
ELSEVIER

Available online at www.sciencedirect.com MATHEMATICAL
AND

8CIENCE~______~DIRECT • COMPUTER
MODELLING

Mathematical and Computer Modelling 42 (2005) 339-351
www.elsevier.com /locate/ mcm

A Self-Constructing
Compensatory Neural Fuzzy

and Its Applications
System

CHENG-JIAN LIN AND CHENG-HUNG CHEN
Department of Computer Science and Information Engineering

Chaoyang University of Technology, No. 168, Jifong E. Rd., Wufong Township
Taichung County 41349, Taiwan, R.O.C.

cj lin@mail, cyut. edu. tw

(Received May 2003; accepted July 2004)

A b s t r a c t - - A self-constructing compensatory neural fuzzy system (SCCNFS) for nonlinear system
identification and control is proposed in this paper. The compensatory fuzzy reasoning method uses
adaptive fuzzy operations of a neural fuzzy network to make the fuzzy logic system more adaptive
and effective. An online learning algorithm is proposed to automatically construct the SCCNFS.
The fuzzy rules are created and adapted as online learning proceeds through simultaneous s tructure
and parameter learning. The structure learning is based on the fuzzy similarity measure and the
parameter learning is based on the backpropagation algorithm. The advantages of the proposed
learning algorithm are tha t it converges quickly and tha t the fuzzy rules tha t are obtained are
more precise. The performance of SCCNFS compares excellently with other various existing models.

2005 Elsevier Ltd. All rights reserved.

K e y w o r d s - - C o m p e n s a t o r y , Fuzzy similarity measure, Inverted wedge system, Backpropagation
algorithm.

1. I N T R O D U C T I O N

Recently, the neural fuzzy approach to system modeling has become a popular research topic [1-
10]. Moreover, the neural fuzzy method possesses the advantages of both the pure neural and
the fuzzy methods; it brings the low-level learning and computational power of neural networks
into fuzzy systems and incorporates the high-level human-like thinking and reasoning of fuzzy
systems into neural networks.

Many papers [4-10] have dealt with optimal fuzzy membership functions and defuzzification
schemes for applications by using learning algorithms to adjust the parameter of fuzzy mem-
bership functions and defuzzification functions. Unfortunately, for optimal fuzzy logic reasoning
and selected optimal fuzzy operators, only static fuzzy operators are often used for fuzzy rea-
soning, such that the conventional neural fuzzy system can only adjust the fuzzy membership
functions by using fixed fuzzy operations, such as Min and Max. The compensatory neural fuzzy
system [11] with adaptive fuzzy reasoning is more effective and adaptive than the conventional

This research is supported by the National Science Council of the I~.O.C. under Grant NSC 90-2213-E-324-011.

0895-7177/05/$ - see front mat ter (~) 2005 Elsevier Ltd. All rights reserved. Typeset by A.A48-TEX
doi: 10.1016/j.mcm.2004.07.017

340 C.-J. LIN AND C.-H. CHEN

neural fuzzy system with nonadaptive fuzzy reasoning [4]. Therefore, an effective neural fuzzy
system should be able not only to adaptively adjust fuzzy membership functions, but also to
dynamically optimize adaptive fuzzy operators.

In this paper, a self-constructing compensatory neural fuzzy system (SCCNFS) is proposed.
The compensatory fuzzy reasoning method uses adaptive fuzzy operations of a neural fuzzy net-
work to make the fuzzy logic system more adaptive and effective. An online learning algorithm is
proposed to automatically construct the SCCNFS. It consists of structure learning and parameter
learning. The structure learning algorithm determines whether to add a new node which satisfies
the fuzzy partition of the input data. The similarity measure of symmetric Gaussian membership
functions is used. The backpropagation learning algorithm is then used for tuning membership
functions.

The proposed learning algorithm has four advantages. First, it does not require human assis-
tance. Second, its structure is obtained from the input data. Third, it converges quickly. Fourth,
the obtained fuzzy rules are more precise than other learning algorithms.

This paper is organized as follows. Section 2 describes the basic structure and functions of the
SCCNFS. The online structure and parameter learning algorithms of the SCCNFS is presented
in Section 3. In Section 4, the SCCNFS is applied to solve several problems. Finally, conclusions
are given in the last section.

