
Prediction of Time Sequence Using Recurrent
Compensatory Neuro-fuzzy Systems

ChiYung Lee1 and ChengJian Lin2,�

1 Dept. of Computer Science and Information Engineering
Nankai Institute of Technology

Nantou County, 542 Taiwan, China
2 Dept. of Computer Science and Information Engineering

Chaoyang University of Technology
168 Gifeng E. Rd., Wufeng

Taichung County, 413 Taiwan, China
Tel: +886-4-23323000 Ext. 4408, Fax: +886-4-23742375

cjlin@mail.cyut.edu.tw

Abstract. In this paper, a recurrent compensatory neuro-fuzzy system
(RCNFS) is proposed for prediction of time sequence. The compensatory-
based fuzzy reasoning method is using adaptive fuzzy operations of
neuro-fuzzy systems that can make the fuzzy logic systems more adap-
tive and effective. The recurrent network is embedded in the RCNFS by
adding feedback connections in the second layer, where the feedback units
act as memory elements. Also, an on-line learning algorithm is proposed
to automatically construct the RCNFS. They are created and adapted
as on-line learning proceeds via simultaneous structure and parameter
learning.

1 Introduction

For a dynamic system, the output is a function of past input or past output or
both, prediction of time sequence is not as direct as a static system, and to deal
with temporal problem of dynamic system, the recurrent neural network and the
recurrent neuro-fuzzy system have been attracting great interest [1]-[2].

In this paper, a recurrent compensatory neuro-fuzzy system (RCNFS) is pro-
posed. The RCNFS is a recurrent multi-layer connectionist network for fuzzy
reasoning and can be constructed from a set of fuzzy rules. In the RCNFS,
adding feedback connections in the second layer develops the temporal relations.
At the same time, the compensatory fuzzy inference method is using adaptive
fuzzy operations of neuro-fuzzy system that can make the fuzzy logic system
more adaptive and effective. An on-line learning algorithm is proposed to auto-
matically construct the RCNFS. It consists of structure learning and parameter
learning. The structure learning algorithm decides to add a new node which is
satisfying the fuzzy partition of the input data. The back-propagation learning
is then used for tuning input membership functions.
� Corresponding Author.

J. Wang, X. Liao, and Z. Yi (Eds.): ISNN 2005, LNCS 3497, pp. 611–617, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

612 ChiYung Lee and ChengJian Lin

2 The Compensatory Operator

Zimmermann [3] first defined the essence of compensatory operations. Zhang
and Kandel [4] proposed more extensive compensatory operations based on the
pessimistic operation and the optimistic operation. The compensatory operation
can map the pessimistic input x1 and the optimistic input x2 to make the rel-
atively compromised decision for the situation between the worst case and the
best case. For example, c(x1, x2) = x1−r

1 xr
2, where r ∈ [0, 1] is called the compen-

satory degree. Many researchers [5]-[6] have used the compensatory operation
to fuzzy systems successfully. Therefore, we can define the fuzzy if-then rule as
follows:

Rj : [IF x1 is A1j · · · and xn is Anj]1−rj+rj/n, THEN y
′
is bj (1)

3 The Structure of RCNFS Model

The RCNFS realizes a fuzzy model of the following form:

Rule − j : [IF h1j is A1j · · · and hnj is Anj]1−rj+rj/n, THEN y
′
is wj (2)

where for i = 1, 2, ..., n, hij = xi + u
(2)
ij (t − 1) · θij , y

′
is output variable, Anj is

linguistic term of the precondition part, wj is constant consequent part, and n is
number of input variables. That is, the input of each membership function is the
network input xi plus the temporal term u

(2)
ij θij . Therefore, the fuzzy system,

with its memory (terms feed-back units), can be considered a dynamic fuzzy
inference system.

Next, we shall introduce the operation functions of the nodes in each layer
of the RCNFS model are described. In the following description, u(l) denotes
output of a node in the lth layer.

Layer1(InputNode): No computation is done in this layer. Each node in this
layer is an input node, which corresponds to one input variable, only transmits
input values to the next layer directly.

u
(1)
i = xi (3)

Layer2(InputT ermNode): Nodes in this layer correspond to one linguistic
label of the input variables in Layer1 and a unit of memory, i.e., the membership
value specified the degree to which an input value and a unit of memory belongs
a fuzzy set is calculated in Layer 2. The Gaussian membership function, the
operation performed in Layer 2 is

u
(2)
ij = exp{− [hij − mij]2

σ2
ij

} (4)

where mij and σij are, respectively, the mean and variance of Gaussian member-
ship function of jth term of ith input variable xi. In addition, the inputs of this

Prediction of Time Sequence 613

layer for discrete time t can be defined by hij(t) = u
(1)
i (t)+u

(2)
ij (t−1) ·θij , where

uij(t−1) denotes the feedback unit of memory, which store the past information
of the system, and θij denotes the link weight of the feedback unit.

