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Abstract

This paper addresses the structure and an associated learning algorithm of a feedforward multilayered
connectionist network for realizing the basic elements and functions of a traditional fuzzy logic controller. The
genetic algorithm-based neural fuzzy system (GA-NFS) is based on Takagi–Sugeno–Kang (TSK) type model
possessing a neural network’s learning ability. A hybrid learning algorithm is proposed for parameters learning.
The proposed algorithm combines the genetic algorithm (GA) and the least-squares estimate (LSE) method to
construct the GA-NFS. The genetic algorithm is used to tune membership functions at the precondition part
of fuzzy rules while the LSE method is used to tune parameters at the consequent part of fuzzy rules. The
performance of the GA-NFS is compared to that of the traditional PID controller and fuzzy logic controller
on the water bath temperature control system.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Fuzzy system; Temperature control; TSK fuzzy rules; Genetic algorithm; Least-squares estimate

1. Introduction

Temperature control is an important factor in many process control system [12,28]. If the tem-
perature is too high or too low, the =nal product is seriously a>ected. Therefore, it is necessary to
reach some desired temperature points quickly and avoid large overshoot. Since the process-control
system are often nonlinear and tend to change in an unpredictable way, they are not easy to control
accurately.
Fuzzy logic has been mainly applied to control problems with fuzzy if–then rules [15,24]. In

most fuzzy control systems fuzzy if–then rules were derived from human experts. Recently, several
approaches have been proposed for generating fuzzy if-then rules from numerical data [25,27,30].
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Fig. 1. Proposed GA-based neural fuzzy system (GA-NFS).

Self-learning methods have been also proposed for adjusting membership functions of fuzzy set in
fuzzy if–then rules [2,7,9,14,18,19,21,26,31,33].
A genetic algorithm (GA) [3] is a parallel, global search technique that emulates operators. Because

it simultaneously evaluates many points in the search space, it is more likely to converge toward the
global solution. A GA applies operators inspired by the mechanics of natural selection to a population
of binary string encoding the parameter space at each generation, it explores di>erent areas of the
parameter space, and then directs the search to regions where there is a high probability of =nding
improved performance. By working with a population of solutions, the algorithm can e>ectively seek
many local minima, thereby increasing the likelihood of =nding the global minimum.
GAs have been also employed for generating fuzzy rules and adjusting membership functions of

fuzzy sets. The pioneer was Karr [10,11] who used GAs to adjust membership functions. Nomura
et al. [22] used GAs to determine the fuzzy partition of input spaces. Hence, both the number of fuzzy
sets and the membership function of each fuzzy set were determined. In Thrift [29], an appropriate
fuzzy set in the consequent part of each fuzzy rule was selected. He examines the feasibility of
using GAs to =nd fuzzy rules. Lee and Takagi [16] have also used GA to approach simultaneous
membership function and rule set design. The GA was given more Jexibility in designing the rule
set and membership functions for some diKcult nonlinear control problems. Ishibuchi [6] proposed a
genetic-based method for selecting a small number of signi=cant fuzzy rules to construct a compact
fuzzy classi=cation system with high classi=cation power. Homaifar [4] examined the applicability
of GAs in the simultaneous design of membership functions and rule sets for fuzzy logic controllers.
In this paper, a GA-based neural fuzzy system (GA-NFS) is based on Takagi–Sugeno–Kang (TSK)

type model possessing a neural network’s learning ability (see Fig. 1). The structure of the GA-NFS
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model is completely determined in advance by determining the number of membership functions
along each axis and choosing a grid-type partition of the premise space initially. Associated with
the GA-NFS is a hybrid parameter learning algorithm that combines the GA and the least-squares
estimate (LSE) method to identify parameters of the fuzzy logic rules. Inspired by the strong search
ability of GAs, we let a GA to =nd the precondition part of fuzzy rules and leave the consequent
part of fuzzy rules to the conventional optimization methods. The parameters at consequent part of
fuzzy rules are the estimation of the parameters. Note in this case the estimation problem becomes
linear in the parameters, so some well-established linear search algorithms will be described in [8,9].
Here the LSE method is preferred because of its recursive and fast convergent properties. Thus the
GA is used to tune membership functions at the precondition part of fuzzy rules while the LSE
method is used to tune parameters at consequent part of fuzzy rules.
This paper is organized as follows: Section 2 describes the structure of the GA-NFS model.

