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Abstract 
Statistical tolerance analysis is being studied extensively. 

Normal distributions have been traditionally assumed in tol- 
erance analysis; however, little evidence has been found to 
support that assumption in the real world. In fact, beta dis- 
tributions are found to be suited for modeling manufacturing 
processes because of the flexibility in fitting various shapes 
of distribution. In this paper, a method called the beta distri- 
bution approximation method (BDAM) is developed and 
applied to solve tolerance analysis problems. In the formu- 
lation of the BDAM, a beta distribution is employed to model 
a manufacturing process. The resultant distribution obtained 
from adding up a number of beta distributions is approximat- 
ed with a beta distribution. A validation process of the BDAM 
is carried out and the results are found to be promising. An 
example is provided to illustrate the BDAM application. 
Observations are made to conclude the paper. 

Keywords: Statistical Tolerance Analysis, Tolerance 
Synthesis, Beta Distributions, Distribution Approximation 

Introduction 
Tolerance analysis and synthesis is traditionally 

studied in a worst-case context. 1 Tolerance calcula- 
tions are conducted based on the extreme conditions 
of  a production error distribution. This approach is 
mathematically simple but may lead to unnecessarily 
tight tolerances, which increase manufacturing costs. 
Because the dimensional variations of  machined 
parts (other than single-piece production) naturally 
follow statistical distributions, the chance of  a part 
being manufactured at the extreme dimension is usu- 
ally small. Thus, statistical tolerancing methods 
make more sense as far as economics is concerned. 

Statistical tolerancing has been studied for 
decades. Many assembly statistical tolerancing mod- 
els have been proposed and investigated. Mansoor 
proposed a formulation of  statistical tolerance cal- 
culation based on a normal distribution) Parkinson 
modified it in 1984. 3 Based on their assumptions, 
the tolerance range of  the resultant dimension was 
calculated by the root sum square (RSS) method. 

The RSS calculation was developed based on an 
assumption that the resultant dimension followed a 
normal distribution. In real production, this assump- 
tion may not be valid. In fact, many component 
dimensions do not follow a normal distribution. 
Asymmetric distributions are often introduced by 
system errors, and small-dimension chains are com- 
mon. Significant errors may be introduced by this 
unrealistic formulation. 4 

Modifications to handle asymmetric production 
distributions were introduced. Spotts' modif ied 
model was used to describe the distribution of  resul- 
tant dimensions more accurately by combining the 
worst-case and statistical approaches? Bjorke studied 
a beta distribution model for the resultant dimension? 
However, the same root sum square formulation 
obtained from the normal distribution assumption 
was used in their non-normal distribution methods. 

Greenwood and Chase introduced a modified 
sum of  squares method that increased the simple 
RSS tolerance sum by a correction factor. 4 Many 
other correction factors were suggested. However, 
this approach had a serious limitation: when the 
number of  components in the assembly was two, the 
modified sum of  squares assembly tolerance was 
even greater than that obtained from the worst-case 
method. Greenwood and Chase also introduced a 
unified tolerance analysis method based on the esti- 
mated mean shift model. This method was oriented 
toward component dimensional distribution. It could 
be used to deal with different part dimensions with a 
skewed distribution and to incorporate manufactur- 
ing data related to different component dimensions 
into a design. However, this method could only 
accommodate a mean shift symmetrical to the nom- 
inal dimension. Furthermore, the determination of  
the mean shift factor might be very difficult. 7 

While it is useful under some conditions, normal 
distribution approximations and simple statistical 
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approaches do present serious limitations. Several 
studies have been conducted to solve this problem. 
The tolerancing methodology developed by Bjorke 
overcomes some of the difficulties associated with 
the normal distribution assumption? This study 
focused on the resultant distribution only, and a beta 
distribution was used to describe the resultant of a 
combination of stochastic variables. The component 
distributions were not given any treatment. 

Dong introduced a new tolerance calculation 
approach, range-truncation, to deal with statistical 
tolerancing based on component dimension distrib- 
utions rather than the resultant dimension distribu- 
tion. 8 The resultant dimension distribution was not 
studied--only the range was of concern. This 
approach took into account the statistical consider- 
ation in the calculation of the truncated distribution 
range for each component distribution. However, 
the calculation of the resultant tolerance was based 
on a given confidence level and was performed 
using the worst-case approach. This approach 
lacked the ability to handle tolerance analysis with 
manufacturing yield prediction. 