2. T H E S T R U C T U R E O F S C C N F S

In this section, the structure of the SCCNFS is introduced. This four-layer network [6] realizes
a fuzzy model in the following form:

Rj : IF xl is Alj and x2 is A2j. . . and x,~ is Any

THEN y' = bj, (1)

where xi is the input variable, y~ is the output variable, A,~j is the linguistic term of the precon-
dition part, bj is the constant consequent part, and n is the number of input variables.

The structure of the SCCNFS is shown in Figure 1. The functions of the nodes in each layer
of the SCCNFS model are described as follows.

Y

Layer 3 1

/ / t / 2 ~ / (2)

Layer 2 y ° ° "

xz X2

Figure 1. Structure of the proposed SCCNFS.

A Self-Constructing Compensatory Neural Fuzzy System 341

LAYER 1. No computation is done in this layer. Each node in this layer is an input node, which
corresponds to one input variable and only transmits input values to the next layer directly

U} 1) = Xi. (9~)

LAYER 2. Nodes in this layer correspond to one linguistic label of the input variables in Layer 1;
that is, the membership value specifies the degree to which an input value belonging to a fuzzy
set is calculated in Layer 2. The Gaussian membership function, the operation performed in
Layer 2, is

[ul 1) - rnij
) = e x p , (3)

Cr ij

where rn~j and crij are, respectively, the mean and variance of the Gaussian membership function
of the jth term of the i th input variable xi.

LAYER 3. Nodes in this layer represent the precondition part of one fuzzy logic rule. They receive
the one-dimensional membership degrees of the associated rule from nodes of a set in Layer 2.
Here, we use a compensatory fuzzy operator mentioned in [11] to perform IF-condition matching
of fuzzy rules. As a result, the output function of each inference node is

j ~ ~i j) (4)

where r E [0, 1] is called the compensatory degree and R is number of rules. When r is tuned,

the fuzzy operator becomes more adaptive.

LAYER 4. This layer acts a defuzzifier. The single node in this layer is labeled ~ and it sums
dl incoming signals to obtain the final inferred result

= Z (5)
J

where the weight wj is the output action strength associated with the jth rule and U (4) is the

output of the SCCNFS.

3. T H E O N L I N E H Y B R I D L E A R N I N G A L G O R I T H M

In this section, we present an online hybrid learning algorithm for constructing the SCCNFS.
The hybrid learning algorithm consists of a structure learning phase and a parameter learning
phase. The structure learning phase includes both determining proper fuzzy partitions and
finding fuzzy logic rules subject to two objectives: to minimize the number of rules generated
and to minimize the number of fuzzy sets in the universe of discourse of each input variable. The
parameter learning phase is based upon supervised learning algorithms. The backpropagation
algorithm is used to minimize a given cost function to adjust the weights in the consequent part,
the parameters of the membership functions, and the compensatory degree.

Initially, there are no nodes in the network except the input-output nodes; that is, there
are no rule nodes and membership. They are created dynamically and automatically as learning
proceeds upon receiving online incoming training data when the structure and parameter learning
processes are used. The details of the structure learning phase and the parameter learning phase
are described in the rest of this section.

342 C . - J . LIN AND C. -H. CHEN

3.1. T h e S t r u c t u r e L e a r n i n g P h a s e

The first step in the structure learning is to determine whether to extract a new rule from the
training data, as well as to determine the number of fuzzy sets in the universal of discourse of
each input variable, since one cluster in the input space corresponds to one potential fuzzy logic
rule, with rnij and aij representing the mean and variance of tha t cluster. For each incoming
pattern xi, the strength a rule is fired can be interpreted as the degree to which the incoming
pattern belongs to the corresponding cluster. For computational efficiency, we can use the firing

strength obtained from IIul~) directly as the degree measure

Fj = H ~ (2) (6)
i

where Fj C [0, 1]. Using this degree measure, we can obtain the following criterion for generating
a new fuzzy rule of new incoming data, described as follows. Find the maximum degree Fmax

Fmax = max 6 , (7)
I <_j<_R(~)

where R(t) is the number of existing rules at time t. If Fmax _< F, where/~ C (0, 1) is a prespecified
threshold that decays during the learning process, then a new rule is generated. Once a new rule
is generated, the next step is to assign an initial mean and variance of the new membership
function, since our goal is to minimize an objective function and since the mean and variance are
all adjustable later in the parameter learning phase. Hence, the mean and variance deviation of
the new membership function are set as follows:

(R(t+I)) m i j = Xi, (8)

~i j : O'init , (9)

where xi is the new data and ainlt is a prespecified constant.
Since the generation of a membership function corresponds to the generation of a new fuzzy

rule, the weight w~ R(~+I))" associated with a new fuzzy rule has to be determined. Generally, the

(R(~+I)) is selected randomly. weight wj
The whole algorithm for the generation of new fuzzy rules and of fuzzy sets in each input

variable is as follows. Suppose no rules exist initially.