The hybrid learning algorithm which combines GAs and LSE method is presented in Section 3. In
Section 4, the GA-NFS model is used to control water bath temperature to demonstrate its learning
capability. Comparisons with PID controller and fuzzy controller are also made. Section 5 describes
the features of the proposed hybrid learning algorithm. We summarize the features of the proposed
GA-NFS model in Section 5. Conclusions are summarized in the last section.

2. The structure of the GA-NFS model

In this section, we shall describe the structure and functions of the proposed GA-NFS model.
The GA-NFS (see Fig. 1) has =ve layers with node and link numbering de=ned by the brackets on
the right-hand side of the =gure. Nodes at layer 1 are input nodes (linguistic nodes) that represent
input linguistic variables. Layer 5 is the output layer. Nodes at layer 2 are term nodes that act as
membership functions to represent the terms of the respective linguistic variable. Each node at layer
3 is a rule node, which represents one fuzzy logic rule. Thus all layer three nodes form a fuzzy
rule base. In layer 4 nodes, the consequent part of the Takagi–Sugeno–Kang (TSK) model [27] is
used. The TSK model can represent a complex system in terms of fewer rules than the ordinary
Mamdani-type fuzzy model [27]. Layer 3 links de=ne the preconditions of the rule nodes. The links
at layer 2 are fully connected between linguistic nodes and their corresponding term nodes.
A typical neural network consists of nodes with some =nite number of fan-in connections from

other nodes represented by weight values, and fan-out connections to other nodes. Associated with
the fan-in of a node is an integration function f which combines information, activation, or evidence
from other nodes, and provides the net input; i.e.,

net-input = f(z(k)1 ; z(k)2 ; : : : ; z(k)p ;w
(k)
1 ; w(k)2 ; : : : ; w(k)p ); (1)

where z(k)i is the ith input to a node in layer k, and w(k)i is the weight of the associated link. The
superscript in the above equation indicates the layer number. This notation will be also used in the
following equations. Each node also outputs an activation value as a function of its net-input,

output = a(f(·)); (2)
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where a(·) denotes the activation function. We shall next describe the functions of the nodes in each
of the =ve layers of the GA-NFS. Assume that the dimension of the input space is n, and that of
the output space is m.

Layer 1: Each node in this layer is called an input linguistic node and corresponds to one input
linguistic variable. Layer-1 nodes just transmit input signals to the next layer directly. That is,

f(xi) = xi and a(f(·)) = f(·): (3)

From the above equation, the link weight in layer 1 ()w(1)i is unity.
Layer 2: Nodes in this layer are called input term nodes and each represents a term of an input

linguistic variable. In other words, the membership value that speci=es the degree to which an input
value belongs to a fuzzy set is calculated in Layer 2. With the use of Gaussian membership function,
the operation performed in this layer is

f(z(2)ij ) = exp


−

(
z(2)ij − mij

�ij

)2
 and a(f(·)) = f(·); (4)

where mij and �ij are the center (or mean) and the width (or variance) of the Gaussian membership
function of the jth input term node of the ith input linguistic node.

Layer 3: Nodes in this layer are called rule nodes and each represents one fuzzy logic rule. The
links in layer 3 are used to perform precondition matching of fuzzy logic rules. Hence the rule nodes
perform the fuzzy AND (or product) operation,

f(z(3)i ) =
n∏
i=1

z(3)i and a(f(·)) = f(·); (5)

where z(3)i is the ith input to a node in layer 3 and the product is over the inputs of this node. The
link weight in layer 3 (w(3)i ) is then unity.
Layer 4: Nodes in this layer are called the consequent nodes. The input to a node of Layer 4

is the output delivered from Layer 3, and the other inputs are the input variables from Layer 1 as
depicted in Fig. 1. For this kind of node, we have

f(z(4)i ; xj) =

(∑
j

pjixj

)
· z(4)i and a(f(·)) = f(·); (6)

where the summation is over all the inputs and pji is the corresponding parameter of consequent
part.

