
Fuzzy Sets and Systems 112 (2000) 65–84
www.elsevier.com/locate/fss

A GA-based fuzzy adaptive learning control network
I-Fang Chung, Cheng-Jian Lin∗, Chin-Teng Lin

Department of Control Engineering, National Chiao-Tung University, Hsinchu, Taiwan, ROC

Received May 1997; received in revised form March 1998

Abstract

This paper addresses the structure and an associated learning algorithm of a feedforward multilayered connectionist network
for realizing the basic elements and functions of a traditional fuzzy logic controller. The proposed fuzzy adaptive learning
control network (FALCON) can be contrasted with the traditional fuzzy logic control systems in their network structure and
learning ability. A structure=parameter learning algorithm, called FALCON-GA, is proposed for constructing the FALCON
automatically. The FALCON-GA is a three-phase hybrid learning algorithm. In the �rst phase, the fuzzy ART algorithm is
used to do fuzzy clustering in the input=output spaces according to the supervised training data. In the second phase, the
genetic algorithm (GA) is used to �nd proper fuzzy logic rules by associating input clusters and output clusters. Finally, in
the third phase, the backpropagation algorithm is used for tuning input=output membership functions. Hence, the FALCON-
GA combines the backpropagation algorithm for parameter learning and both the fuzzy ART and GAs for structure learning.
It can partition the input=output spaces, tune membership functions and �nd proper fuzzy logic rules automatically. The
proposed FALCON has two important features. First, it reduces the combinatorial demands placed by the standard methods
for adaptive linearization of a system. Second, the FALCON is a highly autonomous system. In its learning scheme, only the
training data need to be provided from the outside world. The users need not give the initial fuzzy partitions, membership
functions and fuzzy logic rules. Computer simulations have been conducted to illustrate the performance and applicability
of the proposed system. c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Fuzzy ART; Expert systems; Membership function; Space partition; Backpropagation; Chaotic sequence

1. Introduction

Bringing the learning abilities of neural networks
to automate and realize the design of fuzzy control
systems has become an active research area in re-
cent years [2,10,14,17,18,25–27,30–32]. Developed
techniques include the automatic generation of fuzzy
rules from numerical data [14,18,25,27,30] and the
tuning of membership functions [2,10,17]. This inte-
gration brings the low-level learning and computation

∗ Corresponding author.

power of neural networks into fuzzy logic systems,
and provides the high-level, human-like thinking
and reasoning of fuzzy logic systems into neural
networks. Recently, due to its global optimization
capability, the genetic algorithm has become another
useful tool to the automatic design of fuzzy control
systems [5,8,9,11,12,16,22,28]. Such synergism of
GAs, neural networks and fuzzy logic into a functional
system provides a new direction toward the realiza-
tion of intelligent systems for various applications.
A genetic algorithm (GA) is a parallel, global search

technique that emulates natural evolution. Because it

0165-0114/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0165 -0114(98)00095 -5

66 I-F. Chung et al. / Fuzzy Sets and Systems 112 (2000) 65–84

simultaneously evaluates many points in the search
space, it is more likely to converge toward the global
solution. A GA applies operators inspired by the me-
chanics of natural selection to a population of binary
string encoding the parameter space at each genera-
tion, it explores di�erent areas of the parameter space,
and then directs the search to regions where there is a
high probability of �nding improved performance. By
working with a population of solutions, the algorithm
can in e�ect seek many local minima and thereby in-
crease the likelihood of �nding the global minima.
GAs have been employed for generating fuzzy rules

and adjusting membership functions in fuzzy logic
systems. The pioneer was Karr [11,12] who used GAs
to adjust membership functions. Nomura et al. [22]
used GAs to determine the fuzzy partition of input
spaces. Hence both the number of fuzzy terms for each
input variable and the membership function of each
fuzzy term could be determined. In [28], an appropri-
ate fuzzy set in the consequent part of each fuzzy rule
was selected using GAs. Lee and Takagi [16] used
GAs to approach simultaneous membership function
and rule set design. Homaifar [8] also examined the
applicability of GAs in the simultaneous design
of membership functions and rule sets for fuzzy
logic controllers. Ishibuchi [9] proposed a GA-based
method for selecting a small number of signi�cant
fuzzy rules to construct a compact fuzzy classi�ca-
tion system with high classi�cation power. GAs also
provide more
exibility in designing the rule set and
membership functions for some di�cult non-linear
control problems [4].
In this paper, we apply the GA to our fuzzy adap-

tive learning control network proposed previously
in [18] to enhance its learning ability. The proposed
fuzzy adaptive learning control network (FALCON)
can be constructed automatically by learning from
training data. It can be contrasted with the traditional
fuzzy logic control systems in their network structure
and learning ability. The FALCON is a �ve-layer
structure as shown in Fig. 1. Nodes at layer one are
input nodes (linguistic nodes) which represent input
linguistic variables. Layer �ve is the output layer. We
have two linguistic nodes for each output variable.
One is for training data (desired output) to feed into
this network, and the other is for a decision signal
(actual output) to be pumped out of the network.
Nodes at layers two and four are term nodes that act

as membership functions to represent the terms of the
respective linguistic variable. Each node at layer
three is a rule node that represents one fuzzy
logic rule. Thus all layer-three nodes form a fuzzy
rule base. Layer-three links de�ne the precondi-
tions of the rule nodes, and layer-four links de-
�ne the consequents of the rule nodes. The links
at layers two and �ve are fully connected be-
tween linguistic nodes and their corresponding term
nodes.
Associated with the FALCON is a hybrid learn-

ing algorithm, called FALCON-GA. We shall call a
FALCON with this learning algorithm the FALCON-
GAmodel. The FALCON-GAmodel has some impor-
tant properties as described below. In many existing
fuzzy or neuro-fuzzy control systems, the input and
output spaces are partitioned into “grids”. When the
number of input=output variables increase, the num-
ber of partitioned grids will grow combinatorially. As
a result, the required size of memory or hardware may
become impractically huge. This results in more di�-
culty in learning because �ner space partitioning needs
more training samples; otherwise insu�cient learning
will occur. To avoid the problem of combinatorial
growing of partitioned grids in complex systems, a
more
exible and irregular space partitioning method
has been developed [18] and is further extended in
this paper. The problem of space partitioning from nu-
merical training data is basically a clustering problem.
The proposed FALCON-GA applies the Fuzzy Adap-
tive Resonance Theory (Fuzzy ART) proposed by
Carpenter et al. [3] to do fuzzy clustering in the
input=output spaces. It then applies the GA to �nd
proper fuzzy logic rules by associating input clusters
and output clusters, where an input cluster forms a
precondition and an output cluster forms a consequent
of a determined fuzzy rule. Finally, the backprop-
agation algorithm is used to tune the input=output
membership functions optimally to meet the desired
input=output mapping. Hence, the FALCON-GA is
a three-phase hybrid learning algorithm combining
both the fuzzy ART (phase 1) and the GA (phase
2) for structure learning, and the backpropagation
algorithm (phase 3) for parameter learning. The
FALCON-GA can partition the input=output spaces,
tune membership functions and �nd proper fuzzy
logic rules automatically. More notably, in this learn-
ing scheme, only the training data need to be pro-

I-F. Chung et al. / Fuzzy Sets and Systems 112 (2000) 65–84 67

Fig. 1. The proposed fuzzy adaptive learning control network (FALCON).

vided from the outside world. The users need not
give the initial fuzzy partitions, membership func-
tions and fuzzy logic rules. In other words, there
are no input=output term nodes and no rule nodes
at the beginning of learning. The whole network
structure of the FALCON is created in the learning
process.
This paper is organized as follows. A brief intro-

duction to GAs is made in Section 2. Section 3 de-

scribes the structure of the FALCON-GA model. The
structure=parameter learning algorithm, FALCON-
GA, which combines the fuzzy ART algorithm,
GA and backpropagation algorithm is presented in
Section 4. In Section 5, the FALCON-GA model
is used to control the truck backer-upper problem
and predict the chaotic time-series to demonstrate its
learning capability. Conclusions are summarized in
the last section.