For statistical tolerance analysis, characterization of 
the process distribution is a prerequisite. Traditional 
tolerance calculations are based on the assumption of 
normal distributions. In practice, process distribu- 
tions are found skewed and/or with process mean 
shift. This may be caused by tool wear or setup 
errors. Researchers have been attempting to model the 
process distribution for tolerance analysis and synthe- 
sis. In this paper, a beta distribution approximation 
method is introduced to deal with tolerance calcula- 
tion for non-normally distributed processes. 

Beta Distribution 
Beta distributions have been chosen for this work 

because they satisfy the following requirements: (1) 
the capability of  modeling various distribution 
shapes, such as those generated by random errors, 
random distributions with changing standard devia- 
tions, or random distributions with changing expect- 
ed values; (2) the capability of  supporting the calcu- 
lation of an inverse probability distribution function, 
which determines the distribution value correspond- 
ing to a given confidence level; and (3) the capabil- 

* As opposed to a normal distribution, which extends infinitive to both 
sides of the distribution. 

ity of  modeling distributions with a finite range.* 
The beta distribution has been used in the past for 

various engineering problems? A variety of distrib- 
ution shapes can be modeled with only two shape 
parameters, cx and ~, as illustrated in Figure 1. 

The beta distribution is defined over the interval 
(0,1). To differentiate it from a real distribution over 
a finite interval (a,b), it is called the unit beta distri- 
bution. In this paper, x denotes the generalized dis- 
tribution variable over the range of (a,b), while u 
denotes the unit beta distribution variable over the 
range of (0,1). 

The unit beta probability density function is given 
as follows: 

( 5 ( ~ + ~ ) ,  Uc~-I(1--U)I3-1,O-<u- < 1,0<_c~,0_<[~ 
f(u;Ot,~j)=l l(t~)ll.P) 

~0, elsewhere 

The unit beta probability distribution function is 
defined as: 

F(U;a,13) is the probability (or confidence level) 
that u falls within the interval (O,U). U is a constant 
between 0 and 1. The probability can be calculated 

I t(x;a.[~) 

Figure 1 
Some Distribution Shapes of the Beta Family 
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given the two distribution parameters, a and 13, and 
the distribution range U. On the other hand, the dis- 
tribution range U can be calculated through the 
inverse integration of the probability distribution 
function if the distribution parameters, t~ and ~, and 
the confidence level are known. 

The mean value (g) and variance (~) of a unit beta 
distribution can be calculated from the following 
equations: 

a a/3 
/ / - - -  V= 

a + / 3  ( a + / 3 ) z ( a + / 3 +  1) 

A unit beta random variable u over the range of 
(0,1) can be rescaled and reallocated to obtain a beta 
random variable x over the interval (a,b) of the same 
shape by the transformation: 

x = a + ( b -  a )u  

The Beta Distribution 
Approximation Method 

The beta distribution approximation method 
(BDAM) was formulated and a series of tests was 
performed to validate the approximation. Results of 
the beta distribution approximation are found to be 
promising. In the following, the beta distribution 
approximation method is described, as well as its 
validation process. 

Needs for the BDAM 
The distribution of a resultant dimension Xr 

depends on the distributions of the component 
dimensions X~, (i=l,2,...,n). The distribution of X, 
may therefore be an unknown distribution. 

For a tolerance analysis problem, to find the man- 
ufacturing yield* and the tolerance range, the resul- 
tant dimension distribution should be defined first. 
There are three approaches to find the resultant dis- 
tributions: (1) analytical method, (2) simulation, and 
(3) approximation. 

Analytical Method 
An example of an analytical method is the root 

sum square (RSS) based on the assumption of all 
component dimensions following a normal distribu- 
tion. 2,1°,n It is assumed that component dimensions 
are normally distributed with known means and 
standard deviations. The nominal value of  the resul- 

tant dimension is then calculated by summing up the 
mean value with respect to its direction in the 
dimension chain; the standard deviation is obtained 
by using the RSS calculation. Various models are 
described in the literature review section. 