Layer 5: Each node in this layer corresponds to one output variable. The node integrates all the
actions recommended by Layers 3 and 4 and acts as a defuzzi=er with

f(z(5)i ) =
∑
i

z(5)i and a(f(·)) = f(·)∑
j z
(4)
j

: (7)

Based on the above structure, a hybrid learning algorithm will be proposed to determine the proper
parameters for each node in layers 2 and 4.
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Fig. 2. The Jowchart of the hybrid learning algorithm for the GA-NFS model.

3. Learning algorithms for GA-NFS model

In this section, we present a hybrid learning scheme for the proposed GA-NFS model. Fig. 2
illustrates the Jowchart of the hybrid learning algorithm for the GA-NFS model. The proposed
hybrid learning algorithm performs only parameter learning of the fuzzy model. The structure of the
GA-NFS controller is completely determined in advance by determining the number of memberships
along each axis and choosing a grid-type partition of the premise space. That is, the number of rules
is the product of the memberships along the input variables (full interconnection between layers 2
and 3). This hybrid learning algorithm combines GA and LSE method to identify parameters of
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the fuzzy logic rules. The GA is used to tune membership functions at the precondition part of
fuzzy rules, while the LSE method is used to tune parameters at consequent part of fuzzy rules.
The hybrid learning algorithm is composed of a forward pass learning procedure and a backward
pass learning procedure. In the forward pass learning procedure, we supply input data and functional
signals go forward to calculate each node output and the parameters at the consequent part of fuzzy
rules are tuned by LSE method. After identifying parameters at the consequent part of rules, the
functional signals keep going forward till the root-mean-square error is calculated. In the backward
pass learning procedure, the root-mean-square error is then converted to a =tness function, and the
membership functions at the precondition part of fuzzy rules are updated by the GA.

3.1. The forward pass learning procedure

Even though such a basic fuzzy model [24] can be used directly for system modeling, a large
number of rules are necessary for modeling sophisticated system under a tolerable modeling accuracy.
To cope with this problem, we adopt the spirit of TSK model [27] into the GA-NFS. In the TSK
model, each consequent part is represented by a linear equation of the input variables. It is reported
in [27] that the TSK model can model a sophisticated system using a few rules. During the =rst
pass the consequent parameters are estimated by LSE while the =rst pass GA-based corrections
are applied to premise parameters. However, the GA determines the premise parameters since these
parameters are only encoded in the chromosome of the genotypes. Then, given the premise parameter
for all the individuals, the consequent coeKcients are attained through LSE method. The consequent
parameters thus identi=ed are optimal under the condition that the precondition parameters are =xed.
The parameters pji in Layer 4 are tuned by recursive squares algorithm [9].

P(t + 1) = P(t) + S(t + 1)Z (4)(t + 1)[yd(t)− y(t)];

S(t + 1) =
1
�

[
S(t)− S(t)Z (4)

T
(t + 1)Z (4)(t + 1)S(t)

�+ Z (4)T(t + 1)S(t)Z (4)(t + 1)

]
; (8)

where 0¡�61 is the forgetting factor, Z (4) is the current input vector, P is the corresponding
parameter vector, S is the covariance matrix, yd is the desired output, and y is the current output. If
the precondition parameters (i.e., membership functions) are =xed and only the consequent parameters
are adjusted, the GA-NFS can be viewed as a functional-link network [13].

3.2. The backward pass learning procedure

In this learning scheme, we =xed the consequent parameters of fuzzy rules, and then the GA
is used to =nd proper membership functions according to the desired input and output pair. The
following steps are employed to tune the membership functions by the GA.

Step 1. Initialization: The =rst step in GAs is coding which maps a =nite-length string to the
searched parameters. We =rst generate an initial population containing Npop strings, where Npop is
the number of strings in each population. Each string is an individual point in the search space.
The coding of the precondition parameter in a chromosome is shown in Fig. 3(a). A Gaussian
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Fig. 3. (a) Coding the precondition parameter of a fuzzy rule into a chromosome. (b) Crossover operation on the rule.

membership function is used with variables m and � representing the center and width of the
membership function, i.e., the rule has the form of

IF x1 is �(m1; �1) and x2 is �(m2; �2) and : : : and xj is �(mj; �j)

THEN y = p0 + p1x1 + · · ·+ pjxj:
A small population is used in our learning scheme. The use of small population reduces the explo-
ration of the multiple (representationally dissimilar) solutions for the same network. The real-valued
coding scheme is used in the GA-NFS model. This means that each string is generated by randomly
assigning real-valued to each possible parameters of the GA-NFS model. Each string thus represents
a set of possible parameters. From the whole parameters space, a population is chosen.