68 I-F. Chung et al. / Fuzzy Sets and Systems 112 (2000) 65–84

2. Hybrid genetic algorithms

The basic element processed by a GA is the string
formed by concatenating substrings, each of which is
a binary coding of a parameter of the search space.
Thus, each string represents a point in the search
space and hence a possible solution to the problem.
Each string is decoded by an evaluator to obtain its
objective function value. This function value, which
should be maximized or minimized by the GA, is then
converted to a �tness value that determines the prob-
ability of the individual undergoing genetic opera-
tors. The population then evolves from generation
to generation through the application of the genetic
operators. The total number of strings included in a
population is kept unchanged through generations.
A GA in its simplest form uses three operators: re-
production, crossover and mutation [5]. Through
reproduction, strings with high �tnesses receive mul-
tiple copies in the next generation while strings with
low �tnesses receive fewer copies or even none at
all. The crossover operator produces two o�spring
(new candidate solutions) by recombining the infor-
mation from two parents in two steps. First, a given
number of crossing sites are selected along the parent
strings uniformly at random. Second, two new strings
are formed by exchanging alternate pairs of selec-
tion between the selected sites. In the simplest form,
crossover with a single crossing site refers to taking a
string, splitting it into two parts at a randomly gener-
ated crossover point and recombining it with another
string that has also been split at the same crossover
point. This procedure serves to promote a change in
the best strings which could give them even higher
�tnesses. Mutation is the random alteration of a bit
in the string which assists in keeping diversity in the
population.
Traditional simple GAs, though robust, are gener-

ally not the most successful optimization algorithm on
any particular domain. Hybridizing a GA with algo-
rithms currently in use can produce an algorithm bet-
ter than the GA and the current algorithms. Hence, for
an optimization problem, when there exist algorithms,
optimization heuristics, or domain knowledge that can
aid in optimization, it may be advantageous to con-
sider a hybrid GA. GAs may be crossed with various
problem-speci�c search techniques to form a hybrid
that exploits the global perspective of the GA (global

search) and the convergence of the problem-speci�c
technique (local search).
There are numerous gradient techniques (e.g., gra-

dient descent method, conjugate gradient method)
and gradientless techniques (e.g., golden search, sim-
plex method) available for �nding local optimal in
a calculus-friendly function (e.g., continuous func-
tion) [19]. Even without a calculus-friendly function,
there are well developed heuristic search schemes for
many popular problems. For example, the greedy al-
gorithms in combinatorial optimization are a form of
local search [15]. An intuitive concept of hybridizing
GAs with these local search techniques is that the GA
�nds the hills and the local searcher goes and climbs
them. Thus, in this approach, we simply allow the
GA to run to substantial convergence and then we
permit the local optimization procedure to take over,
perhaps searching from the top 5% or 10% of points
in the last generation.
In some situations, hybridization entails using the

representation as well as optimization techniques al-
ready in use in the domain, while tailoring the GA
operators to the new representation. Moreover, hy-
bridization can entail adding domain-based optimiza-
tion heuristics to the GA operator set. In these cases,
we can no longer apply the familiar GA operators di-
rectly and must create their analogs to account for new
representations and=or added optimization schemes.
For example, Davis [4] and Adler [1] describe an ap-
proach to hybridizing a simple GA with the simulated
annealing algorithm, and Tsinas [29] and Petridis [23]
describe an approach to hybridizing a simple GA with
the backpropagation algorithm. A hybrid of both cat-
egories of learning methods result in a more power-
ful, more robust and faster learning procedure. In this
paper, we shall hybrid GA with fuzzy ART and back-
propagation algorithms to form the FALCON-GA
learning algorithm.

3. The structure of the FALCON-GA model

In this section, we describe the structure and func-
tions of the proposed FALCON-GA model. The
FALCON (see Fig. 1) has �ve layers with node and
link numbering de�ned by the brackets on the left-
hand side of the �gure. Layer-1 nodes are input nodes
(input linguistic nodes) representing input linguistic

I-F. Chung et al. / Fuzzy Sets and Systems 112 (2000) 65–84 69

variables. Layer-5 nodes are output nodes (output
linguistic nodes) representing output linguistic vari-
ables. Layer-2 and layer-4 nodes are term nodes that
act as membership functions representing the terms
of the respective input and output linguistic variables.
Each layer-3 node is a rule node representing one
fuzzy logic rule. Thus, together all the layer-3 nodes
form a fuzzy rule base. Links between layers 3 and 4
function as a connectionist inference engine. Layer-3
links de�ne the preconditions of the rule nodes, and
layer-4 links de�ne the consequents of the rule nodes.
Therefore, each rule node has at most one link to
some term node of a linguistic node, and may have
no such links. This is true both for precondition links
(links in layer 3) and consequent links (links in layer
4). The links in layers 2 and 5 are fully connected be-
tween linguistic nodes and their corresponding term
nodes. The arrows indicate the normal signal
ow
directions when the network is in operation (after it
has been built and trained). We shall later indicate
the signal propagation, layer-by-layer, according to
the arrow direction.
The FALCON uses the technique of comple-

ment coding from fuzzy ART [3] to normalize the
input=output training vectors. Complement coding is a
normalization process that rescales an n-dimensional
vector in Rn; x=(x1; x2; : : : ; xn), to its 2n-dimensional
complement coding form in [0; 1]2n; x′, such that

x′ ≡ (�x1; �xc1; �x2; �xc2; : : : ; �xn; �xcn)
= (�x1; 1− �x1; �x2; 1− �x2; : : : ; �xn; 1− �xn); (1)

where (�x1; �x2; : : : ; �xn)= �x= x=‖x‖ and �xc1 is the com-
plement of �x1, i.e. �xc1 = 1 − �x1. As mentioned in [3],
complement coding helps avoid the problem of cat-
egory proliferation. The category proliferation hap-
pens when we use fuzzy-ART for fuzzy clustering
procedure. In fuzzy clustering, to satisfy the resonance
criterion (Eqs. (11)–(13)), future non-complement
coding inputs will be forced to drag other weight
vectors toward the origin, or to choose uncommitted
nodes, even though the choice value of these nodes
is small. Therefore, we must use complement coding
in input data preprocessing to avoid this problem.
Additionally, the complement coding also represents
a training vector and achieves normalization while
preserving amplitude information. In applying the
complement coding technique to the FALCON, all

training vectors (either input state vectors or desired
output vectors) are transformed to their complement
coded forms in the preprocessing process, and the
transformed vectors are then used for training.
A typical neural network consists of nodes with

some �nite number of weighted fan-in connections
from other nodes, and fan-out connections to other
nodes. Associated with the fan-in of a node is an inte-
gration function f that combines information, activa-
tion, or evidence from other nodes, and provides the
net input; i.e.

