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In this study, a modified line-up competition algorithm (LCA) is used to solve parameter
selection problems. The so-called parameter selection problems contain parameter identi-
fication problems and optimal control problems. Once the later problems are transformed
by control parametrization, the parameters embedded in both problems are selected by the
proposed method under the framework of integration approach. Two parameter identifica-
tion problems and one optimal control problem are given to demonstrate the use of LCA.
The results show that in addition to being insensitive to the initial conditions, LCA is very
efficient in solving highly nonlinear parameter selection problems.
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1. Introduction

In many fields of science and engineering, researchers use models to explore interaction between physical system and its
surrounding. The so-called models are a set of differential and/or algebraic equations based on first principles. In order to
properly demonstrate the dynamic and static behaviors of the described systems, the models require not only suitable math-
ematical formulations but also a set of correct parameters. Notably, some of these parameters can be referred to public or
commercial data bank, while some of them need to be determined from experiments or measurements. Determining un-
known parameters in a mathematical model via the input–output data generated by the described system is entitled param-
eter identification (or parameter estimation). With similar procedure to the above, curve-fitting is to determine the best
coefficients in a presumed function so that the resultant curve may best fit a series of given data. In solving optimal control
problems (OCPs), on the other hand, transformation techniques [1,2] are to approximate state and/or control variables by
some trial function with unspecific parameters. The OCPs are thus converted into nonlinear programming problems with
the decision variables derived from the parameters. Obviously, all the above problems are eventually converted into the
problems of selecting a set of feasible parameters that may optimize (minimize or maximize) a predefined objective func-
tion. However, owing to the highly nonlinear, multi-modal and non-convex properties embedded in the problems, to acquire
a set of global parameters is still a challenging task.

With very fast convergent rate, gradient-based methods have been applied in the selection of unknown parameters very
successfully. However, these methods are very sensitive to the initial guesses, and thus often assailed by local convergence
especially for non-convex and multi-modal systems. Contrasting to the above methods, evolutionary algorithms (EAs),
including genetic algorithms, evolutionary strategies and evolutionary programming, directly generate decision vector via
some specially-designed mechanism inspired by biological world. The basic differences between these EAs are that genetic
algorithms focus on gene operations, whereas evolutionary strategies and evolutionary programming both emphasize the
behavior change of individual. Unfortunately, all of them are difficult to maintain population diversity, and to balance local
. All rights reserved.
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and global searches [3]. Additionally, they also face the problem of premature convergence. Thus, the EAs are still possible to
acquire local solutions, even the numerical efforts are paid very considerably. To overcome the above drawbacks, a brand-
new EA, entitled line-up competition algorithm (LCA) [3], is developed based on the concept of cooperation and competition
among biological population. Successfully applied to different types of static and dynamic problems [4–8], LCA have been
proved to be very advantageous over other evolutionary algorithms. In this study, LCA is applied to solve parameter selection
(PS) problems under the framework of integration approach.

In the rest of this article, An brief overview for LCA is introduced in Section 2. The detailed computational steps are also
included in the same section. The general descriptions for PS problems are presented in Section 3. The numerical illustrations
are given in Section 4. The conclusions are made in the last section.

2. Line-up competition algorithm

The basic line-up competition algorithm is originally developed to minimize the following objective function:
min
U

I ð1aÞ
subject to
hðUÞ ¼ 0;
gðUÞ 6 0;

L0
6 U 6 U0;

ð1bÞ
where U � ½u1; � � � ;uNc
�0 denotes the decision vector, which is bounded by the lower and upper bounds, L0 � ½L0

1; . . . ; L0
c �
0 and

U0 � ½U0
1; . . . ;U0

c �
0. h and g are equality and inequality constraints.