Step 2. Fitness function: In this step, each string is decoded by an evaluator into an objective
function value. This function value, which should be maximized by the GA, is then converted
to a =tness value, FIT (i), where FIT (·) is a =tness function. A =tness value is assigned to each
individual in the population, where high values mean good =t. The =tness function can be any
nonlinear, nondi>erentiable, or discontinuous positive function, because the GA only needs a =tness
value assigned to each string. In this paper, the =tness function is de=ned by

FIT (i) =
1

RMS ERROR(i)
; (9)

where RMS ERROR(i) represents the root-mean-square error between the network outputs and the
desired outputs for the ith string. The goal of the GA learning phase is to maximize the above
=tness function.

Step 3. Reproduction: Reproduction is a process in which individual strings are copied according
to their =tness values, i.e., based on the principle of survival of the =ttest. This operator is an arti=cial
version of natural selection. Through reproduction, strings with high =tnesses receive multiple copies
in the next generation while strings with low =tnesses receive fewer copies or even none at all.
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Step 4. Crossover: Reproduction directs the search toward the best existing individuals but does
not create any new individuals. In nature, an o>spring is rarely an exact clone of a parent. It
usually has two parents and inherits genes from both. The main operator in GAs to work on the
parents is crossover, which occurs with a crossover probability. The crossover operation can be
generalized to multipoint crossover in which the number of crossover point Nc is de=ned. With Nc
set to 1, generalized crossover reduces to simple crossover. The multipoint crossover can solve one
major problem of the simple crossover; one point crossover cannot combine certain combinations
of features encoded on chromosomes. In this paper, we use the two-point crossover operator. At
=rst, two strings from the reproduced population are mated at random, and two crossover points are
randomly selected. Then the strings are crossed and separated at these points shown in Fig. 3(b).

Step 5. Mutation: Even though reproduction and crossover come up with many new strings, they
do not introduce any new information into the population at the bit level. Mutation is the random
alteration of bits in the string that assists in keeping diversity in the population. Since we use
the real-value coding scheme, we use a higher mutation probability pm. This is di>erent from the
traditional GAs using the binary-value coding scheme, that is largely driven by recombination, not
mutation [32]. The mutation operator serves as a means to avoid local minima in the search space.

Step 6. If the stopping condition is not satis=ed (i.e., the current smallest root-mean-square error
is not small enough), return to Step 2. Otherwise, the GA is terminated and proper parameters are
obtained by encoding the best string into a set of parameters.

4. Control of water bath temperature system

The goal of this section is to control the temperature of a water bath system given by

dy(t)
dt

=
u(t)
C

+
Y0 − y(t)
RC

; (10)

where y(t) is system output temperature in ◦C, u(t) is heating Jowing inward the system, Y0 is room
temperature, C is the equivalent system thermal capacity, and R is the equivalent thermal resistance
between the system borders and surroundings.
Assuming that R and C are essentially constant, we rewrite the system in Eq. (10) into discrete-

time form with some reasonable approximation. The system

y(t + 1) = e−"Tsy(k) +
#="(1− e−"Ts)

1 + e0:5y(k)−40
u(k) + [1− e−"Ts ]Y0 (11)

is obtained, where " and # are some constant values describing R and C. The system parameters
used in this example are "=1:0015e−4; #=8:67973e−3 and Y0 = 25:0 (◦C), which were obtained
from a real water bath plant in [28]. The plant input u(t) is limited between 0v and 5v where
v represents voltage unit. The sampling period is Ts = 30. The system con=guration is shown in
Fig. 4, where yref is the desired temperature of the controlled plant.
In this paper, we compare the GA-NFS controller to the PID controller and the manually designed

fuzzy controller. Each of the three controllers is applied to the water bath temperature control
system. The comparison performance measures include set-points regulation, ramp-points tracking,
the inJuence of impulse noise, and a large parameter variation in the system.
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Fig. 4. Flow diagram of using GA-NFS controller for solving temperature control problem.