net-input=f(z(k)1 ; z
(k)
2 ; : : : ; z

(k)
p ;w(k)1 ; w

(k)
2 ; : : : ; w

(k)
p);

(2)

where z(k)i is the ith input to a node in layer k, and
w(k)i is the weight of the associated link. The super-
script in the above equation indicates the layer num-
ber. This notation will also be used in the following
equations. Each node also outputs an activation value
as a function of its net input,

output = a(f(·)); (3)

where a(·) denotes the activation function. We shall
next describe the functions of the nodes in each of
the �ve layers of the FALCON. Assume that the di-
mension of the input space is n, and that of the output
space is m.
Layer 1: Each node in this layer is called an input

linguistic node and corresponds to one input linguistic
variable. Layer-1 nodes just transmit input signals to
the next layer directly. That is,

f(�xi; �xci)= (�xi; �x
c
i)= (�xi; 1− �xi)

and

a(f(·))=f(·): (4)

From the above equation, the link weight in layer 1
(w(1)i) is unity. Notice that due to the complement
coding process, for each input node i, there are two
output values, �xi and �xci =1− �xi.
Layer 2: Nodes in this layer are called input term

nodes and each represents a term of an input linguis-
tic variable, and acts as a one-dimensional member-
ship function. The following trapezoidal membership
function [24] is used:

f(z (2)ij)= [1− g(z (2)ij − v(2)ij ;
ij)− g(u(2)ij − z (2)ij ;
ij)]

70 I-F. Chung et al. / Fuzzy Sets and Systems 112 (2000) 65–84

and

a(f(·))=f(·); (5)

where u(2)ij and v(2)ij are, respectively, the left-
at and
right-
at points of the trapezoidal membership func-
tion of the jth input term node of the ith input lin-
guistic node (see Fig. 2(a)); z (2)ij is the input to the
jth input term node from the ith input linguistic node
(i.e., z (2)ij = �xi); and

g(s;
ij)=



1 if s
ij¿1;
s
ij if 06s
ij61;
0 if s
ij¡0:

(6)

The parameter
ij is the sensitivity parameter that reg-
ulates the fuzziness of the trapezoidal membership
function. A large
ij means a more crisp fuzzy set,
and a smaller
ij makes the fuzzy set less crisp. A set
of n input term nodes (one for each input linguistic
node) is connected to a rule node in layer 3 where its
outputs are combined. This de�nes an n-dimensional
membership function in the input space, with each di-
mension speci�ed by one input term node in the set.
Hence, each input linguistic node has the same num-
ber of term nodes. That is, each input linguistic vari-
able has the same number of terms in the FALCON.
This is also true for output linguistic nodes. A layer-
2 link connects an input linguistic node to one of its
term nodes. There are two weights on each layer-2
link. We denote the two weights on the link from input
node i (corresponding to the input linguistic variable
xi) to its jth term node as u(2)ij and v(2)ij (see Fig. 1).
These two weights de�ne the membership function in
Eq. (5). The two weights, u(2)ij and v(2)ij , correspond
respectively to the two inputs, �xi and �x ci from the in-
put linguistic node i. More precisely, �xi and �xci , the
two inputs to the input term node j, will be used
during the fuzzy-ART clustering process in the �rst
learning phase to decide u(2)ij and v

(2)
ij , respectively. In

FALCON’s other learning phases and normal operat-
ing, only �xi is used in the forward reasoning process
(i.e. z (2)ij = �xi in Eq. (5)).
Layer 3: Nodes in this layer are called rule nodes

and each represents one fuzzy logic rule. Each layer-3
node has n input term nodes fed into it, one for each
input linguistic node. Hence, there are as many rule
nodes in the FALCON as there are term nodes of an
input linguistic node (i.e. the number of rules equals

the number of terms of an input linguistic variable).
Note that each input linguistic variable has the same
number of terms in the FALCON, as mentioned above.
The links in layer 3 are used to perform precondition
matching of fuzzy logic rules. Hence the rule nodes
perform the product operation,

f(z (3)i)=
n∏
i=1

z (3)i and a(f(·))=f(·); (7)

where z (3)i is the ith input to a node in layer 3 and
the product is over the inputs of this node. The link
weight in layer 3 (w(3)i) is then unity. Note that the
product operation in the above equation is equiva-
lent to de�ning a multidimensional (n-dimensional)
membership function, which is the product of the
trapezoid functions in Eq. (5) over i. This forms a
multidimensional trapezoidal membership function
called the hyperbox membership function [24], since
it is de�ned on a hyperbox in the input space. The
corners of the hyperbox are decided by the layer-2
weights, u(2)ij and v(2)ij , for all i’s. More clearly, the

interval [u(2)ij ; v
(2)
ij] de�nes the edge of the hyper-

box in the ith dimension. Hence, the weight vector,
[(u(2)1j ; v

(2)
1j); : : : ; (u

(2)
ij ; v

(2)
ij); : : : ; (u

(2)
nj ; v

(2)
nj)], de�nes a

hyperbox in the input space. An illustration of a two-
dimensional hyperbox membership function is shown
in Fig. 2(b). The rule nodes output are connected to
sets of m output term nodes in layer 4, one for each
output linguistic variable. This set of output term
nodes de�nes an m-dimensional trapezoidal (hyper-
box) membership function in the output space that
speci�es the consequent of the rule node. We shall use
the GA to determine the connection types of the links
at layers 3 and 4. Note that di�erent rule nodes may
be connected to the same output hyperbox (i.e. they
may have the same consequent) as shown in Fig. 1.
Layer 4: The nodes in this layer are called output

term nodes; each has two operating modes: down–up
transmission and up–down transmission modes (see
Fig. 1). In down–up transmission mode, the links in
layer 4 perform the fuzzy OR operation on �red (ac-
tivated) rule nodes that have the same consequent,

f(z (4)i)=max(z
(4)
1 ; z

(4)
2 ; : : : ; z

(4)
p)

and

a(f(·))=f(·); (8)

I-F. Chung et al. / Fuzzy Sets and Systems 112 (2000) 65–84 71

Fig. 2. (a) One-dimensional trapezoidal membership function. (b) Two-dimensional trapezoidal membership function.

