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Abstract 

This paper addresses the structure and the associated on-line learning algorithms of a feedforward multilayered 
connectionist network for realizing the basic elements and functions of a traditional fuzzy logic controller. The 
proposed Fuzzy Adaptive Learning COntrol Network (FALCON) can be contrasted with the traditional fuzzy logic 
control systems in their network structure and learning ability. The connectionist structure of the proposed FALCON 
can be constructed from training examples by neural learning techniques to find proper fuzzy partitions, membership 
functions, and fuzzy logic rules. Two complementary on-line structure/parameter learning algorithms, FALCON-FSM 
and FALCON-ART, are proposed for constructing the FALCON dynamically. The FALCON-FSM combines the 
backpropagation learning scheme for parameter learning and a fuzzy similarity measure for structure learning. The 
FALCON-FSM can find proper fuzzy logic rules, membership functions, and the size of output partitions simulta- 
neously. In the FALCON-FSM algorithm, the input and output spaces are partitioned into "grids". The grid-typed space 
partitioning certainly makes both the fuzzy logic controller software emulation and fuzzy chip implementation 
convenient. However, as the number of input/output variables increases, the number of partitioned grids will grow 
combinatorially. To avoid the problem of combinatorial growth of partitioned grids in some complex systems, the 
FALCON-ART algorithm is developed, which can partition the input and output spaces in a more flexible way based on 
the distribution of the training data. The FALCON-ART combines the backpropagation learning scheme for parameter 
learning and a fuzzy ART algorithm for structure learning. The FALCON-ART can on-line partition the input and 
output spaces, tune membership functions and find proper fuzzy logic rules dynamically. Computer simulations were 
conducted to illustrate the performance and applicability of both FALCON-FSM and FALCON-ART learning 
algorithms. 
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1. Introduction 

Bringing the learning abilities of neural networks to automate and realize the design of fuzzy logic control 
systems has recently become a very active research area I-1-3, 6, 8, 9, 11, 12, 14-17, 18, 19, 21,25, 27-31]. This 
integration brings the low-level learning and the computational power of neural networks into fuzzy logic 
systems, and provides the high-level, human-like thinking and reasoning of fuzzy logic systems into neural 
networks. Such synergism of integrating neural networks and fuzzy logic systems into a functional system 
provides a new direction toward the realization of intelligent systems for various applications. 

In general, there are three methods that neural networks can be used to facilitate and automate the 
realization of fuzzy logic controllers [1]. First, one can use a neural network with its neural learning ability as 
a separate system from the fuzzy system for automatic determination and adjustment of fuzzy rules and/or 
membership functions. In this case, the fuzzy system is not really affected by the neural architecture. Takagi 
and Hayashi 1,25] designated this method as NN-driven fuzzy reasoning. In the second method, the 
adjustment of the membership functions is simply a gradient method. This gradient method plays the similar 
role as the one in neural networks and also in any other kind of parametric systems seeking to optimize their 
parameters. An example is the gradient-based algorithm developed by Nomura et al. [19] for the optimiza- 
tion of the parameters of Sugeno's-type fuzzy systems. The third method is the most popular one. In this 
method, the fuzzy system can be realized in an architecture isomorphic to neural networks, i.e. a multilayered 
network, where each node performs a function such as to make the entire network perfectly equivalent to the 
fuzzy system. In this approach, the gradient-descent method that is akin to the backpropagation algorithm is 
usually used to train the network. Examples of this method include Lin and Lee's neural-network-based 
fuzzy logic control system (NN-FLCS) [14-17], Jang's ANFIS (adaptive-network-based fuzzy inference 
system) [8, 21], Berenji and Khedkar's GARIC (generalized approximate reasoning-based intelligent control) 
1-12,3] for reinforcement learning problems, Yager's implementation of fuzzy controllers using a neural- 
network framework [31], Nauck and Kruse's fuzzy backpropagation approach [18], Wang and Mendel's 
orthogonal least-squares learning 1,29], and many others [-6, 9, 28]. Most of these models belong to off-line 
training systems; i.e., they require a set of training data available at hand to set up the structure first and then 
to tune the parameters appropriately. Some of them even require experts to determine the structure in 
advance. Moreover, they all require the input and output spaces to be partitioned into (fuzzy) grids 
empirically. 

In this paper, we are extending our previous work on neural-network-based fuzzy logic control systems 
1,14] to on-line supervised learning problems. The proposed Fuzzy Adaptive Learning COntrol Network 
(FALCON) can be constructed automatically by learning from training examples. It can be contrasted with 
the traditional fuzzy logic control systems in their network structure and learning ability. The "standard" 
FALCON is a five-layer connectionist structure as shown in Fig. 1. Nodes in layer one are input nodes 
(linguistic nodes) which represent input linguistic variables. Layer five is the output layer. We have two 
linguistic nodes for each output variable. One is for training data (desired output) to feed into this net, and the 
other is for decision signal (actual output) to be pumped out of the net. Nodes in layers two and four are term 
nodes which act as membership functions to represent the terms of the respective linguistic variable. Each 
node in layer three is a rule node which represents one fuzzy logic rule. Thus, all layer-three nodes form 
a fuzzy rule base; layer-three links define the preconditions of the rule nodes, and layer-four links define the 
consequences of the rule nodes. The links at layers two and five are fully connected between linguistic nodes 
and their corresponding term nodes. The mathematical description of this network will be presented formally 
in the following sections. This connectionist model maintains the spirit of human-like thinking and reasoning 
in its network structure. In [ 14], we have developed a two-phase hybrid learning algorithm which can off-line 
construct the FALCON automatically through training data. The hybrid learning algorithm combines 
unsupervised learning and supervised gradient-descent learning procedures to build the rule nodes and to 
train the membership functions. 
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Fig. 1. Proposed fuzzy adaptive learning control network (FALCON). 