Another analytical method is the convolution 
operation applied to two independent distributions 
to find the addition of these two distributions. In 
principle, one can convolve as many independent 
random variables as desired. In reality, however, 
performing the integration alone can be very diffi- 
cult to carry out? ° From the viewpoint of statistics, 
this convolution operation is tricky to perform. It is 
not a simple matter of plugging numbers into a for- 
mula and performing the calculation? 2 Because of 
its complexity, especially for the cases of more 
than two distributions, the convolution operation is 
seldom used in tolerance analysis and tolerance 
synthesis problems. 

Simulation 
A commonly used method is Monte Carlo simu- 

lation. This method can be applied to either normal 
distributions, non-normal distributions, or any com- 
binations. Monte Carlo simulation has been found 
accurate; however, it has major disadvantages in that 
it requires intensive computation and is very time- 
consuming.13 

Approximation 
Approximation is necessary in the calculation of 

the resultant dimension distribution when neither the 
analytical method nor simulation is adequate. 

An approximation is needed to carry out the cal- 
culation of the resultant dimension when compo- 
nent dimensions are described with beta distribu- 
tions. This is because a non-normal distribution is 
assumed. It is known that, from the statistical point 
of view, the resultant dimension follows a normal 
distribution if every component dimension is a 
normal distribution. This relationship does not 
exist for non-normal distributions.i" Furthermore, 
it has been realized that the simulation approach is 

* Yield is defined as the percentage of manufactured parts conforming to 
design specifications. 

t From the viewpoint of  statistics, in the case where the number of  compo- 
nents is sufficiently large, the resultant dimensions will follow a normal 
distribution regardless of  component dimension distributions. 
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computationally intensive and, thus, is not efficient 
if optimization procedures are combined with a 
simulation approach. 

Principle  o f  the B D A M  
It is known that the distribution of  the resultant 

dimension, the sum of many beta distributions, is 
an unknown distribution. It may be a symmetric 
distribution or a skewed distribution depending on 
component dimension distributions. An approxi- 
mation method is developed to describe this 
unknown distribution for the purpose of  tolerance 
analysis. The reader will see later that the beta dis- 
tribution adequately approximates the unknown 
resultant distribution. 

The principle of the distribution approximation 
method is derived on the basis of a statistical theo- 
rem, which is described as follows. 

Let X~, X2, ..., X, be n random variables, and each 
of them has a continuous distribution. If the X~'s 
(i=l,...,n) are independent of each other, the follow- 
ing relationships exist: 

E ( X ,  + X2 + . . .  + Xn) = E ( X , )  + E(X~) + . . .  + E(X, ,)  

Var(X~ + Xz +. . .  + X.) = Var(XO + Var(Xz) +. . .  + 
Var(X.) 

Assume that the dimension of a component is a 
random variable and that it follows a beta distribu- 
tion with parameters t~ and [3. Each component is 
fabricated either on a different machine, by a differ- 
ent operator, or at a different time; thus, dimensions 
of components can be considered independent of 
each other. 

The purpose of the BDAM calculation is to find 
the parameters of  the approximated resultant 
dimension distribution. Through the following 
steps, the approximated resultant dimension can be 
obtained. 

1. Given the component dimension distribution 
parameters t~i, 131 (i=l,...,n), calculate the expect- 
ed value, gi, of each component. 

2. Calculate the variance agi of  each component 
dimension. 

3. Let g, be the expected value of the resultant 
dimension and ag, be the variance of the resultant 
dimension; g, and agr can be obtained, that is, 

/l n 

i=l i=l 

4. The parameters of  the resultant dimension dis- 
tribution, ~, and [3,, can be obtained by solving 
two equations with two unknowns and are 
shown as follows. 

- -  __ - -  p 
- l , t ;  - I . t , v ,  

Otr= 
v "  

fl, _ 1 --_~r ~ r  = (1 - ~ , ) ( ~ r  ~ - -  ~ r  3 - -  ~ r ~ ) ; )  

where: 

1 1 " 
= -  

~ r  n • r  p i  
-= 

1 1 4 ,  
1)" = n ~ I), n z i~:l l~, 

g, and v', are normalized mean value and variance, 
respectively, of the unit beta distribution for the 
resultant dimension. 