STEP 1. IF xi is the first incoming pat tern THEN do

{Generate a new rule

with mean r a i l = xi~ v a r i a n c e O-il = O'init ,

weight wl = random

where O'init is a prespecified constant.
}

STEP 2. ELSE for each newly incoming xi, do
{Find Fmax = max Fj

l~_j~_R(t)

IF Fmax > F
do nothing

ELSE

{R(t+l) = R(t) ÷ 1
generate a new rule

~ R (t + l) with m e a n iiLij Xi~ variance R (t + l) = o i j ~ 0"init,

weight w? ('+~) = random

A Self-Constructing Compensatory Neural Fhzzy System 343

where O'init is a prespecified constant.}
}

To prevent a newly generated membership function from being too similar to an existing
one, the similarities between a new membership function and existing membership functions
must be checked. The fuzzy similarity measure [1] determines the similarity between two fuzzy
sets. If A and B are two fuzzy sets with membership functions UA(X) = exp[--(x -- ml)2/~r~]

me) /a2], then the approximate fuzzy similarity measure of A and B, and us(x) = e x p [- (x - 2 2
E(A, B) [1], can be computed as follows.
Assume ml >_ ms. Then,

E(A, B) - IA n B I _ IA n B t (10)
IA U BI ~x ~/-~ + Cr2v/~ -]An B I '

where]An B I indicates the cardinality of A n B. [An B] can be easily computed from

1 h 2 (m2 - ml ÷ v ~ (a l + ~2))
IA N BI = 2 x/r~ (~l ÷ a~)

] h 2 (.~2 - .~1 + v ~ (~1 - ~2))
+

2 v~@r2 -- (71)
] h 2 (- ~ - .~1 - v ~ (~ l - ~)) +
2 v ~ (~ l - ~2)

(11)

where h(x) = max{0, x}.
The similarity measure E between a new membership function and all existing membership

functions are calculated and the maximum one, Emax, is found as follows:

Ema x max E (u (rytl new) }new)))) (12) = , (7 , u (m i j , o i j
l < j < M (t)

where u (m i j , crij) represents the Gaussian membership function with mean mij and standard
deviation aij and M(t) is the number of membership functions of the ith input variable. If
Emax <_/~, where/~ E (0, 1) is a prespecified value, then the new membership function is adopted
and the number M(t) is incremented

M(t + 1) = M(t) + 1. (la)

3.2. T h e Parameter Learning Phase

After the network structure is adjusted according to the current training pattern, the network
then enters the parameter learning phase to adjust the parameters of the network optimally based
on the same training pattern. The learning process involves determining the minimum of a given
cost function. The gradient of the cost function is computed and adjusted along the negative
gradient. The idea of backpagation is used for this supervised learning method. For clarity of
the single output case, our goal is to minimize the cost function E, which is defined as

1 2
E = ~ [y - yd] , (i 4)

where yd is the desired output and y is the current output. The parameter learning algorithm
based on backpropagation is described as follows.

LAYER 4. The error term to be propagated is calculated as

6(4)_ O E _ y d _ y . (15)
Oy

344 C.-J. LIN AND C.-H. CHEN

The weight is updated by the amount

owj°E--N
The weight in Layer 4 is updated according to the following equation:

= wj(t) + qwS(4)u~. 3), (17)

where factor ~/w is the learning rate parameter of the weight and t denotes the iteration number
of the jth.

LAYER 3. In this layer oniy, the error term needs to be computed and propagated

c~(3) _ OE _ -O-Y
(is)

= 5(4)wj.

The following is the learning rule for the compensatory degree r. To eliminate the constraint
r E [0, 1], we redefine r as follows:

Then, we have

c 2

r ~ . - - e 2 + d 2 ,

= 6(3) [R - 1] In [,l~I ul~)] u13).

2e(t)d2(t) }
eft + I) = c(t) +~l¢ [c2(t) + d2(t)] Ar,

{ 2c2(t)d(t) }
d(t + 1) = d(t) --~ld [c2(t) +d2(t)] Ar,

af t + i)
r(t + 1) = c2(t + 1) + d2(t + 1)"

In all the above formulas, ~c and ~d are the learning rate of parameters c and d.