The hybrid learning algorithm in [14] for the FALCON performs well if sets of training data are available 
at hand; however, its off-line learning nature makes its application to real-time environment inconvenient. 
Furthermore, it does not have the ability to increase nodes or change network structure dynamically. In this 
paper, two complementary on-line structure and parameter learning algorithms are proposed for the 
FALCON. The first on-line learning algorithm is based on the development of a fuzzy similarity measure 
(FSM) [15, 16] which is a tool to determine the degree to which two fuzzy sets are equal (or how much they 
are similar) in contradiction to the traditional "crisp" definition of "equality" in the fuzzy logic theory. This 
algorithm, called FALCON-FSM, combines the backpropagation learning scheme in [14] for parameter 
learning and the FSM for structure learning. Based on the FSM, two most similar output membership 
functions (output term nodes) in the FALCON can be found. Then this FSM will determine whether a new 
output membership function (output term node) should be added or not, and the rule-node connections are 
then changed properly. The backpropagation in the original hybrid learning algorithm in [14] is used here 
again to decide the node output errors in each layer. These errors are used both for the fuzzy similarity 
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Fig. 2. (a) Grid-type partitioning. (b) Proposed partitioning method. 

measure in structure learning and the membership functions adjustment in parameter learning. The 
proposed FALCON-FSM can find proper fuzzy logic rules, membership functions, and the size of output 
fuzzy partitions (i.e., the number of output term nodes) simultaneously. 

In the FALCON-FSM algorithm, the input and output spaces are partitioned into "grids". Each grid 
defines a fuzzy region, and the overlapping region between the grids provides a smooth and continuous 
membership output surface. For example, consider a fuzzy logic controller with two input variables. If each 
of them is partitioned into three fuzzy terms (e.g., "small", "medium", and "large"), then the corresponding 
input space partition is as shown in Fig. 2(a). Although during the learning process, the position and shape of 
membership functions will be changed, they remain grid-typed partitions inherently. The grid-typed space 
partitioning of input and output spaces has been widely used in many existing fuzzy systems. It certainly 
makes both the fuzzy logic controller software emulation and fuzzy chip implementation convenient. 
However, as the number of input and output variables increases, the number of the partitioned grids will 
grow combinatorially. This creates more difficulty in learning because finer space partitioning needs more 
training samples (i.e., samples from every fuzzy region); otherwise insufficient learning will occur. Further- 
more, the required size of memory and hardware may pose a problem to the designer. 

The problem of space partitioning from numerical training data is basically a clustering problem. To avoid 
the problem of combinatorial growth of partitioned grids in complex systems, a flexible and irregular space 
partitioning method, based on Carpenter and Grossberg's adaptive resonance theory (ART) I-4, 5], is 
proposed. This flexible and irregular space partitioning method, called FALCON-ART, is an on-line 
learning algorithm which applies the fuzzy adaptive resonance theory (fuzzy ART) to perform fuzzy 
clustering in the input and output spaces and determine proper fuzzy logic rules dynamically by associating 
input clusters with output clusters. The backpropagation learning scheme in [14] is then used again for 
tuning the input and output membership functions. Hence, the FALCON-ART combines the backpropaga- 
tion algorithm for parameter learning and the fuzzy ART for structure learning. The FALCON-ART can 
thus on-line partition the input and output spaces, tune membership functions and find proper fuzzy logic 
rules dynamically. Fig. 2(b) shows the proposed on-line partitioning method as compared with a fixed-grid 
space partitioning method. 

This paper is organized as follows: Section 2 describes the fuzzy-similarity-measure-based on-line struc- 
ture/parameter learning algorithm of the FALCON-FSM model. The model car example as suggested by 
Sugeno is simulated to demonstrate the capabilities and applicability of the FALCON-FSM algorithm. The 
fuzzy-ART-based on-line structure/parameter learning algorithm (FALCON-ART) which combines fuzzy 
ART with backpropagation is presented in Section 3. The FALCON-ART was used to predict the 
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Mackey-Glass chaotic time series to demonstrate its on-line learning capability. Conclusions are then 
summarized in the last section. 

2. A FSM-based fuzzy adaptive learning control network 

We shall first describe the five-layer connectionist structure of FALCON (see Fig. 1) and then its 
associated FSM-based on-line structure/parameter learning algorithm. The proposed FALCON-FSM 
algorithm blends the fuzzy similarity measure with a supervised gradient-descent learning scheme to perform 
on-line structure and parameter learning simultaneously. The fuzzy similarity measure is a tool to determine 
the degree to which two fuzzy sets are equal. Using this measure, a new output membership function may be 
added, and the rule-node connections (the consequence links of rule nodes) can be changed properly. After 
establishing the input and output membership functions and the rule-node connectivity, the backpropaga- 
tion algorithm is used to fine tune the parameters of the input and output membership functions. 

2.1. Structure o f  FALCON-FSM model 

The FALCON-FSM is a five-layer connectionist structure. In this five-layered connectionist structure, the 
input and output nodes represent the input states and output control/decision signals, respectively, and in the 
hidden layers, there are nodes functioning as input and output membership functions (layers two and four, 
respectively) and fuzzy logic rules (layer 3). The proposed connectionist model maintains the spirit of human 
thinking and reasoning in its fuzzy logic rules. This connectionist structure also saves the rule- matching time 
of the inference engine in the traditional fuzzy logic system. 

In the following, f is an integration function of a node, which combines activation from other nodes to 
provide net input for this node, a is an activation function of a node, which outputs an activation value as 
a function of net input, and z represents the input signal to a node. In the following equations, superscript is 
used to indicate the layer number. 

