beam system. u(x) = [v(x) −
b(x)]/a(x) is adopted to generate the input/output training
pairs with x obtained by randomly sampling 200 points in
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Fig. 12. Final system response in third case of Example 2. (a) Dashed line
represents plant output and the solid line represents the reference model. (b)
Error curves of FLNFN controller and TSK-type NFN controller.

Fig. 13. Final system response in fourth case of Example 2. The dashed line
represents plant output and the solid line represents the reference model.

the region U = [−5, 5] × [−3, 3] × [−1, 1] × [−2, 2]. After on-
line structure-parameter learning, 14 fuzzy rules are gener-
ated. The controller after learning was tested under the fol-
lowing four initial conditions: x(0) = [2.4,−0.1, 0.6, 0.1]T ,

TABLE II
COMPARISON OF PERFORMANCE OF VARIOUS MODELS IN EXAMPLE 2

Fig. 14. Ball and beam system.

Fig. 15. Responses of ball and beam system controlled by FLNFN model
(solid curves) and TSK-type NFN model (dotted curves) under four initial
conditions.

[1.6, 0.05, −0.5, −0.05]T , [−1.6, −0.05, 0.5, 0.05]T , and
[−2.4, 0.1,−0.6,−0.1]T . Fig. 15 plots the output responses of
the closed-loop ball and beam system controlled by the FLNFN
model and the TSK-type NFN model. These responses approx-
imate those of the original controller under the four initial con-
ditions. In this figure, the curves of the FLNFN model quickly
tend to stabilize. Fig. 16 also presents the behavior of the four
states of the ball and beam system, starting at the initial con-
dition [−2.4, 0.1,−0.6,−0.1]T . In this figure, the four states
of the system gradually decay to zero. The results demonstrate
the perfect control capability of the trained FLNFN model. The
performance of the FLNFN controller is compared with that of
the FALCON controller [8], the FLNN controller [17], and the
TSK-type NFN controller [12]. Table III presents the compari-
son results. The results demonstrate that the proposed FLNFN
controller outperforms other controllers.
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TABLE III
COMPARISON OF PERFORMANCE OF EXISTING MODELS IN EXAMPLE 3

Fig. 16. Responses of four states of ball and beam system under the control
of the trained FLNFN controller.

D. Example 4: Control of MIMO Plant

In this example, the MIMO plants [2] to be controlled are
described by the equations

[
yp1(k + 1)
yp2(k + 1)

]
=




0.5
yp1(k)

1 + y2
p2(k)

0.5
yp1(k)yp2(k)
1 + y2

p2(k)


 +

[
u1(k)
u2(k)

]
. (28)

The controlled outputs should follow the desired output yr1
and yr2 as specified by the following 250 pieces of data[

yr1(k)
yr2(k)

]
=
[

sin(kπ/45)
cos(kπ/45)

]
. (29)

The inputs of the FLNFN are yp1(k), yp2(k), yr1(k), and
yr2(k), and the outputs are u1(k) and u2(k). After 500 train-
ing iterations, four fuzzy rules are generated. In this example,
the proposed FLNFN controller is compared to the FLNN con-
troller [17] and the TSK-type NFN controller [12]. Each of the
controllers is applied to control the MIMO plant. To demon-
strate the performance of the proposed controller, Fig. 17(a)
and (b) plots the control results of the desired output and
the model output using FLNFN controller. Fig. 17(c) and (d)
shows the error curves of the FLNFN controller and the TSK-
type NFN controller. Table IV presents the rms errors of the
FLNFN controller, the FLNN controller, and the TSK-type NFN
controller. Table IV shows that, according to the simulation

Fig. 17. Desired output (solid line) and model output using FLNFN controller
(dotted line). (a) Output 1. (b) Output 2 in Example 4. Error curves of FLNFN
controller (solid line) and TSK-type NFN controller (dotted line). (c) Output 1.
(d) Output 2.

TABLE IV
COMPARISON OF PERFORMANCE OF EXISTING MODELS IN EXAMPLE 4
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results, the proposed FLNFN controller is better than the other
controllers.

