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The rook problem on saw-toothed chessboards
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Abstract

A saw-toothed chessboard, or STC for short, is a kind of chessboard whose boundary forms two staircases from left down to
right without any hole inside it. A rook at square (i, j) can dominate the squares in row i and in column j . The rook problem of
an STC is to determine the minimum number of rooks that can dominate all squares of the STC. In this paper, we model an STC
by two particular graphs: a rook graph and a board graph. We show that for an STC, the rook graph is the line graph of the board
graph, and the board graph is a bipartite permutation graph. Thus, the rook problem on STCs can be solved by any algorithm for
solving the edge domination problem on bipartite permutation graphs.
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1. Introduction

A chessboard is an m × n array of squares, where m is the number of rows and n is the number of columns. A
hole is a missing square in a chessboard. If a chessboard has holes, it may be in some particular shape. A saw-toothed
chessboard, or STC for short, is a kind of chessboard whose boundary forms two staircases from left down to right
without any hole inside it. Fig. 1 shows two examples of chessboards: Fig. 1(a) is a chessboard with two holes, while
Fig. 1(b) is a saw-toothed chessboard.

On an m × n chessboard, we can put one rook at some square (i, j), where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then,
this rook can dominate the squares in row i and in column j . The rook problem of a chessboard is to determine the
minimum number of rooks that can dominate all squares of the chessboard. For example, in Fig. 1(b), all squares can
be dominated by four rooks located at squares (1, 1), (3, 2), (4, 6), and (5, 3).

The chessboard domination problem was first mentioned in 1862 [4] which can also be found in [2]. One of the
well-known chessboard domination problems is the n-queens problem. The n-queens problem is to place n queens on
an n × n chessboard so that no two queens threaten each other; i.e. no two queens may be in the same row, column,
or diagonal. In 1892, Ball gave the values of the minimum dominating number of the queen domination problem on
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Fig. 1. Examples of chessboards. (a) A 7 × 5 chessboard with two holes. (b) A 7 × 6 saw-toothed chessboard.

Fig. 2. A chessboard and its rook graph and board graph. (a) A chessboard. (b) The corresponding rook graph. (c) The corresponding board graph.

an n × n board, where n ≤ 8 [1]. The chessboard domination problem is still studied, and some recent results can be
found in [2,3,9].

The rook problem is different to the n-queens problem. A rook can move to any position in the row or column in
which it lies, while a queen can move to any position in the row, column, or diagonals in which it lies [6]. In [11],
Yaglom et al. showed that the minimum number of rooks to dominate an n × n chessboard is n.

In this paper, we discuss some properties of the rook problem on STCs. We model an STC by two particular graphs:
a rook graph and a board graph. We show that for an STC, the rook graph is the line graph of the board graph, and the
board graph is a bipartite permutation graph. Then, we conclude that the rook problem on STCs can be solved by any
algorithm for finding a minimum edge dominating set on bipartite permutation graphs.

2. Some properties of the rook problem on STCs

In this section, we introduce some properties of the rook problem on STCs. An undirected graph Gr is called the
rook graph of a chessboard if each vertex of Gr corresponds to a distinct square of the chessboard such that two
vertices of Gr are adjacent if and only if their corresponding squares are in the same row or in the same column
without any hole between them. For example, Fig. 2(b) shows the rook graph of the chessboard in Fig. 2(a), where
vertices v1, v2, v3, v4, v5, v6, and v7 correspond to squares (1, 1), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), and (3, 2),
respectively. Since square (1, 2) is a hole in the chessboard, there is no edge incident to both v1 and v2. Moreover,
vertices v1, v3, and v6 form a clique since there is no hole in column 1.

The board graph Gb of a chessboard has two parts of vertices, say r vertices and c vertices, such that row i
(respectively, column j) of the chessboard corresponds to vertex ri (respectively, c j ) of Gb and there is an edge
incident to vertices ri and c j in Gb if and only if square (i, j) is not a hole. Fig. 2(c) shows the board graph of the
chessboard in Fig. 2(a).

An m × n saw-toothed chessboard can be represented by m tuples. A tuple (ri , ci , di ) describes the squares in row
ri of the STC, where ci (respectively, di ) is the column index of the first (respectively, the last) non-hole square in row
ri . Notice that c1 = 1 and dm = n. Thus, the STC in Fig. 1(b) can be represented by tuples (1, 1, 3), (2, 1, 3), (3, 1, 5),
(4, 3, 6), (5, 3, 6), (6, 6, 6), and (7, 6, 6). By the definition of an STC, we have the following property.

Property 1. Let (ri , ci , di ) and (r j , c j , d j ) be two tuples of an m × n STC, where 1 ≤ i < j ≤ m, then ci ≤ c j and
di ≤ d j . Moreover, c j ≤ di + 1 if j = i + 1.