72 I-F. Chung et al. / Fuzzy Sets and Systems 112 (2000) 65–84

where z (4)i is the ith input to a node in layer 4 and
p is the number of inputs to this node from the rule
nodes in layer 3. Hence the link weight is w(4)i =1.
In up–down transmission mode, the nodes in this
layer and the up–down transmission links in layer 5
function exactly the same as those in layer 2; each
layer-4 node represents a term of an output linguistic
variable and acts as a one-dimensional membership
function. A set of m output term nodes, one for
each output linguistic node, de�nes an m-dimensional
hyperbox (membership function) in the output space,
and there are also two weights, u(5)ij and v(5)ij , on each
of the up–down transmission links in layer 5 (see
Fig. 1). The weights de�ne hyperboxes (and thus
the associated hyperbox membership functions) in
the output space. More clearly, the weight vector
[(u(5)1j ; v

(5)
1j); : : : ; (u

(5)
ij ; v

(5)
ij); : : : ; (u

(5)
mj ; v

(5)
mj)], de�nes a

hyperbox in the output space.
Layer 5: Each node in this layer is called an output

linguistic node and corresponds to one output linguis-
tic variable. There are two kinds of nodes in layer 5.
The �rst kind of node performs up–down transmis-
sion for training data (desired outputs) to feed into the
network, acting exactly like the input linguistic nodes.
For this kind of node, we have

f(�yi; �y
c
i) = (�yi ; �y

c
i) = (�yi; 1− �yi)

and

a(f(·))=f(·); (9)

where �yi is the ith element of the normalized desired
output vector. Note that complement coding is also
performed on the desired output vectors. Hence, as
mentioned above, there are two weights on each of
the up–down transmission links in layer 5 (the u(5)ij
and v(5)ij shown in Fig. 1). The weights de�ne hyper-
boxes and the associated hyperbox membership func-
tions in the output space. The second kind of node
performs down–up transmission for decision signal
output. These nodes and the layer-5 down–up trans-
mission links attached to them act as a defuzzi�er. If
u(5)ij and v

(5)
ij are the corners of the hyperbox of the jth

term of the ith output linguistic variable yi, then the
following functions can be used to simulate the center
of area defuzzi�cation method:

f(z (5)j) =
∑
j

w(5)ij z
(5)
j =

∑
j

m(5)ij z
(5)
j

and

a(f(·))= f(·)∑
j z
(5)
j

; (10)

where z (5)j is the input to the ith output linguistic

node from its jth term node, and m(5)ij =(u
(5)
ij +v

(5)
ij)=2

denotes the center value of the output membership
function of the jth term of the ith output linguistic
variable. The center of a fuzzy region is de�ned as
that point with the smallest absolute value among all
the other points in the region at which the member-
ship value is equal to one. Here the weight, w(5)ij , on
a down–up transmission link in layer 5 is de�ned by
w(5)ij ≡m(5)ij =(u(5)ij + v(5)ij)=2, where u(5)ij and v(5)ij are
the weights on the corresponding up–down transmis-
sion link in layer 5.
Based on the above structure, a learning algorithm,

FALCON-GA, will be proposed in the next section
to determine the proper corners of the hyperbox (uij’s
and vij’s) for each term node in layers 2 and 4. Also,
it will learn fuzzy logic rules and connection types of
the links at layers 3 and 4; that is, the precondition
links and consequent links of the rule nodes.

4. Three-phase hybrid learning algorithm

In this section, we shall present a three-phase hy-
brid learning scheme for the proposed FALCON-GA
model. Fig. 3 shows the
owchart of this learning
scheme. This learning scheme, called FALCON-GA,
combines fuzzy ART, GA and backpropagation algo-
rithm to partition the input=output spaces, �nd proper
fuzzy logic rules, and adjust membership functions
of the FALCON. In phase one (the fuzzy ART
learning phase), the fuzzy ART algorithm is used to
partition the input (output) space by clustering the
input (output) training data. In other words, this learn-
ing phase is to locate initial membership functions
in the input=output spaces. In phase two (the GA
learning phase), the GA is used to �nd proper fuzzy
rules by associating the input and output membership
functions properly. In phase three (the supervised
learning phase), the backpropagation algorithm is
used to adjust the membership functions to minimize
the network output error. The FALCON-GA uses
both the fuzzy ART and the GA to perform structure

I-F. Chung et al. / Fuzzy Sets and Systems 112 (2000) 65–84 73

Fig. 3. The
owchart of the learning algorithm for the
FALCON-GA model.

learning and the backpropagation algorithm to per-
form parameter learning. With the proposed learning
scheme, only the training data need to be provided
from the outside world. The users need not provide
the initial fuzzy partitions, membership functions and
fuzzy logic rules. Hence, there is no input=output term
nodes and no rule nodes in the initial structure of the
FALCON. They are all created during the learning
process.

4.1. The fuzzy ART learning phase

The problem for the fuzzy ART learning can
be stated as: given a set of input training data,
xi(t); i=1; : : : ; n and desired output value yi(t); i=
1; : : : ; m; t=1; 2; : : : ; we try to �nd proper fuzzy par-
titions and membership functions in the input=output
spaces. In this phase, the network works in a two-
sided manner, that is, the nodes in layer 4 are in
the up–down transmission mode so training input
and output data are fed into the network from both
sides.

The fuzzy ART learning consists of two learning
processes: input fuzzy clustering process and output
fuzzy clustering process. The two learning processes
are performed simultaneously on both sides of the net-
work, and are described next.

4.1.1. Input fuzzy clustering process
We use the fuzzy ART fast learning algorithm [3]

to �nd the input membership function parameters, u(2)ij
and v(2)ij . This is equivalent to �nding proper input
space fuzzy clustering or, more precisely, to form-
ing proper fuzzy hyperboxes in the input space. Ini-
tially, for each component coded input vector x′ (see
Eq. (1)), the values of choice functions, Tj, are com-
puted by

Tj(x′)=
|x′ ∧wj|
�+ |wj| ; j=1; 2; : : : ; N; (11)

where “∧” is the minimum operator performed for
the pairwise elements of two vectors, �¿0 is a con-
stant, N is the current number of rule nodes, and wj
is the complement weight vector, which is de�ned
by wj≡ [(u(2)1j ; 1−v(2)1j); : : : ; (u(2)ij ; 1−v(2)ij); : : : ; (u(2)nj ;
1 − v(2)nj)]. Note that [(u

(2)
1j ; v

(2)
1j); : : : ; (u

(2)
ij ; v

(2)
ij); : : : ;

(u(2)nj ; v
(2)
nj)] is the weight vector of layer-2 links asso-

ciated with rule node j. The choice function value in-
dicates the similarity between the input vector x′ and
the complement weight vector wj. We then need to
�nd the complement weight vector closest to x′. This
is equivalent to �nding a hyperbox (category) that x′

could belong to. The chosen category is indexed by
J , where

TJ =max{Tj: j=1; : : : ; N}: (12)

Resonance occurs when the match value of the chosen
category meets the vigilance criterion:

|x′ ∧wJ |
|x′| ¿�; (13)

where �∈ [0; 1] is a vigilance parameter. If the vig-
ilance criterion is not met, we say mismatch reset
occurs. In this case, the choice function value TJ is
set to 0 for the duration of the input presentation to
prevent the persistent selection of the same category
during a search (we call this action “disabling J”). A
new index J is then chosen using Eq. (12). The search

74 I-F. Chung et al. / Fuzzy Sets and Systems 112 (2000) 65–84

process continues until the chosen J satis�es Eq. (13).
This search process is indicated by the feedback arrow
marked with “vigilance test” in Fig. 3. If no such J is
found, then a new input hyperbox is created by adding
a set of n new input term nodes, one for each input
linguistic variable, and setting up links between the
newly added input term nodes and the input linguistic
nodes. The complement weight vectors on these new
layer-2 links are simply given as the current input vec-
tor, x′. These newly added input term nodes and links
de�ne a new hyperbox, and thus a new category, in
the input space.