LAYER 2. The error term is calculated as follows:

°uiJ 3

= 6 (3) 1 -- r + -~ Uij U)
L z 3

where 1 is the 1 th dimension. The updated mean is

Omgj Ou~ L Om~j j

oij

(19)

(20)

(21)

(22)

(23)

(24)

(25)

A Self-Constructing Compensatory Neural Fuzzy System 345

The updated variance is

[OE] [° I?1L J
oE _ --=,

O0"ij

]
The mean and variance of the membership functions in this layer are updated as follows:

(26)

rnij(t + 1) = rnij(t) + 7?,~Amij,

CTij(t + 1) = aij(t) + O~Acrij,

(27)

(28)

where ~m and 71c, are the learning rate parameters of the mean and the variance of the Gaussian
function, respectively.

4. S I M U L A T I O N S

In this section, we compare the performance of SCCNFS with other models in two applications:
identification of a nonlinear dynamic system [4] and control of an inverted wedge system [12].

E x a m p l e 1: I d e n t i f i c a t i o n o f a N o n l i n e a r D y n a m i c S y s t e m

In this example, the SCCNFS was used to identify a dynamic system. The identification model
had the form

y (k + l) = f [u (k) , u (k - 1) , . . . , u (k - p + l) y (k) , y (k - 1) , . . . , y (k - q + l)] . (29)

Since both the unknown plant and the SCCNFS were driven by the same input, the SCCNFS
adjusted itself with the goal of causing the output of the identification model to match that of
the unknown plant. Upon convergence, their input-output relationship should match. The plant
to be identified was guided by the differential equation

y(k) (a0) y (k + 1) - 1

The output of the plant depends nonlinearly on both its past values and inputs, but the effects
of the input and output values are additive. When the SCCNFS was applied to this identification
problem, the learning rate r;~ = r;c = r/a = ~m = r;~ = 0.01 and the prespecified threshold F = 0.1
were used. The training patterns were generated with u(k) = sin(27rk/100), and training was
performed for 100 epochs. Starting at zero, the number of clusters grew dynamically for the
incoming training data. Each duster corresponded to a circle in the input space.

Figure 2 shows the root-mean-square (RMS) errors during learning. Figure 3 gives the distribu-
tion of the training patterns and the final assignment of 11 fuzzy logic rules (i.e., the distribution
of input membership functions) in the [u(k), y(k)] plane after training. Figure 4 shows the out-
puts of the plant and the identification model. In this figure, the outputs of the SCCNFS are

represented as os while the ptant outputs are represented as *s. The simulation results show
perfect identification capability of the well-trained SCCNFS.

We now compare the performance of the SCCNFS with other various existing models [4-6].
The performance indices considered included training steps, rule numbers, and rms errors. The
comparison results are tabulated in Table 1. The results show that the proposed SCCNFS needs
fewer training steps and has fewer rms errors than the FALCON model [4] and the SONFIN
model [5]. Although the needed training steps and rms errors of SCCNFS model approximated

346 C.-J. LIN AND C.-~I. CHEN

0.8

0.7

[I 1 T - - T []"

L SCFNN

0.6

0.5

~ 0 . 4
cE

0.3

0.2

Q.1

i

0 L

0 10 20 30 413 50 60 70
Epoohs

Figure 2. Learning curve of the SCCNFS and SCFNN[6],

80

I I I I I I I

90 100

1.5

0.5

>,

43.5

-1.5

-2 I I I I I I I
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

u(k)

Figure 3. Simulation results of the SCCNFS on the membership functions of each
input variable in Example1. The input training patterns and the final assignment of
rules.

t h e S C F N N [6] m o d e l , i t is obv ious t h a t our m o d e l has qu icke r c o n v e r g e n t speed a n d fewer ru le

n u m b e r s t h a n t h e S C F N N mode l .

A Self-Constructing Compensatory Neural Fuzzy System 347

1.5.k

0.5

0 >.,

-0,5

-2 t.
0

-1.5

"f r "f T l T l

1 1 1 1__.._._.£-
20 45 ~0 83 100 120 145 160 t

Times

Figure 4. The outputs of the plant and the identification model.

Table 1. Performance comparison of various existing models on identification prob-
lem.