For the PID control, a velocity-form discrete PID controller [1] is used and is described by

Ou(k) =K
{
e(k)− e(k − 1) +

Ts
2Ti
[e(k) + e(k − 1)] +

Td
Ts
[e(k)− 2e(k − 1) + e(k − 2)]

}

=KP[e(k)− e(k − 1)] + KIe(k) + KD[e(k)− 2e(k − 1) + e(k − 2)]; (12)

where

KP = K − 1
2
KI; KI =

KTs
Ti
; KD =

kTd
Ts
:

The parameter Ou(k) is the increment of the control input, e(k) is the performance error at the
sampling instant k, and KP; KI, and KD are the proportional, integral, and derivative parameters,
respectively. In order not to aggravate noise in the plant, only a two-term PID controller is used,
i.e., KD is set to zero in the water bath system. The other two parameters KP and KI are set as 80
and 70, respectively.
For the manually designed fuzzy controller, the input variables are chosen as e(t) and ce(t),

where e(t) is the performance error indicating the error between the desired water temperature and
the actual measured temperature and ce(t) is the rate of change in the performance error e(t). The
output or the controlled linguistic variable is the voltage signal u(t) to the heater. Seven fuzzy terms
are de=ned for each linguistic variable. These fuzzy terms consist of negative large (NL), negative
medium (NM), negative small (NS), zero (ZE), positive small (PS), positive medium (PM), and
positive large (PL). Each fuzzy term is speci=ed by a Gaussian membership function. According
to common sense and engineering judgment, 25 fuzzy rules are speci=ed in Table 1. Like other
controllers, a fuzzy controller has some scaling parameters to be speci=ed. They are GE, GCE, and
GU , corresponding to the process error, the change in error, and the controller’s output, respectively.
We choose these parameters as follows: GE=1=15; GCE=1=15; GU =450.
For the aforementioned controllers (GA-NFS controller, PID controller and manually designed

fuzzy controller), four groups of computer simulations are conducted on the water bath temperature
control system. Each simulation is performed over 120 sampling time steps.
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Table 1
Fuzzy rules for the water bath temperature control system

Change in error e(k) Error e(k)

NL NM NS ZE PS PM PL

NL PL
NM PM
NS PS PS PM
ZE NL NM NS ZE PS PM PL
PS NS NS PS PM PL
PM LM PS PM PL
PL NL PS PL PL

In the =rst set of simulations, the regulation capability of the three controllers with respect to
set-point changes is studied. Three set-points to be followed are

yref (k) =



35◦C for k 6 40;

55◦C for 40¡ k 6 80;

75◦C for 80¡ k 6 120:

(13)

The 120 training patterns are chosen from the input–output characteristic in order to cover the
entire reference output space. According to the selected training patterns, the GA-NFS controller
with hybrid learning algorithm is trained. The GA-NFS used here contains nine rules. Fig. 6(a)
illustrates the distribution of the training patterns and the initial of fuzzy rules (i.e., distribution of
input membership functions) in the [y(k); y(k+1)] plain. The boundary of each ellipse represents a
rule with =ring strength 0.5. The population size Npop = 100, mutation probability Pm =0:1, and the
two-point crossover operator are used. The mean number of generations in this GA learning phase
is about 350 generations. The learning result is shown in Fig. 5. Fig. 6(b) illustrates the distribution
of the training patterns and the =nal assignment of fuzzy rules in the [y(k); y(k + 1)] plain. In this
=gure, the membership functions exhibit a high degree of overlapping between each other. Many
papers [9,17,19] have used fuzzy similarity measure method to determine the similarity between two
fuzzy sets in order to avoid the existing membership functions being too similar.
After training, the regulation performance of the GA-NFS controller is shown in Fig. 7. The real

line represents the actual output while the dash line represents the reference output. Figs. 8 and 9
show the regulation performance through the PID controller and fuzzy controller. The regulation
errors between the reference output and the actual output of the GA-NFS controller, the PID con-
troller, and the fuzzy controller are shown in Fig. 10. The GA-NFS controller operates much smaller
overshoot in achieving the set-points than the PID and fuzzy controllers. With regard to the steady-
state error of set-points, the GA-NFS controller also shows the smaller error. The training set com-
prise a suKcient variety of random step changes, so that after training the controller is able to respond
satisfactorily to an arbitrary reference pro=le. The GA-NFS controller has also been tested on the
four set-point regulation problem providing a good performance. To test their regulation performance,
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Fig. 5. Simulation results of using the GA-NFS controller in the training data set.