4.1.2. Output fuzzy clustering process
The output fuzzy clustering process is exactly the

same as the input fuzzy clustering process except that
it is performed between layers 4 and 5 which are work-
ing in the up–down transmission mode. Of course, the
training pattern used now is the desired output vector
after complement coding, y′=(�y; �yc)= (�y; 1− �y).

4.2. The genetic algorithm learning phase

After the initial membership functions are located
by performing fuzzy clustering in the input=output
spaces in the �rst learning phase, the network then
enters the second learning phase to �nd proper fuzzy
logic rules by associating input clusters and output
clusters. The GA is used to �nd fuzzy rules by deter-
mining the links between layers 3 and 4 in this phase.
The following steps are employed to generate and
handle a set of strings (i.e. a population) in the second
learning phase.
Step 1. Initialization: The �rst step in GAs is cod-

ing, which maps a �nite-length string to the searched
parameters. We �rst generate an initial population
containing Npop strings, where Npop is the number of
strings in each population. Each string is an individual
point in the search space. The binary coding scheme
is used in the FALCON-GA model. This means that
each string is generated by randomly assigning a bi-
nary value, {0; 1}, to each possible fuzzy rule between
layers 3 and 4, value 1 indicating the existence of fuzzy
rule, whereas value 0 indicating a dummy rule. Each
string thus represents a set of possible fuzzy rules.
From the whole rule space, a population is chosen.
Step 2. Fitness function: In this step, each string

is decoded by an evaluator into an objective function

value. This function value, which should be maxi-
mized by the GA, is then converted to a �tness value,
FIT (i), where FIT (·) is a �tness function. A �tness
value is assigned to each individual in the popula-
tion, where high values mean a good �t. The �tness
function can be any non-linear, non-di�erentiable, or
discontinuous positive function, because the GA only
needs a �tness value assigned to each string. In the
FALCON-GA, the �tness function is de�ned by

FIT (i)=
1

RMS ERROR(i)
; (14)

where RMS ERROR(i) represents the root-mean-
square error between the network outputs and the
desired outputs for the ith string (the ith set of fuzzy
rules). The goal of the GA learning phase is to maxi-
mize the above �tness function.
Step 3.Reproduction: Reproduction is a process in

which individual strings are copied according to their
�tness values, i.e. based on the principle of survival
of the �ttest. This operator is an arti�cial version of
natural selection. Through reproduction, strings with
high �tnesses receive multiple copies in the next gen-
eration while strings with low �tnesses receive fewer
copies or even none at all.
Step 4. Crossover: Reproduction directs the search

towards the best existing individuals but does not
create any new individuals. In nature, an o�spring is
rarely an exact clone of a parent. It usually has two
parents and inherits genes from both. The main opera-
tor in GAs to work on the parents is crossover, which
happens for the selected pair with a crossover prob-
ability. In the FALCON-GA, we use the two-point
crossover operator. At �rst, two strings from the re-
produced population are mated at random, and two
crossover points (two bits position) are randomly se-
lected. Then the strings are crossed and separated at
these points. For example, the strings before and after
the crossover operation could be

101|011|10 101|000|10
→

111|000|11 111|011|11:
This process makes two new strings, each of which
takes after both parents.
Step 5. Mutation: Even though reproduction and

crossover come up with many new strings, they do not

I-F. Chung et al. / Fuzzy Sets and Systems 112 (2000) 65–84 75

introduce any new information into the population at
the bit level. Mutation is the random alteration of bits
in the string which assists in keeping diversity in the
population. As a source of new bits, mutation is intro-
duced and is applied with a low probability pm. The
mutation process is held to escape the local minima
in the search space.
Step 6. If the stopping condition is not satis�ed

(i.e. the current smallest root-mean-square error is not
small enough), return to Step 2. Otherwise, the GA is
terminated and proper fuzzy logic rules are obtained
by encoding the best string into a set of fuzzy rules.

4.3. The supervised learning phase

After the initial membership functions and fuzzy
logic rules have been found in the �rst two learning
phases, the whole network structure is established, and
the network then enters the third learning phase to
adjust the parameters of the membership functions op-
timally. In the parameter learning, the goal is to min-
imize the error function

E= 1
2 [y(t)− ŷ(t)]2; (15)

where y(t) is the desired output and ŷ(t) is the cur-
rent output. For a training data pair, starting at the
input nodes, a forward pass is used to compute the
activity levels of all the nodes in the network. Then
starting at the output nodes, a backward pass is used
to compute @E=@y for all the hidden nodes. It is noted
that in the parameter learning we use only normalized
training vectors, �x and �y, rather than the complement
coded ones x′ and y′. Assuming thatw is the adjustable
parameter in a node, the general learning rule used is

w(t + 1)=w(t) + �
(
−@E
@w

)
; (16)

@E
@w
=
@E
@f
@f
@w
=
@E
@a
@a
@f
@f
@w
; (17)

where � is the learning rate. To show the learning
rules, we derive the rules layer by layer using the
hyperbox membership functions with corners uij’s
and vij’s as the adjustable parameters for these com-
putations. For clarity, we consider the single-output
case. The learning rules can be easily extended to the
multioutput case.

Layer 5: Using Eqs. (10), (16) and (17), the update
rule of the corners of hyperbox membership function
vi is derived as

@E
@vi
=
@E
@a
@a
@vi
=−[y(t)− ŷ(t)]

zi
2
∑
zi
: (18)

Hence, the corner parameter is updated by

vi(t + 1)= vi(t) + �[y(t)− ŷ(t)] zi
2
∑
zi
: (19)

Similarly, using Eqs. (10), (16) and (17), the update
rule of the other corner parameter ui is derived as

@E
@ui

=
@E
@a
@a
@ui

=− [y(t)− ŷ(t)] zi
2
∑
zi
: (20)

Hence, the other corner parameter is updated by

ui(t + 1)= ui(t) + �[y(t)− ŷ(t)] zi
2
∑
zi
: (21)

The error to be propagated to the preceding layer is

�(5) =− @E
@a(5)

=y(t)− ŷ(t): (22)

Layer 4: In the down–up transmission mode, there
is no parameter to be adjusted in this layer. Only the
error signal (�(4)i) needs to be computed and propa-
gated. According to Eq. (10), the error signal �(4)i is
derived as in the following:

�(4)i =− @E
@a(4)

=− @E
@a(5)

@a(5)

@a(4)
; (23)

where

@E
@a(4)

=− �(5)i ; (24)

@a(5)

@a(4)
=
mi

∑
zi −

∑
mizi

(
∑
zi)2

: (25)

Hence the error signal is

�(4)i = �(5)
mi

∑
zi −

∑
mizi

(
∑
zi)2

: (26)

In the multioutput case, the computations in layers 5
and 4 are exactly the same as the above and proceed
independently for each output linguistic variable.