V. CONCLUSION AND FUTURE WORKS

This study proposes an FLNFN structure for nonlinear sys-
tem control. The FLNFN model uses an FLNN to the conse-
quent part of the fuzzy rules. The FLNFN model can auto-
matically construct and adjust free parameters by performing
online structure/parameter learning schemes concurrently. The
FLNFN model was proven to be a universal approximator and
convergence-stable. Finally, the proposed FLNFN model yields
better simulation results than other existing models under some
circumstances.

Three advanced topics on the proposed FLNFN model should
be addressed in future research. First, the FLNFN model will
tend to apply high-order nonlinear or overly complex systems if
it can suitably adopt the consequent part of a nonlinear combi-
nation of input variables, and a functional expansion of multiple
trigonometric polynomials. Therefore, it should be analyzed to
determine how many trigonometric polynomials for functional
expansion should be used in the future. Second, the backprop-
agation technique is slow for many practical applications. To
speed up the convergence and make the algorithm more prac-
tical, some variations are necessary. For example, the heuristic
techniques include such ideas as varying the learning rate and
using momentum [31], and the standard numerical optimization
techniques in the BP procedure. In the standard numerical opti-
mization techniques, the conjugate gradient algorithm [32] and
the Levenberg–Marquardt algorithm [33] have been applied to
the training of neural networks and shown a faster convergence
than the basic BP algorithm. On the other hand, since the back-
propagation technique is used to minimize the error function,
the results may reach the local minima solution. In future work,
we will adopt genetic algorithms (GAs) [28], [29] to solve the
local minima problem. A GA is a global search technique. Be-
cause it can simultaneously evaluate many points in the search
space, it is more likely to converge toward the global solution.
Third, it would be better if the FLNFN model has the ability
to delete unnecessary or redundant rules. The fuzzy similarity
measure [30] determines the similarity between two fuzzy sets

in order to prevent existing membership functions from being
too similar.

APPENDIX

A. Proof of the Universal Approximator Theorem

The Stone–Weierstrass theorem [15] is adopted to prove the
universal approximator theorem. For a clear description in the
FLNFN model, only the multiinput–single-output (MISO) func-
tion f : x ∈ �N → y ∈ � is considered. The FLNFN is ex-
pressed as

y(x) =

∑R
j=1 ŷj u

(3)
j (x)∑R

j=1 u
(3)
j (x)

. (A1)

Theorem A1 (Stone–Weierstrass Theorem): Let A be a set
of real continuous functions on a compact set U. 1) If U is an
algebra such that if f1 , f2 ∈ A, and c ∈ R, then f1 + f2 ∈ A,
f1 · f2 ∈ A, and cf1 ∈ A; 2) A separates points on U, meaning
that for x, y ∈ U, x �= y, there exists f1 ∈ A such that f1(x) �=
f2(y); and 3) A vanishes at no point of U, meaning that for
each x ∈ U, there exists f1 ∈ A such that f1(x) �= 0. Then the
uniform closure of A consists of all real continuous functions
on U.

Lemma A1: Let Y be the family of function y : �N → �
defined in (A1); then Y → U, where U is a compact set.

Proof of Lemma A1: Here, the membership function is

0 < µAi j
(x) = exp

[
− (xi − mij )2

σ2
ij

]
≤ 1.

Therefore, the continuous function u
(3)
j is closed and bounded

for all x ∈ �N . That is, Y ⊂ U.
Proof of Theorem A1: First, we prove that Y is algebra. Let

f1 , f2 ∈ Y, such that they can be written as (A2) and (A3) shown
at the bottom of the page, where ŷ1j and ŷ2j ∈ � ∀j.

Therefore,

f1 + f2(x)=

∑R1
j1=1

∑R2
j2=1(ŷ1j1 + ŷ2j2) · (

∏N
i=1 u1(3)

j1 u2(3)
j2 )∑R1

j1=1
∑R2

j2=1 (
∏N

i=1 u1(3)
j1 u2(3)

j2 )
.