a performance index, sum of absolute error (SAE), is de=ned by

SAE =
∑
k

|yref (k)− y(k)|; (14)

where yref (k) and y(k) are the reference output and the actual output of the simulated system,
respectively. The SAE values of the GA-NFS controller, the PID controller, and the fuzzy controller
are 353.5, 418.5, and 401.5, which are shown in the =rst column of Table 2.
In the second set of simulations, the tracking capability of the three controllers with respect to

ramp-reference signals is studied. We de=ne

yref (k) =




34◦C for k 6 30;

(34 + 0:5(k − 30))◦C for 30¡ k 6 50;

(44 + 0:8(k − 50))◦C for 50¡ k 6 70;

(60 + 0:5(k − 70))◦C for 70¡ k 6 90;

70◦C for 90¡ k 6 120:

(15)

For the GA-NFS controller, the same training scheme, training data and learning parameters are used
as those used in the =rst set of simulations. The tracking performances of the GA-NFS controller,
the PID controller, and the fuzzy controller are shown in Figs. 11–13. The tracking errors of the
three controllers are shown in Fig. 14. As shown in the error curves, the GA-NFS controller ex-
hibits the smallest error. The PID and fuzzy controllers show poor tracking-control capability. The
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Fig. 6. (a) The input training patterns and the initial assignment of rules. (b) The input training patterns and the =nal
assignment of rules.

SAE values of the GA-NFS controller, the PID controller, and the fuzzy controller are 37.1, 100.6
and 68.1, which are shown in the second column of Table 2.
The third set of simulations is carried out for the purpose of studying the noise-rejection ability

of the three controllers when some unknown impulse noise is imposed on the process. One impulse
noise value −5◦C is added to the plant output at the 60th sampling instant. A set-point of 50◦C is
performed in this set of simulations. For the GA-NFS controller, the same training scheme, training
data and learning parameters are used as those used in the =rst set of simulations. The behaviors of
the GA-NFS controller, the PID controller, and the fuzzy controller under the inJuence of impulse
noise are shown in Figs. 15–17. The corresponding errors of the three controllers are shown in
Fig. 18. The SAE values of the GA-NFS controller, the PID controller, and the fuzzy controller are
260.2, 311.5, and 275.8, which are shown in the third column of Table 2. It is observed that the
GA-NFS controller performs quite well. It recovers very quickly and steadily after the presentation
of the impulse noise. However, the PID controller is a>ected seriously by the impulse noise.
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Fig. 7. The regulation performance of the GA-NFS controller for the water bath system.

Fig. 8. The regulation performance of the PID controller for the water bath system.
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Fig. 9. The regulation performance of the manually designed fuzzy controller for the water bath system.

Fig. 10. The corresponding errors between the reference output and the actual output by using GA-NFS, PID, and fuzzy
controllers.
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Table 2
Performance comparison of various controllers

GA-NFS PID Fuzzy ANFIS
controller controller controller controller

Regulation performance 353.5 418.5 401.5 361.5
Tracking performance 37.1 100.6 68.1 39.2
InJuence of impulse noise 260.2 311.5 275.8 262.1
E>ect of change in plant dynamics 258.9 322.2 273.5 259.3

Fig. 11. The tracking performance of the GA-NFS controller for the water bath system.

One common characteristic of many industrial control processes is that their parameters tend to
change in an unpredictable way. To test the robustness of the three controllers, a value of 0:7u(k−2)
is added to the plant input after the 60th sample in the fourth set of simulations. A set-point of 50◦C
is used in this set of simulations. For the GA-NFS controller, the same training scheme, training
data and learning parameters are used as those used in the =rst set of simulations. The behaviors
of the GA-NFS controller, the PID controller, and the fuzzy controller when there is a change in
the plant dynamics are shown in Figs. 19–21. The corresponding errors of the three controllers are
shown in Fig. 22. The SAE values of the GA-NFS controller, the PID controller, and the fuzzy
controller are 258.9, 322.2, and 273.5, which are shown in the fourth column of Table 2. The PID
controller is a>ected more seriously after the 60th sample. The results show the good control and
disturbance rejection capabilities of the trained GA-NFS in the water bath system.
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Fig. 12. The tracking performance of the PID controller for the water bath system.