76 I-F. Chung et al. / Fuzzy Sets and Systems 112 (2000) 65–84

Layer 3: As in layer 4, only the error signals need
to be computed in this layer. According to Eq. (8),
this error signal can be derived as

�(3)i =− @E
@a(3)

=− @E
@a(4)

@a(4)

@f(4)
@f(4)

@a(3)
; (27)

where

@E
@a(4)

=− �(4)i ; (28)

@a(4)

@f(4)
= 1; (29)

@f(4)

@a(3)
=
@f(4)

@z (4)i
=
z (4)i
zmax

; (30)

where zmax =max(inputs of output terms node j). The
term, z (4)i =zmax, is to normalize the error to be prop-
agated for the �red rules with the same consequent.
Hence the error signal is

�(3)i =
z (4)i
zmax

�(4)i : (31)

If there are multiple outputs, then the error signal be-
comes �(3)i =

∑
k [z

(4)
k =zmax]�

(4)
k , where the summa-

tion is performed over the consequents of a rule node;
that is, the error of a rule node is the summation of
the errors of its consequents.
Layer 2: Using Eqs. (5), (16) and (17), the update

rule of vij is derived as in the following:

− @E
@vij

=− @E
@a(3)

@a(3)

@a(2)
@a(2)

@vij
; (32)

where

@a(3)

@a(2)
=

∏
k 6=i
z (3)k ; (33)

@a(2)

@vij
=

{

ij if 06(xi − vij)
ij61;
0 otherwise:

(34)

So the update rule of vij is

vij(t + 1)= vij(t) + �
@a(2)

@vij
�(3)i

∏
k 6=i
z (3)k : (35)

Similarly, using Eqs. (5), (16) and (17), the update
rule of uij is derived as

− @E
@uij

=− @E
@a(3)

@a(3)

@a(2)
@a(2)

@uij
; (36)

where

@a(3)

@a(2)
=

∏
k 6=i
z (3)k ; (37)

@a(2)

@uij
=

{
−
ij if 06(uij − xi)
ij61;
0 otherwise:

(38)

So the update rule of uij is

uij(t + 1)= uij(t) + �
@a(2)

@uij
�(3)i

∏
k 6=i
z (3)k : (39)

Finally, using Eqs. (5), (16) and (17), the update rule
of sensitivity parameter
ij is derived as

− @E
@
ij

=− @E
@a(3)

@a(3)

@a(2)
@a(2)

@
ij
; (40)

where

@a(3)

@a(2)
=

∏
k 6=i
z (3)k ; (41)

@a(2)

@
ij
=




vij − uij if 06(xi − vij)
ij61 and
if 06(uij − xi)
ij61;

vij − xi else if 06(xi − vij)
ij61;
xi − uij else if 06(uij − xi)
ij61;
0 otherwise:

(42)

Hence, the update rule of sensitivity parameter
ij
becomes

ij(t + 1)=
ij(t) + �

@a(2)

@
ij
�(3)i

∏
k 6=i
z (3)k ; (43)

where �
 is the learning rate of sensitivity param-
eter
ij .
It is noted that the performance of the FALCON

trained by the learning algorithm proposed in this
section highly depends on the given training data.
More speci�cally, the completeness of learned fuzzy
rules relies on the completeness of training data. The
proposed learning algorithm can generate the fuzzy

I-F. Chung et al. / Fuzzy Sets and Systems 112 (2000) 65–84 77

Fig. 4. Diagram of the simulated truck and loading zone.

rules that concern the input regions around training
data. Hence, if a new input pattern falls for apart in
these regions, the FALCON will produce a near zero-
valued output, since all the learned fuzzy rules are �red
weakly in this case. However, if we keep the FALCON
learning, the dynamical cluster-growing ability of the
fuzzy ART algorithm will create a new cluster cover-
ing this new given pattern, which in turn forms a new
fuzzy rule in the FALCON. As a result, the on-line in-
cremental learning capability of FALCON-GA keeps
the rule completeness in the FALCON.

5. Illustrative examples

In this section, the proposed FALCON-GA model
is applied to two simulated examples to show its per-
formance and applicability. These two examples are
the truck backing-upper problem and the chaotic time-
series prediction.

Example 1 (Control of the truck backer-upper).
Backing a truck to a loading dock is a di�cult exer-
cise. It is a non-linear control problem for which no
traditional control design methods exist. Nguyen and
Widrow [21] developed a neural network controller
which only used numerical data for the truck backer-
upper problem. Kong and Kosko [13] proposed a
fuzzy controller which only used linguistic rules for
the same problem. In this example, we apply the pro-
posed FALCON-GA model as a controller to back up
a simulated truck to a loading dock in a planar park-
ing lot by learning the driving skill of experienced
drivers. This FALCON-GA model enables the truck
to reach the desired position successfully.

The simulated truck and loading zone are shown
in Fig. 4. The truck position is exactly determined by
three state variables�; x and y, where� is the angle of
the truck with the horizontal, and the coordinate pair
(x; y) speci�es the position of the rear center of the
truck in the plane. The steering angle, �, of the truck is
the controlled variable. The positive values of � rep-
resent clockwise rotations of the steering wheel, and
the negative values represent counterclockwise rota-
tions. The truck is placed at some initial position and
is backed up while being steered by the controller. The
objective of this control problem is to use backward
movements of the truck only to make the truck arrive
at the loading dock at a right angle (�desired = 90◦) and
to have the position of the truck with the desired load-
ing dock (xdesired ; ydesired). The truck moves backward
by a �xed distance (d) of the movement of the steer-
ing wheel at every step. The loading region is limited
to the plane [0; 100]× [0; 100].
The input and output variables of the FALCON-GA

controller must be speci�ed. The controller has two
inputs, truck angle � and the x-position x. Assuming
enough clearance between the truck and the loading
dock, the y coordinate is not considered as an input
variable. The output of the controller is the steering
angle �. The ranges of the variables x; � and � are as
follows:

06 x6100; (44)

− 90◦6�6270◦; (45)

− 30◦6�630◦: (46)

The equations of backward motion of the truck are
given by

x(k + 1) = x(k) + d cos �(k) cos�(k);

y(k + 1) = y(k) + d cos �(k) sin�(k); (47)

�(k + 1) = tan−1
(
l sin�(k) + d cos�(k) sin �(k)
l cos�(k)− d sin�(k) sin �(k)

)
;

where l is the length of the truck. Eq. (47) is used to
obtain the next state when the present state is given.
For the purpose of training the FALCON-GA con-

troller, learning takes place during several di�erent
tries, each starting from an initial state and terminating
when the desired state is reached. In our simulation, six

78 I-F. Chung et al. / Fuzzy Sets and Systems 112 (2000) 65–84

Fig. 5. The six sets of training trajectories of the truck.

Fig. 6. Hyperboxes of the learned input membership functions in the truck backing-upper control problem.