Let Gr and Gb be the rook graph and board graph respectively of an m × n STC. Then, we have the following
lemma.
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Fig. 3. Gb has a strong ordering of X ∪ Y .

Lemma 2. Let x and y be two vertices of Gr , and let ex and ey be two edges of Gb corresponding to x and y. Then,
(x, y) is an edge of Gr if and only if ex and ey are adjacent in Gb.

Proof. By the definition of a rook graph, if (x, y) is an edge of Gr , then the squares of the STC corresponding to x
and y are in the same row or in the same column. This implies that ex and ey are incident to a common vertex in Gb.
For the other part of this proof, since ex and ey are adjacent, the squares of the STC corresponding to ex and ey are in
the same row or in the same column. Since these two squares are not holes, by the definition of an STC, there is no
hole between them. Therefore, there is an edge incident to both x and y in Gr . �

Let G be a graph. The line graph L(G) of G is defined as follows [5]: Each vertex of L(G) corresponds to a distinct
edge in G and two vertices of L(G) are adjacent if and only if the two corresponding edges in G are adjacent. For any
line graph L(G), we say G is the original graph of L(G).

Lemma 3. Gr is the line graph of Gb.

Proof. It is from the definition of a board graph and Lemma 2. �

A graph G is a bipartite graph if its vertex set can be partitioned into two subsets X and Y such that every edge
of G joins X with Y [5]. In a bipartite graph G = (X ∪ Y, E), a strong ordering of the vertices of G consists of an
ordering of X and an ordering of Y such that for all (x, y′) and (x ′, y) in E , where x , x ′

∈ X and y, y′
∈ Y , if x < x ′

and y < y′, then (x, y) and (x ′, y′) are in E . A bipartite graph G = (X ∪ Y, E) is a bipartite permutation graph if
there exists a strong ordering of X ∪ Y [7,10].

Lemma 4. Gb is a bipartite permutation graph.

Proof. Clearly, Gb is a bipartite graph, and we let Gb = (X ∪ Y, E). Without loss of generality, assume that X
(respectively, Y ) has m (respectively, n) vertices in the ordering of r1, r2, . . . , rm (respectively, c1, c2, . . . , cn), in
which ri (respectively, c j ) corresponds to row i (respectively, column j) of the STC. Let ra , rb be two vertices of X
and cp, cq be two vertices of Y , where ra < rb and cp < cq . Suppose that (ra, cq) and (rb, cp) are two edges of Gb.
Then, squares (ra, cq) and (rb, cp) of the STC are not holes. Since square (rb, cp) is not a hole, square (ra, cp) cannot
be a hole by Property 1. Similarly, square (ra, cq) is not a hole, and square (rb, cq) cannot be a hole. (See Fig. 3.)
Thus, (ra, cp) and (rb, cq) are two edges of Gb, and Gb is a bipartite graph with a strong ordering of X ∪ Y . �

Let G = (V, E) be a graph. A vertex dominating set DV of G is a subset of V such that every vertex of G not in
DV is adjacent to one vertex of DV . A minimum vertex dominating set has the minimum number of vertices among all
vertex dominating sets. Similarly, an edge dominating set DE of G is a subset of E such that every edge of G not in
DE is adjacent to one edge of DE , and a minimum edge dominating set is an edge dominating set with the minimum
number of edges. Then, we have the following result.

Theorem 5. The following problems are equivalent:
(i) finding the minimum number of rooks of an m × n STC,

(ii) finding a minimum vertex dominating set of Gr ,
(iii) finding a minimum edge dominating set of Gb.

Proof. We complete this proof by two equivalences.
(i) is equivalent to (ii): It is directly from the definition of a rook graph.
(ii) is equivalent to (iii): Let G be a graph and L(G) its line graph. Clearly, an edge dominating set of G corresponds
to a vertex dominating set of L(G), and vice versa. Thus, the problem of finding a minimum vertex dominating set of
Gr is equivalent to the problem of finding a minimum edge dominating set of Gb. �
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3. Concluding remarks

In this paper, we define a saw-toothed chessboard (or STC) and model it by its rook graph Gr and board graph Gb.
We also introduce some properties of the rook problem on STCs. Finally, we have the result that the rook problem
of an STC is equivalent to the problem of finding a minimum edge dominating set of Gb. Since Gb is a bipartite
permutation graph, we can solve the rook problem of an STC by applying any algorithm for finding a minimum edge
dominating set on bipartite permutation graphs. In [8], Srinivasan et al. proposed an O(nm + n2) time algorithm for
the edge domination problem on bipartite permutation graphs, where n is the number of vertices and m the number of
edges. If we use their algorithm, the rook problem of an m × n STC can be solved in O((m + n)mn) time since the
number of vertices in Gb is m + n and the number of edges in Gb is at most mn. We are trying to find a more efficient
algorithm for the rook problem on STCs.
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