SCCNFS FALCON [4] SONFIN [5] SCFNN [6]

Training steps 100 60000 50000 100

Rule numbers ii 6 i0 22

RMS errors 0.0002 0.02 0.013 0.0003

Figure 5. The inverted wedge balancing system.

E x a m p l e 2: C o n t r o l o f t h e I n v e r t e d W e d g e B a l a n c i n g

200

The inverted wedge [12] is an inherently unstable nonlinear system, as shown in Figure 5. A

DC motor leads the sliding weights via a sprocket-and-chain mechanism. The sliding weights are,

in fact, rechargeable bat ter ies t ha t supply power to all the on-board electronics. A linear power
amplifier module is used to drive the motor. A mul t i tu rn potent iometer is coupled to the motor

348 C.-J. LIN AND C.-H. CHEN

shaft to sense the position of the sliding weights. A vertical gyro is used to sense the absolute
angle. The vertical gyro is a free gyro with a gravity sensitive erection mechanism that keeps the
gyro spin axis in the direction of gravity. A vertical gyro provides virtually unlimited bandwidth.

After the mechanical design and selection of a motor and sensors are finalized, a model of the
complete system including all the onboard equipment can be derived. In Figure 5, 0 and x are
used as generalized coordinates. 0 is the wedge angle from the upright position and x is the
weight displacement from the wedge center line. The total kinetic energy of the system is shown
to be

1 1 ((_x)@ 2) + 3 2~, (31) T = ~j~02 + ~m2 (I +k 2 I~ 22

where m2 is the mass of each weight, J1 is the wedge inertia, J2 is the chain-sprocket inertia,
and ks is the sprocket radius. In equation (31), the first term on the right is the kinetic energy
of the wedge, the second and the third terms are the kinetic energy of the weights, and the last
term is the kinetic energy due to the rotation of the motor rotor, chain, and sprocket. The total
potential energy is

U = m~gh cos(0) + .~g(1 - x) cos(0 + a) + m2g(l + x) eos(a - 0)
(32)

= (mlgh + 2m2gl cos(a))cos(O) + 2m2g sin(a)x sin(O),

where h is the wedge center of mass and ml is the wedge mass. Substituting Lagrange L = T - U
into Lagrange's equation, we have

d OL OL
dt O0 00 - O,

d OL OL krI

dt Ok Ox ks
kfric sgn (~?),

(33)

K~ = ktkb~mf (36)
+ 2m2]'

kda kpa kt
K b -: (37)

kskr + 2m2]'

We can conclude that both the unbalanced wedge angle 0 (the unit is radians) and the offset
of the sliding weights x (the unit is meters) contribute to the unbalanced torque of the wedge.

where

where kr is the motor resistance, kfr~c is the sliding mechanic friction, and I is the motor current.
Thus, the motor current is given by

]~bemf . {]gda~pa ~ (34)
I = - kskr X + \ k~] u,

where kbemf, kda, and kp~ represent the bemf constant, the D/A converter constant, and the power
amplification constant, respectively. Combining equations (33) and (34), and using ql = 0, q2 = x,
q3 - ~), and q4 = :/: as the state variables and u as the control signal, we obtain the following
open loop system equation:

41 = q3,

q2 = q4,

03 = -4m2q2q3q4 + Kv sin(q1) - 2m2g sin(a)q2 cos(qj (35)
J1 + 2m2 (/2 + q~)

q4 ---- 2m2q2q~ -- 2m2g sin(c~)sin(ql) -- kfric sgn(~?) _ Kvq4 + Kb u,
(J2/k) +

A Self-Constructing Compensatory Neural Fuzzy System 349

Similarly, both the angular velocity of the wedge, 0, and the velocity of the sliding weights, 5,
contribute to the rate change of the unbalanced torque. That is, 0 and x have similar effects on
the wedge dynamics, as do 0 and 5.

Therefore, it is reasonable to choose the input variables T and dT

T = K10 + t(2z, (38)

dT = K30 + K42, (39)

where T is an approximation of the unbalanced torque and dT is an approximation of the rate
change of the unbalanced torque. A suitable choice for the values of K1, K2,/(3, and/(4 is

IT(1 ~--- K 3 = Mgh, (40)

K2 = K4 = 2rag sin a, (41)

where M = 3.8, h = 0.13, m = 0.78, a = 45. In this manner, the number of input variables is
reduced to two dimensions, as shown in Figure 6 (G1, G2, and Gs are constants).