Validation o f  the B D A M  
To evaluate the beta distribution approximation 

method, a validation process has been defined and 
implemented. The validation process utilizes a ran- 
dom number generator found in a commercial statis- 
tics software.* The random number generator is capa- 
ble of generating various distributions with required 
distribution parameters; for instance, the mean and 
standard deviation for a normal distribution. 

There are several cases that need to be considered 
before the validation process is performed. It is 
essential that the validation covers as many cases of 
real production processes as possible. Based on this 
consideration, production processes are classified 
into three groups: (I) distributions with randomly 
generated parameters, (II) distributions with left (or 
negative) skewed parameters, and (III) distributions 
with right (or positive) skewed parameters. To be 
more specific, the parameters of distributions in 
Group I were generated randomly within a certain 
interval. No constraints are applied to those parame- 
ters. The parameters of distributions in Group II 
were generated the same way as those in Group I, 

* MINITAB, from MINITAB, Inc., was utilized and several macros were 
written to perform the validation process. 
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except that only parameters that caused the distribu- 
tion to be left-skewed were accepted. Likewise, the 
parameters of distributions in Group III were gener- 
ated using parameters that caused the distribution to 
be right-skewed. The first group distributions mimic 
the common production condition, while the second 
and third groups handle situations where a mean 
shift in production occurs. 

The validation steps are as follows: 

1. Define validation process parameters. 
The number of the component distributions, 

N, is set to 2, 3, 4, 5, and 6 in sequence. Results 
from a number larger than 6 are found similar to 
that of 6. The number of data points for each dis- 
tribution, M, is set to 3000. The maximum num- 
ber of validation runs, L, is set to 100. The set- 
tings of M and L far exceed the level required to 
provide enough statistical confidence. 

2. Initialize the number of  component distribution: 
set N = 2. 

3. Generate 2 × N seeds, in the range of (2.0, 8.0). 
These seeds are the parameters of the compo- 

nent beta distributions. For Group II distribu- 
tions, these seeds are generated to meet the left- 
skewed arrangement. For a beta distribution 
with parameters o~ and [3, left-skewed arrange- 
ment means o~ > [3. In contrast, for Group III dis- 
tribution, the parameters are generated for o~ < 13- 

4. Set the counter of runs for each N: set i = 1. 
5. Generate N data sets of  beta distributions using 

the random number generator. 
For each data set, the number of points was M 

= 3000. 
6. Sum up the corresponding data points in each 

data set and obtain a resultant distribution, Do, 
with 3000 data points. 

7. Calculate the normalized distribution by divid- 
ing the values of data points by N. 

The purpose of normalization is to maintain 
the distribution range within (0,1) so that the 
beta distribution parameters can be found. 

8. Find the normalized sample mean and standard 
deviation. 

9. Generate a beta distribution, D1, with parameters 
derived from the sample mean and sample stan- 
dard deviation. Calculate the least sum of 
squares error (E0 from D1 and Do. 

10. Generate a beta distribution, D2, with parameters 

derived from the BDAM. Calculate the least 
sum of squares error (E2) from/)2 and Do. 

11. Generate a normal distribution, /93, from the 
sample mean and sample standard deviation. 
Calculate the least sum of squares error (E3) 
from D3 and Do. 

12. Generate a normal distribution, D4, with parame- 
ters derived from the BDAM. Calculate the least 
sum of squares error (E4) from D4 and Do. 

13. Generate a normal distribution, Ds, with cen- 
tered mean and sample standard deviation. 
Calculate the least sum of squares error (Es) 
from Ds and Do. 

14. Generate a normal distribution, D6, with cen- 
tered mean and standard deviation derived from 
the BDAM. Calculate the least sum of squares 
error (E6) from D6 and Do. 

15. Record the E{s for later calculation. Add one (1) 
to the number of runs counter i. 

16. If i < L, that is, more runs are needed, then go to 
step 5. Otherwise, increase N by one (1) and 
check if N > 6. 

17. If the validation process is completed (N > 6), 
average the E{s and end the process; otherwise, 
go to step 3. 

The validation process was performed on a 486 
PC, and the total elapsed time is 7.50 hours for all 
distribution groups. The results of  this study are 
tabulated in Tables 1, 2, and 3 on the following 
pages. 

