國立勤益科技大學九十六學年度研究所碩士班招生筆試試題卷

所別:工業工程與管理系碩士班

組別:乙組

科目:作業研究

7 1	+	• •		•	_		 ,					`
准	考	證號	碼	:			(考	生	自	填)
	•										4	

Operations Research

1	True/False:	Indicate b	v "O" = '	"true" (or "X" =	-"false.	" (Eac	h 4	points, t	otal 20 poi	nts)
ι,	Tinc/Lame.	111410411 -	J -					. •	C T1	D lalama	the

- ____(1) If an artificial variable is nonzero in the optimal solution of an LP problem, then the problem has no feasible solution.
- (2) The optimal value of a primal minimization LP problem is less than or equal to the objective value of every dual feasible solution.
- ___(3) A Poisson process is "memoryless."
- ____(4) If a random variable T has an exponential distribution, then $P\{T>2 \mid T\ge 1\} = P\{T>2\}$.
- ____(5) If the optimal value of a slack variable of a primal LP constraint is positive, then the optimal value of the dual variable for that same constraint must equal zero.

2. Simplex Method (Each 4 points, total 20 points)

maximize
$$z = 3x_1 + 2x_2 + 5x_3$$

subject to $x_1 + 2x_2 + x_3 \le 430$
 $3x_1 + 2x_3 \le 460$
 $x_1 + 4x_2 \le 420$
 $x_1, x_2, x_3 \ge 0$

The associated optimum tableau is as following:

1 116	associa	ica opi	11110111				
Basic	x_1	x_2	x_3	x_4	x_5	x_6	solution
z	4	0	0			0	1350
x_2	-1/4	1	0	1/2	-1/4	0	
x_3	3/2	0	1	0	1/2	0	
x_6	2	0	0	-2	1	1	

Fill out the blank cells in the above table.

3. Integer Programming Model Formulation (10 points)

The NCUT is to form a committee to handle the students' complaints. The committee must include at least one female, one male, one student, and one faculty. Eight individuals (identified by the letters a to h) have been nominated. The mix of these individuals in the different categories is given as:

Category	<u>Individuals</u>
Females	a, b, c, d
Males	e, f, g, h
Students	b, c, f,
Faculty	a, d, e, g, h

Formulate this problem as an integer linear program.

國立勤益科技大學九十六學年度研究所碩士班招生筆試試題卷

所別:工業工程與管理系碩士班 組別:乙組

科目:作業研究

准考證號碼:□□□□□□□□(考生自填)

Operations Research

1.	True/False:	Indicate by	"O" =	= "true'	' or "	'X"=	''false.''	(Each 4	l points,	total 2	0 points	s)
----	-------------	-------------	-------	----------	--------	------	------------	---------	-----------	---------	----------	----

- (1) If an artificial variable is nonzero in the optimal solution of an LP problem, then the problem has no feasible solution.
- (2) The optimal value of a primal minimization LP problem is less than or equal to the objective value of every dual feasible solution.
- ____(3) A Poisson process is "memoryless."
- ____(4) If a random variable T has an exponential distribution, then $P\{T>2 \mid T\ge 1\} = P\{T>2\}$.
- (5) If the optimal value of a slack variable of a primal LP constraint is positive, then the optimal value of the dual variable for that same constraint must equal zero.

2. Simplex Method (Each 4 points, total 20 points)

maximize
$$z = 3x_1 + 2x_2 + 5x_3$$

subject to $x_1 + 2x_2 + x_3 \le 430$
 $3x_1 + 2x_3 \le 460$
 $x_1 + 4x_2 \le 420$
 $x_1, x_2, x_3 \ge 0$

The associated optimum tableau is as following:

Basic	x_1	x_2	x_3	x_4	x_5	x_6	solution
Z	4	0	0			0	1350
x_2	-1/4	1	0	1/2	-1/4	0	
x_3	3/2	0	1	0	1/2	0	
x_6	2	0	0	-2	1	1	

Fill out the blank cells in the above table.

3. Integer Programming Model Formulation (10 points)

The NCUT is to form a committee to handle the students' complaints. The committee must include at least one female, one male, one student, and one faculty. Eight individuals (identified by the letters a to h) have been nominated. The mix of these individuals in the different categories is given as:

Category	<u>Individuals</u>
Females	a, b, c, d
Males	e, f, g, h
Students	b, c, f,
Faculty	a, d, e, g, h

Formulate this problem as an integer linear program.

4. A product has two similar brands (A, B) on market. The preference transition matrix of customers for each week is as follows:

	A	В
A	0.4	0.6
В	0.8	0.2

- (1) If a customer buys brand A this week, what is the probability that he will buy brand A again two weeks later? (10 points)
- (2) What are the market shares of these two brands when the market reaches a steady state? (10 points)
- (3) Suppose each week (there are 52 weeks per year) the total market sales of this product is 1,000,000 and the net profit for brand A is estimated 5%. Is it worth for brand A spending 300,000 to buy a promotion advertising so that the preference transition matrix of customers for each week will be changed as follows: (10 points)

	A	В
A	0.7	0.3
В	0.9	0.1

- 5. A gasoline station has one pump. Cars arrive at the station according to a Poisson process at a mean rate of 15 per hour. However, if the pump already is being used, these potential customers may balk (drive to another service station). In particular, if there are n cars already at the service station, the probability that an arriving potential customer will balk is n/3 for n=1, 2, 3. The time required to serve a car has an exponential distribution with a mean of 4 minutes.
- (1) Develop the balance equations and solve these equations to find the steady-state probability distribution of the number of cars at the station. (10 points)
- (2) Find the expected waiting time (including service) for those cars that stay. (10 points)