(A4)

f1(x) =

∑R1
j1=1 ŷ1j1u1(3)

j1∑R1
j1=1 u1(3)

j1

=

∑R1
j1=1 (w11,j1φ11 + · · · + w1M,j1φ1M ) ·

[∏N 1
i1=1 exp

[
−(xi1 − m1i1,j1)2

/
σ12

i1,j1

]]
∑R1

j1=1

[∏N 1
i1=1 exp

[
−(xi1 − m1i1,j1)2

/
σ12

i1,j1

]] (A2)

f2(x) =

∑R2
j2=1 ŷ2j2u2(3)

j2∑R2
j2=1 u2(3)

j2

=

∑R2
j2=1 (w21,j2φ21 + · · · + w2M,j2φ2M ).

[∏N 2
i2=1 exp

[
−(xi2 − m2i2,j2)2

/
σ22

i2,j2

]]
∑R2

j2=1

[∏N 2
i2=1 exp

[
−(xi2 − m2i2,j2)2

/
σ22

i2,j2

]] (A3)
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Since u1(3)
j and u2(3)

j are Gaussian in form, i.e., this can be
verified by straightforward algebraic operations, hence, (A4) is
in the same form as (A1), so that f1 + f2 ∈ Y. Similarly, we
have

f1f2(x) =

∑R1
j1=1

∑R2
j2=1 (ŷ1j1 · ŷ2j2)(

∏N
i=1 u1(3)

j1 u2(3)
j2 )∑R1

j1=1
∑R2

j2=1 (
∏N

i=1 u1(3)
j1 u2(3)

j2 )
(A5)

which is also in the same form as (A1); hence, f1f2 ∈ Y, Finally,
for arbitrary c ∈ �

cf1(x) =

∑R1
j1=1 (c · ŷ1j1)(

∏N
i=1 u1(3)

j1 )∑R1
j1=1 (

∏N
i=1 u1(3)

j1 )
(A6)

which is again in the form of (A1); hence, cf1 ∈ Y. Therefore,
Y is an algebra.

Next, Y is proven to separate points on U by constructing
a required f; f ∈ Y is specified such that f(x′) �= f(y′) for
arbitrarily given x′, y′ ∈ U with x′ �= y′. Two fuzzy rules in the
form of (3) are chosen for the fuzzy rule base.

Let x′ = (x′
1 , x

′
2 , . . . , x

′
N ) and y′ = (y′

1 , y
′
2 , . . . , y

′
N ). If x′

i �=
y′

i , then two fuzzy rules can be chosen as the fuzzy rule base.
Furthermore, let the Gaussian membership functions be

µAi 1 (xi) = exp
[
− (xi − x′

i)
2

σ2

]
(A7)

µAi 2 (xi) = exp
[
− (xi − y′

i)
2

σ2

]
. (A8)

Then, f can be expressed as (A9), shown at the bottom of the
page, where ŷ1 and ŷ2 are outputs of the local FLNN model
calculated for output y and rule 1, rule 2, and ŷj ∈ � ∀j . With
this system

f(x′) =
ŷ1 + ŷ2

[∏N
i=1 exp

[
−(x′

i − y′
i)

2
/
σ2

i2

]]
1 +

[∏N
i=1 exp

[
−(x′

i − y′
i)2

/
σ2

i2

]] (A10)

f(y′) =
ŷ2 + ŷ1

[∏N
i=1 exp

[
−(y′

i − x′
i)

2
/
σ2

i1

]]
1 +

[∏N
i=1 exp

[
−(y′

i − x′
i)2

/
σ2

i1

]] (A11)

Since x′ �= y′, some i must exist such that x′
i �= y′

i ; hence,
f(x′) �= f(y′). Therefore, Y separates points on U.

Finally, Y is proven to vanish at no point of U. By (A1),
u

(3)
j (x) is constant and does not equal zero. That is, for all

x ∈ �N , u
(3)
j (x) > 0. If u

(3)
j (x) > 0, (j = 1, 2, . . . , R), then

y > 0 for any x ∈ �N . That is, any y ∈ Y with u
(3)
j (x) > 0 can

serve as the required f .

In summary, the FLNFN model is a universal approximator,
and using the Stone–Weierstrass theorem and the fact that Y is
a continuous real set on U proves the theorem.