The columns of approximation types are entitled 
'beta-s', 'beta-d', 'norm-s', 'norm-d',  'norm-cs', 
and 'norm-cd'. The prefix 'beta' means that the 
errors are introduced by using beta distributions to 
approximate the resultant distribution, while 'norm' 
stands for approximations using normal distribu- 
tions. The suffix 's '  indicates that distribution para- 
meters are computed from distribution data sam- 
ples, while 'd '  is for parameters derived from the 
BDAM. The suffix 'c '  indicates a centered mean. 
Referring to the step-by-step description of the val- 
idation process, those values in their corresponding 
columns a r e  E l ' S ,  E2's, E3's, E4's, Es's, and En's, 
respectively, and were obtained from the least sum 
of squares errors of distribution Do versus D~, D2, 
D3, D4, Ds, and D6, respectively. 

Tables 1, 2, and 3 show the least sum of squares 
errors for Group I, II, and III distributions, respec- 
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TaMe 1 
Least Sum of Squares Errors (Group I Distributions) 

Table 2 
Least Sum of Squares Errors (Group II Distributions) 

Number of Least Sum of Squares Errors Number of Least Sum of Squares Errors 
Components beta-s beta-d norrn-s norm-d norm-cs norm-cd Components beta-s beta-d norm-s norm-d norm-cs norm-cd 

2 0.070 0.093 0.088 0.094 26.510 26.535 
3 0.039 0.057 0.095 0.103 30.142 30.204 
4 0.031 0.041 0.032 0.051 6.784 6.833 
5 0.017 0.027 0.018 0.029 1 . 6 5 8  1.581 
6 0.017 0.027 0.019 0.028 0.200 0.207 

2 0.053 0.051 0.198 0.228 44.297 43.974 
3 0.042 0.058 0.121 0.134 38.469 38.462 
4 0.043 0.056 0.076 0.107 32.494 32.903 
5 0.025 0.034 0.050 0.055 64.369 64.026 
6 0.023 0.029 0.034 0.043 34.121 34.081 

0 . 1 2 0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0.080 • 

0.060 • 

0 . 0 4 0  • ~ . . . . . . . . . . . . . . .  

0.020 r ~  . . . . .  i . . . .  

0000 m , i i 
beta-s beta-d norm-s norm-d 

m x ~  2 Approximation types 

~ 4  

Figure 2 
Plot of Approximation Errors Versus Approximation Types 

(Group I Distributions) 
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0.05 ~ ;,.~-~.- -I' . . . . .  - - ~  
' ~ l ~  ~ ~ 0  " 0  
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beta-s beta-d norm-s norm-d 

Approximation types 

- - 4 - - - 4  

m ' t ' m  5 

Figure 3 
Plot of Approximation Errors Versus Approximation Types 

(Group II Distributions) 

tively. Figures 2, 3, and 4 illustrate the plots of  
approximation errors versus approximation types, 
except 'norm-cs' and 'norm-cd' because of  their 
large errors. It is obvious that the approximation 
errors from a normal distribution with centered 
mean, labeled 'norm-cs' and 'norm-cd', are relative- 
ly larger than that of  the others. Comparing the first 
four columns of  the approximation types, 'beta-s', 
'beta-d', 'norm-s', and 'norm-d', the difference in 
the approximation errors for each type is very close 
when using either five or six components for both. 
This means that when the component number is 
greater than five, both beta and normal distributions 
will obtain close approximation accuracy. In prac- 
tice, when the number of  components is larger than 
five, the resultant dimension distribution is a normal 
distribution, regardless of  the distributions of  the 
components, t3 This finding is consistent with other 
studies found in open literature. 