To minimize Eq. (1), LCA uniformly generates Nf trial vectors, named fathers, over the entire searching space. Based on the
corresponding objective values, these fathers are then queued in sequence, named line-up. Therein, the father with the best
objective value is placed at the first position of this sequence, while the poorest is at the last. The first generation is com-
pleted so far. Obviously, the line-up is raked in ascending order for a minimization problem, or in descending order for a
maximization problem. To promote the overall convergent rate, the size of search space is shrunk by a heuristic factor with
a value smaller than 1.0, and is systematically partitioned into Nf sub-regions (or sub-spaces). Then, each father is given a
sub-region to produce Nm trial vectors, named ‘‘offsprings”. The reduced search space is now occupied by Nf families, each
consisting Nm + 1 members. Fig. 1 shows a situation that a two-dimensional search space is occupied by four families
Nf = 4, each having five members Nm = 5. Notably, the strategy of allocating sub-regions is to give a better father a smaller
one. As a result, the father at the first position of the line-up acquires the smallest sub-region, and the father at the last posi-
tion acquires the biggest one. The purpose behind such strategy is to give the better families more chances to refine objective
values, and to give the poorer families more chances to escape from local solutions. Additionally, even having gathered
around a local region during the searches, some father can be easily re-distributed under such allocation strategy. Thus,
the local convergence can be effectively surpassed. After the above allocations, the best solution in each family is selected
in order to compete with the new fathers from other families for the prior position in new line-up. The steps including par-
tition, selection and sequencing never stop until the predefined generations. From the above descriptions, LCA intrinsically
contains two kinds of competition: one is among family members, the other is among the families. In terms of optimization,
Fig. 1. A two-dimensional space is occupied by four families with five member.
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the former competitions can be regarded as local searches with the function of thoroughly examining the possible solutions
that spread over the entire search space. The later competition is analogous to global searches. Beside selecting the current
best solution, such competition also provide the guide to rearrange the order of each family in the next line up. Thus, each
family in LCA is endowed with synchronized mission to improve the current solution and to search for new optima. Hence,
through the competitions and cooperations among the families, the global solution may be quickly approached.

As most direct random search algorithms, notably, basic LCA and other EAs use uniform sampling strategy to generate
new decision vectors. Masri and Bekey [9] have proved that such sampling policy is tend to use a large number of decision
vectors to converge solution especially for high-dimensional systems. That implies the methods using uniform sampling
strategy require larger objective function calls, and thus have slow convergence. To improve the convergence of direct ran-
dom search algorithms, Goulcher and Casares Long [10] have suggested sampling new trial vectors from the neighborhood of
the current best solution via normal (or Gaussian) distribution. The authors introduce such kind of sampling policy into LCA
to generate new offsprings in our previous studies [6–8]. The results show that such modification is very effective in largely
accelerating the convergent rate of basic LCA even the solved problems are highly nonlinear. The detailed steps of this algo-
rithm are shown in the next.

2.1. The detailed steps

1. Assign the numbers of generation, member and family, namely Ng, Nm and Nf.
2. Set the generation counter g as 1. Uniformly generate Nf decision vectors
Uð�;f ;gÞjf ¼ 1; . . . ;Nf

n o
ð2Þ
as the fathers of the first generation over the entire searched space. The fth decision vector in Eq. (2) consists of Nc decision
variables
Uð�;f ;gÞ ¼ ½uð�;f ;gÞ1 � � �uð�;f ;gÞc � � �uð�;f ;gÞNc
�0: ð3Þ
The value of uð�;f ;gÞc can be initially assigned, or produced by an uniform random number generator as follows
uð�;f ;gÞc ¼ L0
c þ f � Dðf ;gÞc ; ð4Þ
where Dðf ;gÞc ¼ U0
c � L0

c means the size of the search space for the cth decision variable; f is an uniform random number rang-
ing from 0 to 1.
3. Calculate the corresponding objective value for each father.
Uð�;f ;gÞ; Ið�;f ;gÞ
� ����f ¼ 1; . . . ;Nf

n o
: ð5Þ
4. (Competitions between families) According to the corresponding objective values, line-up the fathers and the associated
search spaces in ascending/descending order for minimization/maximization problems, namely
ðUð�;f ;gÞ; Ið�;f ;gÞ;Dðf ;gÞÞjf ¼ 1; . . . ;Nf Þ
n o