Fig. 13. The tracking performance of the manually designed fuzzy controller for the water bath system.
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Fig. 14. The corresponding errors between the reference output and the actual output by using GA-NFS, PID, and fuzzy
controllers.

Fig. 15. The behavior of the GA-NFS controller under the impulse noise for the water bath system.
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Fig. 16. The behavior of the PID controller under the impulse noise for the water bath system.

Fig. 17. The behavior of the manually designed fuzzy controller under the impulse noise for the water bath system.
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Fig. 18. The corresponding errors between the reference output and the actual output by using GA-NFS, PID, and fuzzy
controllers.

Fig. 19. The behavior of the GA-NFS controller when a change occurs in the water bath system dynamics.
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Fig. 20. The behavior of the PID controller when a change occurs in the water bath system dynamics.

Fig. 21. The behavior of the manually designed fuzzy controller when a change occurs in the water bath system dynamics.
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Fig. 22. The corresponding errors between the reference output and the actual output by using GA-NFS, PID, and fuzzy
controllers.

Jang [8] presented an adaptive-network-based fuzzy inference system (ANFIS), which is a fuzzy
inference system implemented in the framework of adaptive networks. Through the learning proce-
dure, the proposed ANFIS can construct an input–output mapping based on input–output data pairs.
The structure of the ANFIS is =xed and the parameter identi=cation is solved through the backprop-
agation algorithm. We also compare the GA-NFS controller to the ANFIS model. There are nine
rules generated in the ANFIS model. These results are shown in the =fth column of Table 2. The
results show that the GA-NFS controller is better than the ANFIS controller.

5. Discussions

In this section, we summarize the features of the proposed GA-NFS model. First, a real-value
encoding is used. This means that each parameter is represented by a single real value and that
recombination can only occur between parameters. The real-value coding is di>erent from the tra-
ditional GAs using the binary-value coding scheme [20], whose recombination occurs between the
binary bits. Second, a much higher level of mutation is used. This is also di>erent from the tradi-
tional GAs using the binary-value coding scheme that is largely driven by recombination, not by
mutation. Since a real-value coding and a higher mutation are used in our system, the learning speed
may become quicker than the traditional GAs using the binary-value coding scheme [20]. Third, we
use a small population. The memory size that is required may become smaller. Finally, the proposed
hybrid learning algorithm can be used to =nd optimal parameters under the structure is =xed in
advance. The proposed learning algorithm is di>erent from [8,9]. Jang [8] proposed a learning rule
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which combines the gradient method and the LSE to identify parameters. Though the LSE method
can be used to =nd optimal parameters, the gradient method is easy trapped in local minimum. In
[9], they used the symbiotic evolution method to tune the precondition and consequent parameters
of an TSK-type fuzzy rule. Since the learning speed of GA is slow, we adopted the LSE method to
tune the consequent parameters in this paper.

6. Conclusions and future work

In this paper, we introduced a general connectionist model of a fuzzy logic control system
called GA-NFS. A hybrid learning algorithm that combines the GA and the LSE method was
proposed for constructing the GA-NFS. Simulations demonstrate that the proposed GA-NFS model
has good generalization capability and robustness.
Two advanced topics on the proposed GA-NFS controller should be addressed in future researches.

First, in many existing fuzzy systems and neural networks, the numbers of the fuzzy rules and hidden
nodes are always determined by users in advance. In [17,18], we proposed self-constructing neural
fuzzy systems, which can dynamically partition the input–output spaces, tune membership function,
and =nd proper fuzzy rules. Thus, the proposed hybrid learning algorithm with GA and LSE method
can be easily extended to these models [17,18]. Second, it would be better if the GA-NFS has the
ability to delete unnecessary or redundant rules. The fuzzy similarity measure [19] determines the
similarity between two fuzzy sets in order to avoid the existing membership functions being too
similar.
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