Another observation is that the least sum of  
squares errors obtained from a beta distribution 
with parameters derived from a sample mean and 
sample standard deviation are the smallest, in most 
cases (see columns labeled 'beta-s'). This observa- 
tion reveals that the beta approximation using a 
sample mean and standard deviation appears to be 
the best approximation. Because this approximation 
needs a sample mean and standard deviation, and is 
similar to the Monte Carlo simulation method, it is 
less suitable if  combined with an optimization pro- 
cedure in tolerance synthesis problems. The reason 
is that it requires a great deal o f  computational time. 
The next best choice, then, is the BDAM, which is 
labeled 'beta-d'. From the results shown in the 
tables, errors from the BDAM are generally smaller 
than those of  normal distributions (labeled 'norm-s' 
and 'norm-d'), especially in the cases of  Group II 
and III distributions. This implies that the BDAM 
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Table 3 
Least Sum of Squares Errors (Group l lI  Distributions) 

Number of Least Sum of Squares Errors 
Components beta-s beta-d norm-s norm-d norm-cs norm-cd 

2 0.057 0.081 0.341 0.388 89.996 89.452 
3 0.033 0.040 0.129 0.161 70.309 69.975 
4 0.037 0.040 0.091 0.088 58.130 57.903 
5 0.028 0.034 0.044 0.047 35.771 35.542 
6 0.019 0.031 0.033 0.039 38.333 38.323 

0.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
035  . . . . . . . . . . . . . . . . . . . . . . . . .  

0.25 , i ~ Z [ Z Z Z ~ ~  0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0.2 ,  

0.15 , 

0 . 1 '  

o.o5, k 
0 I I I 
beta-s beta-d norm-s norm-d 

Approximation types 

Figure 4 
Plot of Approximation Errors Versus Approximation Types 

(Group III Distributions) 

can handle the skewed distributions better than the 
normal distribution. 

Other findings from the validation process of the 
BDAM are as follows: 
• For all groups of distributions, approximation 

using a normal distribution with centered mean 
appeared inadequate. 

• When the component number is larger than five, 
the approximation errors of beta and normal dis- 
tributions (with sampled or derived parameters) 
are very close. 

• Using the beta distribution with a sample mean 
and standard deviation appeared to be the best 
approximation method. However, it is less suit- 
able in tolerance synthesis if combined with an 
optimization procedure. 

• Comparing the least sum of squares errors, the 
BDAM using the beta distribution with derived 
parameters is a good choice. In most cases, 
errors of the BDAM are smaller than those of 
normal distributions. 

Application of the BDAM in 
Tolerance Analysis 

Tolerance analysis is a procedure that verifies the 
resultant tolerance by identifying the individual 
dimensions and stacking up those related tolerances. 
If design requirements are not met, tolerance values 
of individual components are adjusted and the resul- 
tant tolerance is recalculated. In Figure 5, two indi- 
vidual dimension distributions are shown on the left- 
hand side, while the resultant dimension distribu- 
tion, which is the dimension of concern and is the 
summation of the two given individual dimensions, 
is illustrated on the right-hand side. The dashed line 
in Figure 5 indicates an unknown dimension distrib- 
ution coming from a real manufacturing situation. 

The distribution approximation method is applied 
to tolerance analysis. The component distributions 
are assumed to follow beta distributions and to be 
independent of each other. The calculations are con- 
ducted using the following procedures. 

1. Identify n related component dimensions, X~ ± ~i 
and f ,  i = 1, 2, ..., n, in the dimension chain, f 
indicates the direction of i-th link in the dimen- 
sion chain. Its value is either +1 or -1, depend- 
ing on the direction of the link. 

2. Find the lower and upper specification limits, 
denoted X~i and XUg, respectively, and their corre- 
sponding distribution parameters, t~ and ~i. 
Xtl and X~i can be obtained as follows: 

~I/i : X / -  ~i ~'u i ~-- X / q -  ~i 

. 

4. 

Apply the BDAM to find parameters of the 
resultant dimension distribution, o~r and ~,. 
Find the lower and upper limits, a and b (see 
Figure 6), for the resultant dimension from the 
following equations: 

n 

a=XfAi  b=EfBi  
i = 1  i = 1  

Figure 5 
Individual and Resultant Dimension Distributions 

for Tolerance Analysis 
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f(r,a,[~) (~.~) 

a Ta Tb b 

Figure 6 
A Beta Distribution 

where 

[ 
IX/, i f f  = +1 

Ai = ' - -[  X/~, i f f  -1 

, ,  i f f  = +1 

5. Calculate T. and Tb using an inverse unit beta 
probability distribution function with z% confi- 
dence level and equal tail probability. 