Layer3(CompensatoryRuleNode): Nodes in this layer represents the pre-
condition part of one fuzzy logic rule. And they receive the one-dimensional
membership degrees of the associated rule from nodes of a set in Layer 2. Here
we use a compensatory operator mentioned to perform IF-condition matching
of fuzzy rules. As a result, the output function of each inference nodes is

u
(3)
j = [

∏

i

u
(2)
ij]1−rj+

rj
n (5)

where the
∏

i u
(2)
ij of a rule node represents the firing strength of its corresponding

rule, rj ∈ [0, 1] is called the compensatory degree. By tuning rj , the compen-
satory operator becomes more adaptive.

Layer4(OutputNode): This layer acts a defuzzifier. The node in this layer is
labeled Σ and its sums all incoming signals to obtain the final inferred result

u
(4)
k =

∑

j

u
(3)
j wjk (6)

where the weight wjk is output action strength of the kth output associated with
the jth rule and u

(4)
k is the kth output of the RCNFS.

4 The On-Line Learning Algorithm

In this section, we present an on-line learning algorithm for constructing the
RCNFS. The proposed learning algorithm consists of structure learning phase
and parameter learning phase. The structure learning is based on the degree
measure to determine the number of fuzzy rules. The parameter learning is base
upon supervised learning algorithms.

4.1 The Structure Learning Phase

The first step in the structure learning is to determine whether or not to extract
a new rule from training data as well as the number of fuzzy sets on the uni-
versal of discourse of each input variable. Since one cluster in the input space
corresponds to one potential fuzzy logic rule, with mij and σij representing the
mean and variance of that cluster. For each incoming pattern xi the strength a
rule is fired can be interpreted as the degree the incoming pattern belongs to the
corresponding cluster. For computational efficiency, we can use compensatory
operation of the firing strength obtained from [

∏
i u

(2)
ij]1−rj+

rj
n directly as this

degree measure

Fj = [
∏

i

u
(2)
ij]1−rj+

rj
n (7)

614 ChiYung Lee and ChengJian Lin

where Fj ∈ [0, 1]. Using this degree measure, we can obtain the following criterion
for the generation of a new fuzzy rule of new incoming data is described as
follows. Find the maximum degree

Fmax = max1≤j≤R(t)Fj (8)

where R(t) is the number of existing rules at time t. If Fmax ≤ F , then a new rule
is generated where F ∈ (0, 1) is a prespecified threshold that decays during the
learning process. Once a new rule is generated, the next step is to assign initial
mean, variance, and weight of feedback for the new membership function. Since
our goal is to minimize an objective function and the mean, variance, and weight
of feedback are all adjustable later in the parameter learning phase. Hence, the
mean, variance, and weight of feedback for the new membership function are set
as follow: m

(R(t+1))

ij = xi, σ
(R(t+1))

ij = σinit, and θ
(R(t+1))

ij = random, where xi is
the new input data and σinit is a prespecified constant.

The whole algorithm for the generation of new fuzzy rules as well as fuzzy
sets in each input variable is as follows. Suppose no rules are existent initially:
Step 1: IF xi is the first incoming pattern THEN do

{ Generate a new rule
with mean mi1 = xi, variance σi1 = σinit, weight of feedback θi1 = random,
compensatory degree c1 = random, d1 = random, weight w1 = random
where σinit is a prespecified constant.
}

Step 2: ELSE for each newly incoming xi, do
{ Find Fmax = max1≤j≤R(t)Fj

IF Fmax ≥ F
do nothing

ELSE
R(t+1) = R(t) + 1 generate a new rule

with mean m
(R(t+1))

ij = xi , variance σ
(R(t+1))

ij = σinit , weight of

feedback θ
(R(t+1))

i1 =random, compensatory degree c
(R(t+1))

j =random,

d
(R(t+1))

j = random, weight w
(R(t+1))

j = random
where σinit is a prespecified constant.

}

4.2 The Parameter Learning Phase

After the network structure is adjusted according to the current training pattern,
the network then enters the parameter learning phase to adjust the parameters of
the net-work optimally based on the same training pattern. The learning process
involves the determination of minimize a given cost function. The gradient of
the cost function is computed and adjusted along the negative gradient. The
idea of backpropagation algorithm is used for this supervised learning method.
Considering the single output case for clarity, our goal is to minimize the cost
function E is defined as

Prediction of Time Sequence 615

E =
1
2
[y − yd]2 (9)

where yd is the desired output and y is the current output. Using the steepest-
descent gradient approach, the learning rule for a network weight in any one of
the network layers is given by

∆W = − ∂E

∂W
(10)

The weight is updated according to the following equation:

W (t + 1) = W (t) + ηw∆W (11)

where factor ηw is the learning rate parameter of the weight and t denotes the
iteration number.