SCCNFS

Figure 6. The inverted wedge SCCNFS control system for two dimensions.

°L I I I I

4

m
~0
<

-61 I I I I
o 5 1o 15 2o 2~

Times

Figure 7. The responses of the closed-loop inverted wedge system controlled by the
SCCNFS model for four initial conditions.

350 C.-.]. LIN AND C.-T-T. CHEN

10 I I I I

8

4

2

0 - - - -

-4

-6

-8

-10 I I I I
5 10 15 20 25

Times

Figure 8. The responses of the four states of the inverted wedge system under the
control of the learned SCCNFS controller.

In our simulation, we used the linear quadratic optimal design approach [12] to generate the
input/output training pair. The learning rate ~]~ = Vc = ~]d = ~-~ = ~ = 0.05, and the
prespecified threshold _P = 10 -s were used. After the online structure-parameter learning, ten
fuzzy logic rules were generated in our simulation. The rms error of the controller approximated
0.1001. We tested the learned controller under four initial conditions: q(0) = [5, 8 , -5 , -16] T,
[-2, 1, -5 , 8] T, [2, -1 , 5, -8] T, and [-5, -8, 5, 16] T. Figure 7 shows the output responses of the
inverted wedge system controlled by the SCCNFS model. The behavior of the four states of the
inverted wedge system starting at the initial condition [-2, 1, -5 , 8] T are shown in Figure 8. In
this figure, the four states of the system gradually decay to zero. The results show the perfect
control capability of the trained SCCNFS model. We also compared the performance of SCCNFS
with FALCON [4]. There are 33 fuzzy rules generated in the FALCON model. The results show
that the proposed SCCNFS needs fewer fuzzy rules than the FALCON model.

5. C O N C L U S I O N S

In this paper, a self-constructing compensatory neural fuzzy system (SCCNFS) was proposed.
The structure and parameter learning phases are done concurrently and online in the SCCNFS.
The compensatory neural fuzzy system with adaptive fuzzy reasoning is more effective and adap-
tive than the conventional neural fuzzy system with nonadaptive fuzzy reasoning. The simulation
results show that a trained SCCNFS model has good identification and control capability.

R E F E R E N C E S

1. C.T. Lin and C.S.G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent System, Prentice
Hall, New Jersey, (1996).

2. S. Paul and S. Kumar, Subsethood-product fuzzy neural inference system (SuPFhNIS), IEEE Trans. on
Neural Networks 13 (3), 579-599, (2002).

3. T. Takagi and M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, [EEE
Trans. on Syst., Man, Cybern. iS, 116-132, (1985).

A Self-Constructing Compensatory Neural Fuzzy System 351

4. C.J. Lin and C.T. Lin, An ART-based fuzzy adaptive learning control network, IEEE Transactions on Fuzzy
Systems 5 (4), 477-496, (1997).

5. C.F. Juang and C.T. Lin, An online self-constructing neural fuzzy inference network and its applications,
IEEE Transactions on Fuzzy Systems 6 (1), 12-31, (1998).

6. F.J. Lin, C.H. Lin and P.H. Shen, Self-constructing fuzzy neural network speed controller for permanent-
magnet synchronous motor drive, IEEE Transactions on Fuzzy Systems 6 (5), 751-759, (2001).

7. H. Pomares, I. Rojas, J. Gonzalez and A. Prieto, Structure identification in complete rule-based fuzzy systems,
IEEE Trans. on Fuzzy Systems 10 (3), 349-359, (2002).

8. C.H. Lee and C.C. Teng, Identification and control of dynamic systems using recurrent fuzzy neural networks,
IEEE Trans. on Fuzzy Systems 8 (4), 349-366, (2000).

9. P.A. Mastorocostas and J.B. Theocharis, A recurrent fuzzy-neural model for dynamic system identification,
IEEE Trans. on System, Man, and Cybernetics 32 (2), 176-190, (2002).

10. J.-S.R. Jang, C.T. Sun and E. Miszutani, Neuro-Fuzzy and Soft Computing, Prentice Hall, Upper Saddle
River, N J, (1997).

11. Y.Q. Zhang and A. Kandel, Compensatory neurofuzzy systems with fast learning algorithms, IEEE Trans-
actions on Neural Networks 9 (1), 83-105, (1998).

12. P. Hsu, Dynamics and control design project offers taste of real world, IEEE Control System Mag., 31-38,
(1992).

