國立勤益技術學院九十二學年度研究所招生初試試題卷

所別:生產系統工程與管理	組別:產業決策資訊	身分別 : 一般生
科目:作業研究	准考證號碼 :	(考生自填)
考生注意事項:		
一、考試時間 100 分鐘		
二、不得帶計算機		

試題:

(-), A service station has one gasoline pump. Cars wanting gasoline arrive according to a Poisson process at a mean rate of 15 per hour. However, if the pump already is being used, these potential customers may balk (drive to another service station). In particular, if there are n cars already at the service station, the probability that an arriving potential customer will balk is n/3 for n=1,2,3. The time required to service a car has an exponential distribution with a mean of 4 minutes.

- (a) Construct the rate diagram for this queueing system.(5%)
- (b) Develop the balance equations.(5%)
- (c) Solve these equations to find the steady-state probability distribution of the number of cars at the station.(5%)
- (d) Find the expected waiting time (including service) for those cars that stay.(5%)

(二)、下列為一 PERT 資料,數字為期望作業時間,字母為作業名稱。

- (a)、要徑為何?,期望完工時間為何?(需列出計算過程)(10%)
- (b)、若以線性規劃(LP)處理,請寫出其線性規劃模式(無需求解)。(10%)

 (\equiv) Consider the transportation problem with the tableau below: (each 2 points, total 20 points)

a. How many basic variables will this problem have? _____

b. An initial basic feasible solution is found using the "Northwest Corner Method"; complete the computation (excluding x_{11}) $x_{21} = _$, $x_{22} = _$, $x_{23} = _$, $x_{33} = _$. c. If u_1 (the dual variable for the first source) is equal to 0, what is the value of

 u_2 (the dual variable for the second source)? _____

- v_1 (the dual variable for the first destination)?
- v_2 (the dual variable for the second destination)?

d. Will increasing x_{12} improve the objective function? ____ (yes/no).

e. Regardless of whether the answer to (d) is "yes" or "no", what will be the value of x_{12} if it is entered into the solution?

(四) You have been assigned to arrange the songs on the cassette version of Madonna's latest album. A cassette tape has two sides (#1 and #2). The length and type of each song are given in the table below (Each 4 points, total 20 points):

Song	Tuno	Longth (minutes)	
Song	Type	Length (minutes)	
1	Ballad	4	
2	Hit	5	
3	Ballad	3	
4	Ballad & hit	2	
5	Ballad	4	
6	Hit	3	
7	neither ballad nor hit 5		
8	Ballad & hit	4	
Define the variables $y_i =$		1 if song # <i>i</i> is on side 1;	
		0 otherwise (i.e., if on side 2)	
Thus,	$1 - y_i =$	1 if song # <i>i</i> is on side 2;	
		0 otherwise (i.e., if on side 1)	

:

For each restriction, choose a linear constraint from the list (a) through (i) below.

- _____1. Side #2 must have at least 3 ballads
- _____ 2. Side #1 must have at least 2 hit songs
- _____ 3. If song #2 is on side 1, then song #3 must be on side 2
- _____4. The number of hit songs on side 2 should be no more than 2
- ____ 5. If both songs 1 & 2 are on side 1, then song 3 must be on side 2.

```
a. y_2+y_4+y_6+y_8 \ge 3b. y_2+y_4+y_6+y_8 \le 2c. y_2+y_4+y_6+y_8 \ge 2d. y_2+y_3 \le 1e. y_1+y_2-y_3 \le 2f. y_1+y_2+y_3 \le 2g. y_1+y_3+y_4+y_5+y_8 \le 2h. y_2+y_3 \ge 1i. y_1+y_2-y_3 \ge 2j. y_1+y_2+y_3 \le 1k. y_1+y_3+y_4+y_5+y_8 \le 3l. None of theabove
```

(Ξ) A company is developing a replacement plan for its car fleet for a 5-year planning horizon. At the start of each year, a decision is made as to whether a car should be kept in operation or replaced. A car must be in service at least 1 year but must be replaced after 3 years. The following table gives the replacement cost as a function of the year a car is acquired and the number of years in operation. (Each 2 points, total 20 points)

	Replacement cost for given years in operation		
Year acquired	1	2	3
1	4000	5400	9800
2	4300	6200	8700
3	4800	7100	-
4	4900	-	-

(a) Using nodes 1 to 5 represent years, fill the blanks next to arcs that represent the replacement costs.

(b) The total cost of shortest path is _____.