Layer 1: The nodes in this layer just transmit input values to the next layer directly, i.e. 

f =z~ ,  a = f  (1) 

From the above equation, the link weight at layer one (w~) is unity. 
Layer 2: If we use a single node to simulate a simple membership function such as a bell-shaped function, then 

the output function of this node should be this membership function. For example, for a bell-shaped function, 

f = (z~ -- mij) 2 (2) 
¢72. , a = e f ,  

where mlj and aiI are, respectively, the center (or mean) and the width (or variance) of the bell-shaped function 
of thejth term of the ith input linguistic variable xi. Hence, the link weight at layer two (w/~) can be interpreted 
as m o. If we use a set of nodes to simulate a more complex arbitrary shaped membership function, then the whole 
subnet is trained on-line to perform the desired membership function by a backpropagation algorithm. 

Layer 3: The links in this layer are used to perform precondition matching of fuzzy logic rules. Hence, the 
rule nodes perform a fuzzy AND operation, 

f =  min(z3,z 3 . . . .  ,z3), a = f .  (3) 

The link weight in layer three (w 3) is then unity. 
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Layer  4: The links at layer four should perform a fuzzy OR operation for the fired rules which have the 
same consequence, 

P 

f =  ~ z 4, a = min(1,f). (4) 
i = 1  

Hence the link weight w 4 = 1. 
Layer  5: The nodes in this layer transmit the decision signal out of the network. These nodes and the 

layer-five links attached to them act as the defuzzifier. If m~'s and a~'s are the centers and the widths of 
membership functions, respectively, then the following functions can be used to simulate the center o f  area 
defuzzification method: 

• V w S z  5 5 5 5 f f = ~  o i = ~  a =  . (5) (m°tr i j ) z i  ' r, tr~zSi 

Here the link weight at layer five (w/~) is consider to be 5 5 mij  o'ij. 

2.2. The FSM-based on-line learning algorithm - FALCON-FSM 

One important characteristic of the FALCON-FSM algorithm is that it can learn the network structure 
and parameters simultaneously. The learning of network structure includes deciding the proper number of 
output term nodes in layer four and the proper link connections between the nodes in layers three and four. 
This structure learning also decides the coarse of the output fuzzy partitions and the finding of correct fuzzy 
logic rules. The learning of network parameters includes the adjustment of the node parameters in layers two 
and four. This corresponds to the learning of input and output membership functions. 

The proposed on-line structure/parameter learning algorithm uses the fuzzy similarity measure to perform 
the structure learning and uses the backpropagation algorithm to perform the parameter learning. Given the 
supervised training data, the proposed learning algorithm first decides whether or not to perform the 
structure learning based on the fuzzy similarity measure of the output membership functions. If the structure 
learning is necessary, then it will further decide whether or not to add a new output term node (a new 
membership function in layer four), and it will also change the consequences of some fuzzy logic rules 
properly. After the process of structure learning, the parameter learning will be performed to adjust the 
parameters of the current input/output membership functions. This structure/parameter learning will be 
repeated for each on-line incoming training input/output data pair. 

To initiate the learning scheme, the desired coarse of input fuzzy partitions (i.e., the size of the term set of 
each input linguistic variable) and the initial guess of output fuzzy partitions must be provided from the 
outside world. Based on this information, an initial structure of the network is constructed to initiate the 
learning process. Then, during the learning process, new nodes may be added and link connections may be 
changed. Finally, after the learning process, some nodes and links of the network will be deleted or combined 
to form the final structure of the network. In its initial structure, there are I-li I T(xi)[ rule nodes with the 
inputs of each rule node coming from one possible combination of the terms of input linguistic variables 
under the constraint that only one term in a term set can be a rule node's input. If [ T (xi) I denotes the number 
of terms of xi (i.e., the number of fuzzy partitions of input state linguistic variable x~), then the state space is 
initially divided into I T(xl)l ×[T(x2)l ×..-×lT(xn)l linguistically defined nodes (or fuzzy cells) which 
represent the preconditions of fuzzy rules. Also, there is only one link between a rule node and an output 
linguistic variable. This link is connected to some term node of the output linguistic variable. The initial 
candidate (term node) of the consequence of a rule node can be assigned by an expert (if possible) or can be 
chosen randomly. A suitable term in each output linguistic variable's term set will be chosen for each rule 
node after the learning process. 
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Before initiating the proposed learning algorithm, we need the structure initialization and parameter 
initialization before entering the training loop. The structure initialization is to provide the initial link 
connection between the nodes in layers three and four, i.e. to decide the initial consequence of each fuzzy logic 
rule. The parameter initialization is to decide the initial membership functions of input/output linguistic 
variables. A more efficient way is to use identical membership functions such that their domains can cover the 
region of corresponding input and output spaces evenly according to the given initial coarses of fuzzy 
partitions. 

After the initialization process, the learning algorithm enters the training loop in which each loop 
corresponds to a set of training input data x~(t), i = 1 . . . .  , n, and the desired output values y~(t), i = 1 . . . . .  m, 

at a specific time t. Basically, the idea of backpropagation [20] is used to find the errors of node outputs in 
each layer. Then, these errors are analyzed by the FSM to perform structure adjustments or parameter 
adjustments. The detailed learning rules are derived as follows. Without any loss of generality, we shall 
consider the case of single output for clarity. The derivation can be easily extended to the multiple-output 
case. The goal of the proposed learning algorithm is to minimize a least-squares error function 

E = ½ [y(t) -- 33(0] 2, (6) 

where y( t )  is the desired output and )3(t) is the current actual output. For each training data set, starting at the 
input nodes, a forward pass is used to compute the activity levels of all the nodes in the FALCON. Then, 
starting at the output nodes, a backward pass is used to compute OE/Ow for all the nodes in the hidden layers. 
Assuming that w is an adjustable parameter in a node (e.g., the center of a membership function), the general 
parameter learning rule used is 

w ( t  + 1)=w(t)+rl - , 

d E  OE t~a 

O w -  Oa ~ w '  

(7) 

where t/is the learning rate. To show the learning rule, we shall show the computations of t3E/dw, starting 
from the output nodes, and layer by layer, to the input layer, and we shall use bell-shaped membership 
functions with centers mi's and widths tri's as the adjustable parameters for these computations. 