B. Proof of Convergence Theorem

Theorem B1: Let ηw be the learning rate parameter of
the FLNFN weight, and let Pw max be defined as Pw max ≡
maxk ‖Pw (k)‖, where Pw (k) = ∂y/∂wkj and ‖·‖ is the Eu-
clidean norm in �N . The convergence is guaranteed if ηw is
chosen as ηw = λ/(Pw max)

2 = λ/R, in which λ is a positive
constant gain, and R is the number of rules in the FLNFN model.

Proof of Theorem B1: Since

Pw (k) =
∂y

∂wkj
=

u
(3)
j φk∑R

j=1 u
(3)
j

(B1)

and u
(3)
j φk/

∑R
j=1 u

(3)
j ≤ 1, the following result holds

‖Pw (k)‖ ≤
√

R. (B2)

Then, a discrete Lyapunov function is selected as

V (k) =
1
2
e2(k). (B3)

The change in the Lyapunov function is obtained as

∆V (k) = V (k + 1) − V (k)

=
1
2
[
e2(k + 1) − e2(k)

]
. (B4)

The error difference can be represented as [16]

e(k + 1) = e(k) + ∆e(k)

= e(k) +
[
∂e(k)
∂wkj

]T

∆wkj (B5)

where ∆e and ∆wk represent the output error change and the
weight change in the output layer, respectively. Equations (17)
and (B5) yield

∂e(k)
∂wkj

=
∂e(k)
∂y

∂y

∂wkj
= Pw (k) (B6)

e(k + 1) = e(k) − PT
w (k)ηw e(k)Pw (k). (B7)

Then,
‖e(k + 1)‖ =

∥∥e(k)
[
1 − ηw PT

w (k)Pw (k)
]∥∥

≤ ‖e(k)‖ ·
∥∥1 − ηw PT

w (k)Pw (k)
∥∥ (B8)

is true. If ηw = λ
/
(P 2

w max) = λ/R is chosen, then the term∥∥1 − ηw PT
w (k)Pw (k)

∥∥ in (B8) is less than 1. Therefore, the
Lyapunov stability of V > 0 and ∆V < 0 is guaranteed. The
output error between the reference model and actual plant con-
verges to zero as t → ∞. This fact completes the proof of the
theorem.

f =
ŷ1

[∏N
i=1 exp

[
−(xi − x′

i)
2
/
σ2

i1

]]
+ ŷ2

[∏N
i=1 exp

[
−(xi − y′

i)
2
/
σ2

i2

]]
[∏N

i=1 exp
[
−(xi − x′

i)2
/
σ2

i1

]]
+
[∏N

i=1 exp
[
−(xi − y′

i)2
/
σ2

i2

]] (A9)
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The following lemmas [17] are used to prove Theorem 2.
Lemma B1: Let g(h) = h exp(−h2), then |g(h)| < 1

∀h ∈ �.
Lemma B2: Let f(h) = h2 exp(−h2), then |f(h)| < 1

∀h ∈ �.
Theorem B2: Let ηm and ησ be the learning rate param-

eters of the mean and standard deviation of the Gaussian
function for the FLNFN; let Pm max be defined as Pm max ≡
maxk ‖Pm (k)‖, where Pm (k) = ∂y/∂mij ; let Pσ max be de-
fined as Pσ max ≡ maxk ‖Pσ (k)‖, where Pσ (k) = ∂y/∂σij .
The convergence is guaranteed if ηm and ησ are chosen
as ηm = ησ = [ηw /M ]

[
|wkj |max

(
2
/
|σij |min

)]−2
, in which

|wkj |max = maxk |wkj (k)|, |σij |min = mink |σij (k)|, and |·| is
the absolute value.

Proof of Theorem B2: According to Lemma B1,
|[(xi − mij )/σij ] exp{−[(xi − mij )/σij ]2}| < 1. The upper
bounds on Pm (k) can be derived as

Pm (k) =
∂y

∂mij

=

(
∂y

∂u
(4)
j

)(
∂u

(4)
j

∂u
(3)
j

)(
∂u

(3)
j

∂u
(2)
ij

)(
∂u

(2)
ij

∂mij

)

<

∣∣∣∣∣
R∑

j=1

M∑
k=1

wkjφk

∣∣∣∣∣
∣∣∣∣∣
(

2
σij

)(
xi − mij

σij

)