Fig. 7. Learned output membership functions in the truck backing-upper control problem.

I-F. Chung et al. / Fuzzy Sets and Systems 112 (2000) 65–84 79

Fig. 8. Learned fuzzy rules in the truck backing-upper control
problem.

di�erent initial positions of the truck are chosen. The
six training paths are shown in Fig. 5. The truck moves
by a small �xed distance d=1:6 at every step and the
length of the truck is set to be l=1. In the �rst learn-
ing phase, the initial sensitivity parameter
ij =4 and
vigilance parameter �input = 0:9; �output = 0:8 are cho-
sen for the fuzzy ART algorithm. During this learning
phase, all the six sets of learning trajectories are pre-
sented for partitioning the input=output spaces prop-
erly. After the input=output hyperboxes as well as the
initial membership functions are located and deter-
mined, the network then enters the second learning
phase to �nd proper fuzzy logic rules by associating
input clusters and output clusters. In this phase, the
GA is used to determine the links between layers 3
and 4. The population size Npop = 100, mutation prob-
ability pm =0:1, and the two-point crossover opera-
tor are used. The mean number of generations in this
GA learning phase is about 100 generations. After the
fuzzy logic rules have been found, the whole network
structure is established. The FALCON-GA controller
then enters the third learning phase to adjust the pa-
rameters of the membership functions. The learning
rates �=0:01 and �
=0:5 are chosen. The training
process is continued for 600 epochs. In each epoch, all
the six sets of training trajectories are presented once
to the FALCON-GA controller in a random order.
After the structure=parameter learning, there are

seven fuzzy logic rules generated in our simulation.
The root-mean-square error of the controller with
seven fuzzy rules is about 1:1◦. In Fig. 6, we show
the hyperboxes for the learned membership func-
tions of two input variables. Each input membership
function is two-dimensional and has a similar shape
as that shown in Fig. 2(b). For convenience, in
Fig. 6 we only show the “bases” of these membership
functions; i.e. the parts whose membership values
are 1. These membership functions overlapped one

another in fact. The overlapping degree of the mem-
bership functions depends on the learned parameters

ij, which are not shown in the �gure. Fig. 7 shows
the learned membership functions of the output vari-
ables. Fig. 8 shows the learned seven fuzzy rules,
which represent the connections from input member-
ship functions to output membership functions. We
compare the performance of the FALCON-GA model
with the original FALCON-ART model proposed in
Ref. [18]. The FALCON-ART is a pure neuro-fuzzy
model including only two learning phases, the fuzzy
ART learning phase for structure learning and the
backpropagation learning phase for parameter learn-
ing. After proper learning parameters are chosen,
there are nineteen fuzzy logic rules created for the
FALCON-ART controller. Fig. 9 shows the learning
curves for the FALCON-GA and the FALCON-ART
controllers, respectively. It is observed that the per-
formance of the FALCON-GA controller is better
than that of the FALCON-ART controller. After the
training process is terminated, the learned FALCON-
GA is used to control the truck starting from di�erent
initial positions. Fig. 10(a)–(c) show the trajecto-
ries of the moving truck controlled by the learned
FALCON-GA controller starting from the initial posi-
tions (x; y; �)= (a)(10; 20;−30◦); (b)(30; 20; 250◦),
and (c)(80; 20;−30◦). These trajectories show that
the learned FALCON-GA controller can make the
truck arrive at the loading dock at a right angle.
This shows the good generalization capability and
robustness of the FALCON-GA model.

Example 2 (Prediction of the chaotic time-series).
Let p(k); k =1; 2; : : : ; be a time series. The prob-
lem of time-series prediction can be formulated
as: given p(k − m + 1); p(k − m + 2); : : : ; p(k),
determine p(k + l), where m and l are �xed
positive integer; i.e. determine a mapping from
[p(k−m+1); p(k−m+2); : : : ; p(k)]∈Rm to [p(k +
l)]∈R. The FALCON-GA model is used to predict
the Mackey–Glass chaotic time-series. The Mackey–
Glass chaotic time-series is generated from the fol-
lowing delay di�erential equation:

dx(t)
dt

=
0:2x(t − �)
1 + x10(t − �) − 0:1x(t); (48)

where �¿17. In our simulation, we choose the se-
ries with �=30. Fig. 11 shows 1000 points of this

80 I-F. Chung et al. / Fuzzy Sets and Systems 112 (2000) 65–84

Fig. 9. Learning curves of the FALCON-GA controller and the FALCON-ART controller.

Fig. 10. Truck moving trajectories starting at three di�erent initial positions under the control of the FALCON-GA model after learning
six sets of training trajectories.

I-F. Chung et al. / Fuzzy Sets and Systems 112 (2000) 65–84 81

Fig. 10. Continued

82 I-F. Chung et al. / Fuzzy Sets and Systems 112 (2000) 65–84

Fig. 11. The Mackey–Glass chaotic time series.

Fig. 12. The desired values (denoted by the solid line) and the predicted values (denoted by the dotted line) in Example 2. The di�erence
between the desired and actual values is also shown in the �gure, which is denoted as the solid line below the two magnitude curves.

chaotic series used to test the FALCON-GA model.
We choose m=9 and l=1 in our simulation; i.e.
nine point values in the series are used to predict the
value of the next time point. The 700 points of the
series from x(1) to x(700) are used as training data,
and the �nal 300 points from x(701) to x(1000) are
used as test data. In the �rst learning phase, the initial
sensitivity parameter
ij =1 and vigilance parameter
�input = 0:7; �output = 0:6 are chosen for the fuzzy ART
algorithm. The 700 points of the series from x(1) to
x(700) are presented for partitioning the input=output
spaces properly. After the input=output hyperboxes as
well as the initial membership functions are located
and determined, the network then enters the second
learning phase to �nd proper fuzzy logic rules by as-
sociating input and output clusters. In this phase, the
GA is used to determine the links between layers 3
and 4. The population size Npop = 100; mutation prob-
ability pm =0:3, and the two-point crossover opera-
tor are used. The mean number of generations in this

GA learning phase is about 20 generations. After the
fuzzy logic rules have been found, the whole network
structure is established. The FALCON-GA controller
then enters the third learning phase to adjust the pa-
rameters of the membership functions. The learning
rates �=0:005 and �
=0:5 are chosen. The training
process is continued for 5000 epochs. Now the train-
ing process is terminated. There are 11 fuzzy logic
rules generated in our FALCON-GA model. Fig. 12
shows the prediction of the chaotic time series from
x(701) to x(1000) when 700 training data (from x(1)
to x(700)) are used. In this �gure, the predicted values
of the FALCON-GA model are represented as a dot-
ted curve and the actual values as a solid curve. The
di�erence between the actual and predicted values is
also shown in Fig. 12, which is presented as a solid
curve below the two magnitude curves.
To test the generalization ability and to understand

the performance of the FALCON-GA, the FALCON-
ART and other approaches discussed in [18] are com-

I-F. Chung et al. / Fuzzy Sets and Systems 112 (2000) 65–84 83

pared. These approaches include Wang and Mendel’s
approach [30] based on direct matching; the data dis-
tribution method which generates fuzzy rules accord-
ing to the training data distribution in the input–output
product space; the generation of Fuzzy Associative
Memory (FAM) rules based on Adaptive Vector
Quantization (AVQ) algorithms which contain Unsu-
pervised Competitive Learning (UCL) and Di�eren-
tial Competitive Learning (DCL) proposed by Kosko
[14]; and the combination of the UCL(DCL) – AVQ
and backpropagation algorithm. It is noted that in [18]
the training data are the 200 points of the series from
x(501) to x(700), and the test data are the �nal 300
points from x(701) to x(1000). The generated rule
numbers as well as root-mean-squares (RMS) errors
of these approaches are listed in Table 1. As to the
detailed construction schemes and actual predicted
outputs of these models, the reader is referred to [18].
From Table 1, we �nd that the FALCON-GA model
not only needs much fewer rules and membership
functions but also achieves much smaller RMS error.