L a y e r  5: Using Eqs. (5) and (7), the adaptive rules of the center m~ and width a~ can be, respectively, derived as 

O'iZ i 
mi( t  + 1) = mi( t )  + r/[y(t) -- p(t)] 

E O'iZ i 
(8) 

and 

ai(t + 1) = tri(t ) + q [ y ( t )  --  )3(0 ] miui(~,  aizi) -- (~, mitrlzi)zi  
( E  ~izi) 2 

(9) 

The error to be propagated to the preceding layer is 

- d E  
6 5 - - -  = y( t )  - ~(t).  (10) 

Oa s 

F u z z y  s imi lar i t y  m e a s u r e  

In this step, the system will decide if the current structure should be changed or not according to the 
expected updated amount of the center and width parameters. To do this, the expected center and width are, 
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respectively, computed as 

mi . . . .  = mi(t) + Ami(t), 0 - i - n e w  --'- 0-i(t) + A0-i(t). (11) 

From the current membership functions of output linguistic variables, we want to find the one which is the 
most similar to the expected membership function (Eq. (11)) by measuring their similarity. Let M(m~,0-~) 
represent the bell-shaped membership function with center m~ and width 0-~. Let 

degree(i, t) = E[M(mi-new,  0-i . . . .  ), M(mi-c l  . . . .  t ,  0 - i - c l  . . . .  t ) ]  

= max E[M(mi  . . . . .  cri . . . .  ), M(mj,0-~)], 
l<~j<~k 

(12) 

where k = I T (Y)I is the size of the fuzzy partition of the output linguistic variable y(t) and E(A, B) is the fuzzy 
similarity measure of fuzzy sets A and B. If A and B are two fuzzy sets with bell-shaped membership 
functions, the approximate fuzzy similarity measure of A and B, E(A, B), can be computed as follows [15-1: 
Assuming ml >/m2, 

Here 

I(AnB)I I(AnB)I 
- -  - ( 1 3 )  

E(A,B)  - I(AuB)I 0-1v/-~ + 0-zv/-~ - I (AnB) I "  

1 h2(m2 - ml  + V/-~(0-1 + 0-2)) _{ 1 h2(m2 - ml  + x//~(0-1 - 0-2)) 

2 , /~(0-1 + 0-2) 2 ,/;~(0-2 - 0-1) 

1 h2(m2 - ml - -  N / / ~ ( 0 - 1  - -  0"2)) 
4 , (14) 

2 ,J~(0- ,  - 0-2) 

[(AnB)I = 

where h(x) = max {0, x}, and I(A nB)  l is the cardinality of (A nB). After the most similar membership function 
M(mi_ cl .. . .  t, 0-i-closest) to the expected membership function M(mi . . . . .  0-/ . . . .  ) has been found, the following 
adjustment is made. 

IF degree(i, t) < ~(t), 
T H E N  

create a new node M(mi . . . . .  ai-new) in layer four 
and denote this new node as the i - closest node, 
do the structure learning process, 

ELSE IF M(mi-cn . . . .  t ,  0 - i - e l  . . . .  t )  :~  M(mi,  t r i )  

T H E N  
do the structure learning process, 
ELSE 

do the following parameter adjustments in layer five: 
mi(( + 1)  = m l  .... 

0-i(t + I) = 0-i-.ew 
skip the structure learning process, 

where ~(t) is a monotonically increasing scalar similarity criterion. The structure learning process in the 
above adjustment is described next. 
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Structure learning 
To find the rules whose consequences should be changed, we set a f iring strength threshold, ft. Only the rules 
whose firing strengths are higher than this threshold are treated as really f iring rules. Only the really firing 
rules are considered for changing their consequences, since only these rules are fired strongly enough to 
contribute to the above results of judgment. Assuming that the term node M(ml ,  try) in layer four has inputs 
from rule nodes 1 . . . . .  1 in layer three, whose corresponding firing strengths are a3's, i = 1 . . . . .  l, then 

IF a3(t) > fl T H E N  change the consequence of the ith rule node from M ( m i ,  o'i) to M ( m i _ e l  . . . .  t, o'i cl . . . .  t)" 

Layer  4: There is no parameter to be adjusted in this layer. Only the error signals (64's) need to be 
computed and propagated. From Eqs. (5) and (10), the error signal 6~ can be derived as 

64i (t) = [ y ( t )  - ~ 3 ( t ) ]  miai(E aizi) - -  ( Z  miaiT.i)ai 
(E aiz3 2 (15) 

In the multiple-output case, the computations in layers four and five are exactly the same as the above and 
proceed independently for each output linguistic variable. 

Layer  3: As in layer four, only the error signals need to be computed. According to Eq. (4), this error signal 
can be derived as 

aE_a, 
63 - ffa~a~ Oz 4 = 6~. (16) 

Hence, the error signal is 63 = 64. If there are multiple outputs, then the error signal becomes 63 = ~k6~, 
where the summation is performed over the consequences of a rule node; i.e. the error of a rule node is the 
summation of the errors of its consequences. 