× exp

[
−
(

xi − mij

σij

)2
]∣∣∣∣∣

<

∣∣∣∣∣
R∑

j=1

M∑
k=1

wkjφk

∣∣∣∣∣
∣∣∣∣∣ 2
σij

∣∣∣∣∣
<

√
RM |wkj |max

(
2

|σij |min

)
(B9)

where φk ∈ [0, 1], for k = 1, 2, . . . , M. Thus,

‖Pm (k)‖ <
√

RM |wkj |max

(
2

|σij |min

)
. (B10)

The error difference can also be represented as [16]

e(k + 1) = e(k) + ∆e(k)

= e(k) +
[
∂e(k)
∂mij

]T

∆mij (B11)

where ∆mij represents the change of the mean of the Gaussian
function in the membership function layer. Equation (18) and
(B11) yield

∂e(k)
∂mij

=
∂e(k)
∂y

∂y

∂mij
= Pm (k) (B12)

e(k + 1) = e(k) − PT
m (k)ηm e(k)Pm (k). (B13)

Then,

‖e(k + 1)‖ =
∥∥e(k)

[
1 − ηm PT

m (k)Pm (k)
]∥∥

≤ ‖e(k)‖ ·
∥∥1 − ηm PT

m (k)Pm (k)
∥∥ (B14)

is true. If ηm = λ/(Pm max)2 = [ηw /M ][|wkj |max(2/
|σij |min)]−2 is chosen, then the term

∥∥1 − ηm PT
m (k)Pm (k)

∥∥ in
(B14) is less than 1. Therefore, the Lyapunov stability of V > 0
and ∆V < 0 given by (B3) and (B4) is guaranteed. The output
error between the reference model and actual plant converges to
zero as t → ∞.

According to Lemma B2, |[(xi − mij )/σij ]2 exp{−[(xi −
mij )/σij ]2}| < 1. The upper bounds on Pσ (k) can be derived
as

Pσ (k) =
∂y

∂σij

=

(
∂y

∂u
(4)
j

)(
∂u

(4)
j

∂u
(3)
j

)(
∂u

(3)
j

∂u
(2)
ij

)(
∂u

(2)
ij

∂σij

)

<

∣∣∣∣∣
R∑

j=1

M∑
k=1

wkjφk

∣∣∣∣∣
∣∣∣∣∣
(

2
σij

)(
xi − mij

σij

)2

× exp

[
−
(

xi − mij

σij

)2
] ∣∣∣∣∣

<

∣∣∣∣∣
R∑

j=1

M∑
k=1

wkjφk

∣∣∣∣∣
∣∣∣∣∣ 2
σij

∣∣∣∣∣
<

√
RM |wkj |max

(
2

|σij |min

)
(B15)

where φk ∈ [0, 1], for k = 1, 2, . . . , M . Thus,

‖Pσ (k)‖ <
√

RM |wkj |max

(
2

|σij |min

)
. (B16)

The error difference can be represented as

e(k + 1) = e(k) + ∆e(k)

= e(k) +
[
∂e(k)
∂σij

]T

∆σij (B17)

where ∆σij represents the change of the variance of the Gaus-
sian function in the membership function layer. Equations (19)
and (B17) yield

∂e(k)
∂σij

=
∂e(k)
∂y

∂y

∂σij
= Pσ (k) (B18)

e(k + 1) = e(k) − PT
σ (k)ησ e(k)Pσ (k). (B19)

Then,

‖e(k + 1)‖ =
∥∥e(k)

[
1 − ησPT

σ (k)Pσ (k)
]∥∥

≤ ‖e(k)‖ ·
∥∥1 − ησPT

σ (k)Pσ (k)
∥∥ (B20)

is true. If ησ = λ/(Pσ max)2 = [ηw /M ][|wkj |max(2/|σij |min)]−2

is chosen, then the term
∥∥1 − ησPT

σ (k)Pσ (k)
∥∥ in (B20) is

less than 1. Therefore, the Lyapunov stability of V > 0 and
∆V < 0 given by (B3) and (B4) is guaranteed. The output error
between the reference model and actual plant converges to zero
as t → ∞. This fact completes the proof of the theorem.
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