6. Conclusion

In this paper, we introduced a general connec-
tionist model of a fuzzy logic control system, called
FALCON. A structure=parameter learning algorithm,
called FALCON-GA, was proposed for constructing
the FALCON automatically. The proposed learning
algorithm is able to partition the input and output
spaces, and then �nd proper fuzzy rules and mem-
bership functions dynamically. Simulations showed
the good generalization capability of the proposed
FALCON-GA model. We also demonstrated the ad-
vantage of the integrated GA and neuro-fuzzy system
over the pure neuro-fuzzy system on the local minima
problem.

References

[1] D. Adler, Genetic algorithms and simulated annealing: a
marriage proposal, Proc. IEEE Int. Conf. on Neural Networks,
vol. II, San Franciso, CA, 1993, pp. 1104–1109.

[2] H.R. Berenji, P. Khedkar, Learning and tuning fuzzy logic
controllers through reinforcements, IEEE Trans. Neural
Networks 3(5) (1992) 724–740.

84 I-F. Chung et al. / Fuzzy Sets and Systems 112 (2000) 65–84

[3] G.A. Carpenter, S. Grossberg, D.B. Rosen, Fuzzy ART:
fast stable learning and categorization of analog patterns by
an adaptive resonance system, Neural Networks 4 (1991)
759–771.

[4] L. Davis, Handbook of Genetic Algorithms, Van Nostrand
Reinhold, New York, 1991.

[5] D.E. Goldberg, Genetic Algorithms in Search, Optimization
and Machine Learning, Addison-Wesley, Reading, MA, 1989.

[6] J.H. Holland, Outline for a Logical Theory of Adaptive
Systems, J. Assoc. Comput. Mach. 3 (1962) 297–314.

[7] J.H. Holland, Adaptation in Natural and Arti�cial System,
University of Michigan, Ann Arbor, MI, 1975.

[8] A. Homaifar, E. McCormick, Simultaneous design of
membership functions and rule sets for fuzzy controllers using
genetic algorithms, IEEE Trans. Fuzzy Systems 3(2) (1995)
129–139.

[9] H. Ishibuchi, K. Nozaki, N. Yamamoto, H. Tanaka,
Selecting fuzzy if–then rules for classi�cation problems using
genetic algorithms, IEEE Trans. Fuzzy Systems 3(3) (1995)
260–270.

[10] J.S. Jang, Self-learning fuzzy controllers based on temporal
back propagation, IEEE Trans. Neural Networks 3(5) (1992)
723–741.

[11] C. Karr, Genetic algorithms for fuzzy controllers, AI Expert
(February, 1991) 26–33.

[12] C. Karr, Applying genetics to fuzzy logic, AI Expert (March,
1991) 39–43.

[13] S.G. Kong, B. Kosko, Comparison of fuzzy and neural truck
backer upper control systems, Int. Joint Conf. on Neural
Network, vol. 3, 1990, pp. 349–358.

[14] B. Kosko, Neural Networks and Fuzzy Systems, Prentice-
Hall, Englewood Cli�s, NJ, 1992.

[15] E.L. Lawler, Combinatorial Optimization: Networks and
Matroids, Holt, Rinehart and Winston, New York, 1976.

[16] M.A. Lee, H. Takagi, Integrating design stages of fuzzy
systems using genetic algorithms, Proc. IEEE Int. Conf. on
Fuzzy Systems, 1993, pp. 612–617.

[17] C.T. Lin, C.S.G. Lee, Neural-network-based fuzzy logic
control and decision system, IEEE Trans. Comput. C-40(12)
(1991) 1320–1336.

[18] C.J. Lin, C.T. Lin, An ART-based fuzzy adaptive learning
control network, IEEE Trans. Fuzzy Systems, to appear.

[19] D.G. Luenberger, Linear and Nonlinear Programming,
Addison-Wesley, Reading, MA, 1976.

[20] Z. Michalewicz, J.B. Krawezyk, A modi�ed genetic algorithm
for optimal control problems, Comput. Math. Appl. 23 (1992)
83–94.

[21] D. Nguyen, B. Widrow, The truck backer-upper: an example
of self-learning in neural network, IEEE Control System Mag.
10(3) (1990) 18–23.

[22] H. Nomura, I. Hayashi, N. Wakami, A self-tuning method of
fuzzy reasoning by genetic algorithm, Proc. IEEE Int. Conf.
on Fuzzy Systems, 1992, pp. 236–245.

[23] V. Petridis, S. Kazarlis, A. Papaikonomou, A. Filelis,
A hybrid genetic algorithm for training neural networks, in:
I. Aleksander, J. Taylor (Eds.), Arti�cial Neural Networks 2,
North-Holland, Amsterdam, 1992, pp. 953–956.

[24] P.K. Simpson, Fuzzy min–max neural networks – Part 2:
Clustering, IEEE Trans. Fuzzy Systems 1(1) (1993) 32–45.

[25] M. Sugeno, T. Yasukawa, A fuzzy-logic-based approach to
qualitative modeling, IEEE Trans. Fuzzy Systems 1(1) (1993)
7–31.

[26] T. Tagaki, I. Hayashi, NN-driven fuzzy reasoning, Int. J.
Approx. Reasoning 5 (1991) 191–212.

[27] T. Takagi, M. Sugeno, Fuzzy identi�cation of systems and its
applications to modeling and control, IEEE Trans. System,
Man, Cybernet. 15(1) (1985) 116–132.

[28] P. Thrift, Fuzzy logic synthesis with genetic algorithms,
Proc. Int. Conf. Genetic Algorithms, San Diego, July 1991,
pp. 509–513.

[29] L. Tsinas, B. Dachwald, A combined neural and genetic
learning algorithm, Proc. IEEE Int. Conf. on Neural Networks,
vol. I, 1994, pp. 770–774.

[30] L.X. Wang, J.M. Mendel, Generating fuzzy rules by learning
from examples, IEEE Trans. on System, Man, Cybernet. 22(6)
(1992) 1414–1427.

[31] P.J. Werbos, Neural control and fuzzy logic: connections and
designs, Int. J. Approx. Reasoning 6 (1992) 185–219.

[32] R.R. Yager, Implementing fuzzy logic controller using a
neural network, Fuzzy Sets and Systems 48 (1992) 53–64.