Layer  2: Using Eqs. (2), (3), (7), and (16), the adaptive rules of m~j and aij can be, respectively, derived as 

OE s-2(zi - mi j )  
mlj(t + 1) = mij(t) - rl ~ e ' ~ (17) 

and 

~E 2(zi ~ m,j) 2 
tYij(t q- 1) = trij(t) - rl - -  e f' 

Oa i tr 3 ' 

where 

(18) 

c3E 
Oai qk, (19) 

Where the summation is performed over the rule nodes that ai feeds into, and 

0 3 if al is minimum in kth rule node's inputs, 
qk = otherwise. (20) 

The proposed supervised learning algorithm provides a novel scheme to combine the structure learning 
and the parameter learning such that they can be performed simultaneously and on-line. Finally, it should be 
noted that this backpropagation algorithm can be easily extended to train the membership function which is 
implemented by a subneural net instead of a single term node in layer two since, from the above analysis, the 
error signal can be propagated to the output node of the subneural net. Then, by using a similar 
backpropagation rule in this subneural net, the parameters in this subneural net can be adjusted. 
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II 

Fig. 3. The state variables of the fuzzy car. 

2.3. An illustrative example 

In this example, the FALCON-FSM model was used to simulate the control of the fuzzy car conceived by 
Sugeno [22]. The car has the ability to learn from examples to move automatically along a track with 
rectangular turns, where the path for the car to follow is known a priori and no other path planning is 
required in this simulation. The goal is to demonstrate that the car can run automatically as it is driven by 
a skilled driver from some past driving experiences used as training data. The input linguistic variables are 
Xo, x~, and x2, which represent the distance of the car from the side boundary of the track, the distance of the 
car from the turning point at a corner, and the current steering angle, respectively (see Fig. 3). The output 
linguistic variable y is the next steering angle. The training data are obtained in the process when an operator 
guides the fuzzy car along the track as shown in Fig. 6. In the simulation, we set the size of fuzzy partitions of 
Xo, xi,  and x2 as 3, 5, and 5, respectively. That is, Xo has three fuzzy sets ("close", "normal", and "far") in 
describing the distance of the car from the side of the track. These numbers are kept the same for all the other 
learning processes as discussed later. The initial guess of the size of fuzzy partitions of the output linguistic 
variable is set to 3. The initial fuzzy logic rules (the link connections between nodes in layer three and layer 
four) are set randomly. Also, in the beginning, we use identical membership functions such that their domains 
can cover the region of corresponding input and output spaces evenly. 

After the FSM-based learning process, the number of output fuzzy partitions has finally increased to 10. 
That is, the learning algorithm adds seven extra term nodes to layer four of the FALCON-FSM. The solid 
curve in Fig. 4 is the learning curve of the mean error with respect to the number of epochs for this 
simulation. We can see a large learning error in the beginning of the learning process due to our random 
choice of initial structure and parameters. For the purpose of comparison, we show the learning curves of the 
originally proposed two-phase learning algorithm in [14]; these are the two dashed curves in Fig. 4. In the 
two-phase learning process, the number of output fuzzy partitions is set by the user. Here, two different 
values, 10 and 15, are used. The upper dashed curve in Fig. 4 is the learning curve when the number of output 
fuzzy partitions is set to 10, which is the final number we obtained in the FSM-based learning algorithm. The 
lower dashed curve in Fig. 4 is the learning curve when the number of output fuzzy partitions is set to 15, 
which is used in [14] and shows a more satisfactory result. The dotted curve in Fig. 4 is the learning curve 
when using the revised two-phase learning algorithm whose second-phase supervised learning is replaced by 
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Fig. 4. Learning curves in various fuzzy car simulations. 
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Fig. 5. Learning curves in the structure/parameter learning. 

the  p r o p o s e d  F A L C O N - F S M  a l g o r i t h m .  In  p h a s e  one ,  K o h o n e n ' s  f e a t u r e - m a p s  a l g o r i t h m  a n d  a c o m p e t i -  

t ive  l e a r n i n g  l aw a re  used  to  dec ide  the  p r o p e r  in i t ia l  fuzzy log ic  rules  a n d  m e m b e r s h i p  func t ions  for  the  

p h a s e - t w o  l e a r n i n g  [14] .  P r o v i d e d  wi th  this  k i n d  o f  a p r io r i  k n o w l e d g e ,  the  p r o p o s e d  s t r u c t u r e / p a r a m e t e r  

l e a rn ing  a l g o r i t h m  p r o d u c e s  fewer  e r ro r s  as  s h o w n  by  the  d o t t e d  cu rve  in Fig.  4. T o  d e m o n s t r a t e  the  

d y n a m i c  inc rease  o f  o u t p u t  t e r m  nodes ,  t h ree  d i f ferent  ini t ia l  guesses  o f  t he  n u m b e r  o f  o u t p u t  fuzzy p a r t i t i o n s  

a re  used.  Fig.  5 s h o w s  the  g r o w i n g  cu rves  o f  t he  n u m b e r  o f  o u t p u t  t e r m  n o d e s  wi th  respec t  to  t he  n u m b e r  o f  
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Fig. 6. Simulation results of the fuzzy car running under the control of the proposed FALCON-FSM. 

epochs,  and  we can  see tha t  they all reach the final n u m b e r  of  10 te rm nodes.  After the  whole  connec t ion is t  
fuzzy logic con t ro l le r  is es tabl ished,  it  is used as a fuzzy logic con t ro l le r  to  con t ro l  the fuzzy car. W e  
k e e p  the speed of  the  ca r  cons t an t  and  assume there  are  sensors  on the ca r  to  measure  the state 
var iables  Xo, x l ,  and  x2 which are  fed into  the con t ro l le r  to  der ive the next  s teering angle. The  s imula ted  
resul t s  a re  shown in Fig. 6 where  different paths ,  different s ta r t ing  points ,  and  different s ta r t ing  angles are  
used. 
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3. An A R T - b a s e d  fuzzy  adaptive learning control  network 