6. Obtain the resultant dimension and its tolerance: 
Xr -~- Sr 

T. + T~ Tb- Ta 
where Xr - - -  and 8r -- 

2 2 

An Example 
A grinder head assembly (see Figure 7) is adopt- 

ed from Lange 14 as an example to illustrate the cal- 
culation of tolerance analysis. The assembly consists 
of 15 parts. For tolerance analysis, three major parts 
are considered: housing, cap, and shaft. 

For a tolerance analysis problem, a dimension 
chain is formed and the related dimensions are iden- 
tified. A dimension chain consists of two types of 
links: resultant link and component link. In the 
grinder head assembly example, the resultant link of 
the dimension chain is the dimension of  protrusion 
on shaft shoulder (X, -4- 8,), and the component links 
are related dimensions from housing, cap, and shaft 
parts, denoted in Figure 6 as X~ + 81, )(2 + 82, and )(3 
± 83, respectively. It is noted that, in this example, 
bilateral tolerance expression is utilized. In fact, the 
BDAM is able to handle cases of unilateral tolerance 
expression. 

To analyze the dimension on the shaft shoulder, 
the dimension specification of related component 
links should be given. Table 4 shows the information 

-,- x 3 + ~  , 

• e - .  X r + ¢ 3  r 

Figure 7 
A Grinder Head Example 

needed to carry out the tolerance analysis calcula- 
tion. In Table 4, the nominal dimension, tolerance 
specification, and machining information for each 
part are given. For instance, the dimension on the 
housing of the grinder head is specified as 5.000 + 
0.002 in. A process is selected to produce this 
dimension for the housing part, which determines 
the tolerancing specification and is modeled by a 
beta distribution with parameters (¢x, 13) = (3.4, 3.4). 
Parameters for each process can be obtained from 
machine accuracy and historical production data. 

Applying the tolerance analysis procedures men- 
tioned earlier, intermediate information can be 
obtained and is shown as follows: a -- 0.088, b = 
0.112, ~xr = 11.721, and ~r = 12.590. 

The inverse beta distribution function can be 
found in most commercial spreadsheet software pro- 
gram. The input to the inverse beta distribution func- 
tion is a cumulative probability, shape parameters 
(o~, ~), and generalized distribution range (a, b). The 
function returns the value ofx  (see Figure 6), which 
is, in terms of tolerance analysis, the resultant 
dimension. If 99.73% assembly yield is assumed, 
then the result obtained from the BDAM is 0.09965 

Table 4 
Design and Manufacturing Information 

Assembly Nominal Unilateral Direction Beta 
Component Dimension Tolerance Vector Parameters 

(i) (X~) (8i) (f) (c(,~) 

(1) Housing 5.000 0.002 --1 (3.4,3.4) 

(2) Cap 1.500 0.005 -1 (4.2,3.6) 

(3) Shaft 6.600 0.005 +1 (3.1,4.5) 

157 



Journal of Manufacturing Systems 
Vol. 16/No. 2 
1997 

+ 0.00675 in. In other words, the dimension of  pro- 
trusion on the shaft shoulder varies from 0.0926 in. 
to 0.1064 in. 

Conclusions 
A method called the beta distribution approxima- 

tion method was developed. This method overcomes 
several difficulties of  traditional normal distribu- 
tion-based tolerance analysis approaches. It provides 
an avenue to apply tolerance analysis to real-world 
manufacturing problems. 

Several conclusions came from this study: 
• The beta distribution is appropriate to model 

manufacturing processes because of its distribu- 
tion properties. 

• The calculation of the BDAM is deterministic, 
which requires significantly less computation 
than that of  a simulation method. 

• The approximation errors from the BDAM are 
relatively small, and therefore, the BDAM pro- 
vides a reliable method for approximating the 
unknown resultant distribution. 

• The BDAM handles a small dimension chain 
well. When there is a small number of compo- 
nents in a dimension chain, the BDAM still pro- 
vides a good analysis result. 

• The BDAM can be applied to tolerance analysis 
because the resultant distribution can be found. 
This method can also be utilized to tolerance syn- 
thesis if combined with an optimization procedure. 
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