5 Prediction of Time Sequence

To clearly verify if the proposed RCNFS can learn the temporal relationship,
a simple time sequence prediction problem found in [7] is used for test in the
following example. The test bed used is shown in Figure 2(a). This is an 8 shape
made up of a series with 12 points which are to be presented to the network
in the order as shown. The RCNFS is asked to predict the succeeding point
for every presented point. Obviously, a static network cannot accomplish this
task, since the point at coordinate (0,0) has two successors: point 5 and point
11. The RCNFS must decide the successor of (0,0) based on its predecessor; if
the predecessor is 3, then the successor is 5, whereas if the predecessor is 9, the
successor is 11.

In this example, the RCNFS contains only two input nodes, which are acti-
vated with the two dimensional coordinate of the current point, and two output
nodes, which represent the two dimensional coordinate of the predicted point.
The learning rate ηw = ηc = ηd = ηm = ησ = ηθ = 0.05, and the prespecified
threshold are chosen. After training, a root-mean-square (rms) error of 0.000237
is achieved, and the predicted values with 12 fuzzy logic rules (σ = 0.08) of
RCNFS are shown in Figure 2(b). Simulation results show that we can obtain
perfect prediction capability. Figure 2(c) shows the prediction results using the
RFNN model [2]. In this figure, the RFNN also obtain prediction capability,
but some time prediction points cannot be matched exactly. Figure 2(d) shows
that a feedforward fuzzy neural network cannot predict successfully. Figure 2(e)
shows the learning curves of the RCNFS model, the RFNN model and the FNN
model. From the simulation results shown in Figure 2(d), we can see that the
FNN is inappropriate for time sequence prediction because of its static mapping.
To give a clear understanding of this performance comparison with the RFNN
[2] and FNN [8] on the same problem is made in Table 1. Although the RCNFS
needs more adjustable parameters than RFNN and FNN under the same fuzzy
rules required, our model could obtain a smaller rms error and converge quickly.

616 ChiYung Lee and ChengJian Lin

Fig. 1. Structure of the proposed RCNFS

Fig. 2. Simulation results of time sequence prediction

Table 1. Performance comparison of various existing models

6 Conclusion

A recurrent compensatory neuro-fuzzy system (RCNFS) is proposed in this pa-
per. The compensatory operators are used to optimize fuzzy logic reasoning and
select optimal fuzzy operators. Therefore, an effective neuro-fuzzy system should
be able not only to adaptively adjust fuzzy membership functions but also to
dynamically optimize adaptive fuzzy operators. An on-line learning algorithm
is proposed to per-form the structure learning and the parameter learning. The
simulation results show that the proposed learning algorithm converges quickly
and requires a small number of tuning parameters.

References

1. Narendra, K. S., Parthasarathy, K.: Identification and Control of Dynamical Sys-
tems Using Neural Networks. IEEE Trans. on Neural Networks, 1 (1990) 4-27

Prediction of Time Sequence 617

2. Lee, C. H., Teng, C. C.: Identification and Control of Dynamic Systems Using
Recurrent Fuzzy Neural Networks. IEEE Trans. on Fuzzy Systems, 8 (2000) 349-
366

3. Zimmermann, H. J., Zysno, P.: Latent Connective in Human Decision. Fuzzy Sets
and Systems, 4 (1980) 31-51

4. Zhang, Y. Q., Kandel, A.: Compensatory Neurofuzzy Systems with Fast Learning
Algorithms. IEEE Trans. on Neural Networks, 9 (1998) 83-105

5. Lin, C. J., Chen C. H.: Nonlinear System Control Using Compensatory Neuro-
Fuzzy Networks. IEICE Trans. On Fundamentals of Electronics, Communications
and Computer Sci-ences, E86-A (2003) 2309-2316

6. Lin, C. J., Ho, W. H.: A Pseudo-Gaussian-Based Compensatory Neural Fuzzy Sys-
tem. Proceedings of the IEEE International Conference on Fuzzy Systems (2003)

7. Santini, S., Bimbo, A. D., Jain, R.: Block-Structured Recurrent Neural Networks.
Neural Networks, 8 (1995) 135-147

8. Chao, C. T., Chen, T. J., Teng, C. C.: Simplification of fuzzy-neural systems using
similarity analysis. IEEE Trans. Syst., Man, Cybern., pt. B. 26 (1996) 344-354

	Prediction of Time Sequence Using Recurrent Compensatory Neuro-fuzzy Systems
	1 Introduction
	2 The Compensatory Operator
	3 The Structure of RCNFS Model
	4 The On-Line Learning Algorithm
	4.1 The Structure Learning Phase
	4.2 The Parameter Learning Phase

	5 Prediction of Time Sequence
	6 Conclusion
	References