The proposed FSM-based on-line structure/parameter learning algorithm works well when the 
number of input and output variables is small. For some applications, when the number of input and 
output variables is large, this will cause a large number of fuzzy regions which in turn will create learning 
problem, huge memory and hardware implementation problems. A more flexible space partitioning 
method, based on the fuzzy ART technique, is proposed to solve this fixed-grid-typed space partitioning 
technique in the FALCON-FSM algorithm. The proposed ART-based on-line learning algorithm, 
called FALCON-ART, combines the fast-learning fuzzy ART with supervised gradient-descent learning 
to perform structure and parameter learning simultaneously. The proposed FALCON-ART algorithm 
uses the fast-learning fuzzy ART to perform structure learning and the backpropagation algorithm to 
perform parameter learning. The proposed FALCON-ART algorithm is able to partition the input and 
output spaces into a flexible and irregular form as shown in Fig. 2(b) dynamically and, at the same time, find 
proper fuzzy rules and optimal membership functions. We shall first describe the structure and function of 
each layer of the proposed FALCON-ART model, and then its associated fuzzy-ART-based learning 
algorithm. 

3.1. Structure o f  FALCON-ART model 

In this subsection, we shall describe the functions of the nodes in each of the five layers of the 
FALCON-ART model. Before doing so, we first describe a preprocessing process performed in this model. In 
the FALCON-ART model, the technique of complement codino used in the fuzzy ART [4] is adopted here to 
normalize the input/output training vectors. Complement coding is a normalization process that rescales an 
n-dimensional vector in R", x = (x~, x2 . . . . .  x.) t, to its 2n-dimensional complement coding form x' in [0, 1] 2" 
such that 

X t t t C t ¢ C t t C | , x . , ( x . )  ) =- . 1 y.)t, = ( x l , ( x l )  ,x2,(x2) , ... (xl, 1 -- xx ,~2,1  -- 42, .. , x , ,  - (21) 

where a? = (xl,x2 . . . .  ,ff,)t =x/llxll, and the superscript t denotes the transpose operation on a vec- 
tor/matrix. That is, x; = & and (x~) c = 1 - & ,  for i =  1,2, . . . ,n .  As indicated in [4], the complement 
coding can avoid the problem of proliferation of categories in doing fuzzy clustering using fuzzy ART. 
It also preserves amplitude information of the training vectors. In applying the complement coding 
technique to the FALCON-ART, input and output training data are transformed to their complement 
coding forms in the preprocessing process. These transformed vectors are then used for training the 
FALCON-ART model. 

The functions of the nodes in each layer of the FALCON-ART model are described as follows. 
Layer 1: The nodes in this layer just transmit input signals to the next layer directly, i.e. 

f =  z~ = (xi, x~) = (xi, 1 - xi), a = f (22) 

From the above equation, the link weight at layer one (w~) is unity. Note that for each input node i, there are 
two input values, ~i and ~ = 1 - &, due to the complement coding process. 

Layer 2: Each node in this layer acts as a one-dimensional membership function. The following trap- 
ezoidal membership function [24] is used: 

f = _I [1 -- g ( z ~  - v i i ,  7 )  - -  g ( u l j  - -  z2 ,7 ) ] ,  
n 

a = f ,  ( 2 3 )  
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Fig. 7. Two-dimensional trapezoidal membership function. 

where u u and vi~ are the left-flat point and the right-flat point, respectively, of the trapezoidal function with 
u o <~ v u, and 

1 if s7 > 1, 

O(s,7)= s7 i f0~<sT~<l ,  (24) 

0 if s7 < 0. 

The parameter 7 is the sensitivity parameter that regulates the fuzziness of the trapezoidal membership 
function. When ? is large, the fuzzy set becomes more crisp, and when 7 is small the fuzzy set becomes less 
crisp. There are two weights on each layer-two link. We denote the two weights on the link from input node 
i (corresponding to the input linguistic variable xi) to its j th term node as u u and v~. These two weights 
defines the membership function in Eq. (23), where v o = 1 - v~. 

Layer 3: The links in this layer are used to perform precondition matching of fuzzy logic rules. Hence, the 
rule nodes perform the following operation: 

f = ~ z~, a =f .  (25) 
i 

The link weight in layer three (w 3) is then unity. The summation used in the above equ~ition is equivalent to 
defining a multi-dimensional membership function, which is the summation of the trapezoidal functions in 
Eq. (24) over i. This forms a multi-dimensional trapezoidal membership function as shown in Fig. 7. This 
function is called the hyperbox membership function 1-24] since it is defined on a hyperbox in the input space. 
The corners (or bounds) of the hyperbox are decided by the layer-two weights, u u and vi~, for all/'s. More 
clearly, the interval [u u, vu] =[u i i ,  1 - v~] defines the edge of the hyperbox in the ith dimension. 

Layer 4: The nodes in this layer have two operation modes: down-up transmission and up--down 
transmission modes. In the down-up transmission mode (for regular operation), the links at layer four 
perform a fuzzy OR operation for the fired rules which have the same consequence, 

f =  max(z14,z 4, ... ,z~), a = f  (26) 
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Fig. 8. The fuzzy reasoning process in the FALCON-ART model. 

Hence, the link weight w~ = 1. In the up-down transmission mode (for training the membership functions), 
the nodes in this layer and the links in layer-five (up-down transmission links) function exactly the same as 
those in layer two. Hence, there are also two weights on each of the up-down transmission links in layer five. 
The weights define hyperboxes on the normalized output space as well as the associated hyperbox 
membership functions. 

Layer 5: There are two kinds of nodes in this layer. The first kind of node performs the up-down 
transmission for training data to feed into the network. It acts exactly like the input nodes. For this kind of 
node, 

f =  (#i,#~) = 07i, 1 - #i), a = f ,  (27) 

where )71 is the ith element of the normalized desired output vector. Note that complement coding is also 
performed on the desired output vectors. The second kind of node performs the down-up transmission for 
the decision signal output. These nodes and the layer-five down-up links attached to them act as the 
defuzzifier. If u ~j and v~i are the corners of the hyperbox of the j th term of the ith output linguistic variable Yl, 
then the following functions can be used to simulate the center of  area defuzzification method: 

f = ~ 5 5 S'rnS..z s, f wuz  i = a = - -  (28) 
, ,  , ,  y~ z ,  ~ '  

where m~j = (u~j + v~)/2 denotes the center value of the output membership function. The center of a fuzzy 
region is defined as the point that has the smallest absolute value among all the points at which the 
membership function for this region has membership value equal to one. Here the link weight at layer five 
(w~) is rn~j. 

The fuzzy reasoning process in the FALCON-ART model is illustrated in Fig. 8, which shows a graphic 
interpretation of the center of area defuzzification method. Here, we consider a two-input and two-output 
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case. As shown in the figure, three hyperboxes (IH1, IH2, and IH3) are formed in the input space and two 
hyperboxes (OHI and OH2) are formed in the output space. These hyperboxes are defined by the weights 
uij and vij. The three fuzzy rules indicated in the figure are "IF x is IH1, THEN y is OHx," "IF x is IH2, 
THENy is OH1," and "IF x is IH3, THENy is OH2," wherex = (xl, x2) tandy = (Yl, Y2) t. If an input pattern 
is located inside the hyperbox, the membership value is equal to one (see Eq. (24)). In this figure, zl is 
obtained by performing a fuzzy OR operation (max operation) on the inferred results of rules 1 and 2, which 
have the same consequence. 

Based on the above structure, the on-line learning algorithm, FALCON-ART, is proposed to determine 
optimal corners of hyperbox (uifs and vii's) of term nodes in layers two and four. Also, it will learn fuzzy logic 
rules and connection types of the links at layers three and four; i.e. the precondition links and the 
consequence links of the rule nodes. 

3.2. The A R T - b a s e d  on-l ine learning algori thm - F A L C O N - A R T  

In this section, an on-line two-phase learning scheme for the proposed FALCON-ART model will be 
discussed. For an on-line incoming training input/output pair, the following two steps are performed. First, 
a structure learning scheme is used to decide proper fuzzy partitions and to find the presence of rules. In the 
second step, a supervised learning scheme is used to optimally adjust the membership functions for the 
desired outputs. The proposed FALCON-ART algorithm uses the fast-learning fuzzy ART to perform 
structure learning and the backpropagation algorithm to perform parameter learning. This struc- 
ture/parameter learning cycle is repeated for each on-line incoming input/output training pair. In this 
learning method, the users do not need to provide an initial fuzzy partitions of input and output spaces, 
membership functions and fuzzy logic rules. Hence, there is no input/output term nodes and no rule nodes at 
the beginning of the learning. The input/output term nodes and the rule nodes are created dynamically as the 
learning proceeds upon receiving on-line incoming training data. In other words, the initial structure of the 
network has only input and output linguistic nodes before the network is trained. Then, during the learning 
process, new input and output term nodes and rule nodes are added as required from the fuzzy ART learning 
algorithm. 

The problem for the structure learning can be stated as: Given the training input data at time t, xi(t), 
i = 1, . . . ,  n, and the desired output values y~(t), i = 1 . . . . .  m, we want to decide proper fuzzy partitions of 
input and output spaces as well as membership functions and find the fuzzy logic rules. In this step, the 
network works in a two-sided manner; i.e. the nodes and links at layer four are in the up-down transmission 
mode so that the training input and output data can be fed into this network from both sides. 

The F u z z y  A R  T M A P  algorithm proposed by Carpenter et al. [5] is adopted in the structure learning step 
directly. Given the input/output training pair, this algorithm first performs fuzzy clustering on the input 
space and the output space individually by using the f u z z y  A R T  f a s t  learning algorithm [4]. Each cluster 
corresponds to a hyperbox in the input or output space. Starting from zero cluster, the number of clusters will 
grow dynamically for incoming training data. Equivalently, the process of fuzzy clustering is to find the 
parameters w 0 = (uo, vi~) of the input as well as output membership functions. After the hyperboxes in the 
input and output spaces are tuned or created in the fuzzy clustering process for the current training data pair, 
the fuzzy ARTMAP algorithm then decides proper mapping between the input clusters and the output 
clusters. This is done by finding their causal relations. The mapping process directly decides the connections 
between layer-three nodes and layer-four nodes of the FALCON-ART structure (see Fig. 1). This is 
equivalent to deciding the consequents of fuzzy logic rules. The aforementioned structure learning step is 
illustrated in Fig. 8. 

After the network structure has been adjusted according to the current training data pair, the network then 
enters the second learning step to adjust the parameters of the membership functions optimally for the same 
training data pair. The problem for the parameter learning can be stated as: Given the training input data 
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(xi(t), x~(t)), i = 1 . . . . .  n, the desired output values (yi(t), y~(t)), i = 1 . . . . .  m, the input and output hyperboxes 
and the fuzzy logic rules, we want to adjust the parameters of the membership functions optimally. These 
hyperboxes and fuzzy logic rules were learned in the structure learning step. In the parameter learning, the 
network works in the feedforward manner; that is, the nodes and links in layer four are in the down-up 
transmission mode. Basically, the idea of backpropagation is used for this parameter learning to find the 
errors of node outputs in each layer. Then, these errors are analyzed and utilized for parameter adjustments. 
The goal is again to minimize the least-squares error function in Eq. (6). For a training data pair, starting 
from the input nodes, a forward pass is used to compute the activity levels of all the nodes in the network. 
Then starting from the output nodes, a backward pass is used to compute c3E/~w for all the hidden nodes. It is 
noted that in the parameter learning, we only use the normalized training vectors, • and .f rather than the 
complement coded ones x' and y'. Again assuming that w is an adjustable parameter in a node, the general 
learning rule in Eq. (7) is used to derive the learning rules layer by layer using the hyperbox membership 
functions with corners uo's and vffs as the adjustable parameters for these computations. For clarity, we 
derive the learning rules for the single-output case. 

L a y e r  5: Using Eqs. (7) and (28), the updating rules of the corners of hyperbox membership function vi and 
u~ can be, respectively, derived as 

vi(t + 1) ---- vi(t) + rl [y ( t )  --  )~(t)] zi  (29) 
2 E z i  

and 

Zi 
ui(t + 1) = ui(t) + ~/[y(t) -- )3(0 ] 

2y. Zi 
(30) 

The error to be propagated to the preceding layer is 

~E 
35 - - y(t)  -- fi(t). (31) 

t3a 5 

L a y e r  4: In the down-up operation mode, there are no parameter to be adjusted in this layer. Only the 
error signal (64) needs to be computed and propagated. From Eqs. (7) and (28), the error signal 6~ is derived 
as in the following: 

6~ - d E  _ 35 m i E  zi - E mizi  (32) 
Oa4 (E z,) 2 

In the multiple-output case, the computations in layers five and four are exactly the same as the above and 
proceed independently for each output linguistic variable. 

L a y e r  3: As in layer four, only the error signals need to be computed. According to Eqs. (7), (26), and (32), 
this error signal can be derived as 

dE z4 6~, (33) 
63 - ~3a 3 - Zm,x 

where Zmax = max(inputs of output term node j ). This term, z~/z=ax, normalizes the error propagation for the 
fired rule of the same consequence. If there are multiple outputs, then the error signal becomes 63 = 
Zk(Z4/Zm~x)64, where the summation is performed over the consequences of a rule node; that is, the error of 
a rule node is the summation of the errors of its consequences. 
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Layer 2: Using Eqs. (7), (23), (25), and (33), the updat ing rules of v~j and u~j can be, respectively, derived as 

t~a 2 
vq(t + 1) = vu(t ) + ~IT.. &31 (34) 

vvij 

and 

~ a  2 

uu(t + 1) = Uu(t ) + ~7 ~- -Z-33,  (35) 
vuij 

where 

~a 2 = {o/n if 0 ~< ( x ~ -  vii)? ~< 1, (36) 
Ov o otherwise 

and 

da 2 f - - v / n  if 0 ~< (uq -- xi)? ~< 1, 

lo (37) 
t~u o otherwise. 

3.3. An illustrative example 

Time-series predict ion [30] is an impor tan t  practical problem. Applications of time-series prediction can 
be found in the areas of economic  and business planning, weather  forecasting, control ,  and other  fields. Let  
p(k), k = 1, 2, ... be a time series. The problem of  time-series predict ion can be formulated as: Given 
p(k - m + 1),p(k - m + 2) . . . . .  p(k), determine p(k + l), where m and l are fixed positive integers; i.e., 
determine a mapping from [p(k - m + 1),p(k - m + 2), ... ,p(k)] ~ W" to [p(k + I ) ]~R.  To  illustrate its 
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Fig. 9. The Mackey-Glass chaotic time series. 
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Fig. 10. Simulation results of the prediction time series under the proposed FALCON-ART. 

on-line learning ability, the proposed FALCON-ART model is used to predict the Mackey-Glass chaotic 
time series. The Mackey~31ass chaotic time series is generated from the following delay differential equation: 

dx(t) 0.2x(t - z) 
d ~ -  = 1 + x l ° ( t  - ~) - 0.1x(t), (38) 

where v > 17. This equation shows a chaotic behavior. Higher values of ~ yield higher dimensional chaos. 
In our simulation, we choose the series with • = 30. Fig. 9 shows 500 points of this chaotic series that are 

used to test the proposed FALCON-ART model. We choose m = 9 and 1 = 1 in our simulation, i.e., nine 
point values in the series are used to predict the value of the next time point. The first 200 points of the series 
are used as training data, and the final 300 points are used as test data. After the structure/parameter 
learning, there are 22 fuzzy logic rules generated in our model. Fig. 10 shows the prediction of the chaotic 
time series from x(201) to x(500) when 200 training data (from x(1) to x(200)) are used. In this figure, 
predictions of the time series by the FALCON-ART model are represented as C)'s while true values are 
represented as ,'s. The results showed a near-perfect prediction capability of the FALCON-ART model 
trained by a small set of training data. The FALCON-ART model has been used to identify the nonlinear 
dynamic system, control the truck backer-upper, and control the ball and beam system successfully to 
demonstrate its on-line learning capability. We shall give a detailed explanation in next paper. 

4. Conclusion 

In this paper, we introduced a general five-layer connectionist model of a fuzzy logic control system called 
FALCON. Two complementary on-line structure/parameter learning algorithms, FALCON-FSM and 
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FALCON-ART, were proposed for constructing the FALCON dynamically. The proposed learning algo- 
rithms are able to partition the input and output spaces and then find proper fuzzy rules and optimal 
membership functions. The FALCON-FSM partitions the pattern space into grids and is thus easier for 
fuzzy chip implementation. The FALCON-ART partitions the pattern space into hyperboxes and thus can 
void the problem of combinatorial complexity of partitioned grids in some complex systems. Computer 
simulations demonstrated that the proposed on-line structure/parameter learning algorithms are quite 
effective in controlling a fuzzy car and predicting a chaotic time series. One problem observed in our 
simulations is that if we choose the vigilance parameter improperly in the FALCON-AR1 ~, redundant rules 
may be generated. Future research will focus on incorporating adaptive vigilance parameter into the 
FALCON-ART model for solving the redundant rules problem. 
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