# orderingeUð�;f ;gÞ; eI ð�;f ;gÞ; eDðf ;gÞ� �
jf ¼ 1; . . . ;Nf Þ

n o
;

ð6Þ
where Dðf ;gÞ � ½Dðf ;gÞ1 ; . . . ;Dðf ;gÞNc
�0 is the size vector of the fth decision vector, eDðf ;gÞ � ½eDðf ;gÞ1 ; . . . ; eDðf ;gÞNc

�0 is the new size vector after
ordering.
5. Reduce the size of the search region of the worst family eDðNf ;gÞ, which is just the search region of this generation, to act as

the search region in the next generation
D b � eDðNf ;gÞ: ð7Þ
Notably, a small value of b is enough for simple cases. For high nonlinear cases, however, a larger b is required to globally
approach the solution.
6. Add 1 to the counter g. Calculate the new lower and upper bounds in the next generation
eLðf ;gÞc ¼max ~uð�;f ;gÞc � f � D
Nf

� �
; L0

c

� �
;

eU ðf ;gÞc ¼min ~uð�;f ;gÞc þ f � D
Nf

� �
;U0

c

� �
:

ð8Þ
The new searching space for each family is thus determined as
Dðf ;gÞc ¼ eU ðf ;gÞc � ~Lðf ;gÞc c ¼ 1; . . . ;Nc f ¼ 1; . . . ;Nf : ð9Þ
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7. Generate Nm decision vector for each family. The cth variable of the mth vector in the fth family is determined by
uðm;f ;gÞc  euð�;f ;g�1Þ
c þ kcrc m ¼ 1; . . . ;Nm; ð10Þ
where rc is the distance from the current best variable ~uð�;f ;g�1Þ
c to its nearest bound, namely
min fðeU ðf ;gÞc � euð�;f ;g�1Þ
c Þ; ð euð�;f ;g�1Þ

c � eLðf ;gÞc Þg ð11Þ
c is a pseudo-random number from a normal distribution of zero mean and one standard deviation; k is the heuristic param-
eter with the value of 1/3.
Fig. 2. The flow diagram for LCA.
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8. (Competitions between members) Select the member with the best objective value from the fth family, namely
fðUðm;f ;gÞ; Iðm;f ;gÞÞ
���f ¼ 1; . . . ;Nf g !

Select
Uð�;f ;gÞ; Ið�;f ;gÞ;Dðf ;gÞ
� �

: ð12Þ
9. If g < Ng, Go back to Step 4, otherwise stop.

Noted that the above descriptions have been diagramed in Fig. 2.

3. Problem statements

A general parameter selection problem can be posed as

min

U
I ð13aÞ
subject to

_x ¼ fðx;U; tÞ; ð13bÞ
xð0Þ ¼ x0; ð13cÞ
hðxðtÞ;U; tÞ ¼ 0; ð13dÞ
L0
6 U 6 U0; ð13eÞ
where x is (N � 1) state vector; U � ½u1; . . . ;uNc
�0 denotes the parameter vector to be identified. Derived from first principles,

Eqs. (13b) and (13c) represent the ordinary differential equations (ODEs) and the corresponding initial conditions. L equality
constraints, Eq. (13d), provide the algebraic relation among the unknown parameters or other considerations. L0 and U0 de-
note the lower and upper bounds on the parameters. Their values are in general determined by the physical intuition of sci-
entists or engineers. Notably, once there have no the time derivative terms, Eq. (13) become the descriptions for a pure
curve-fitting problem. In parameter identification problems and curve-fitting problems, the objective function, Eq. (13a),
is often cast as minimizing sum of least square errors, namely
I ¼
Xn

i¼1

Xm

j¼1

ð~xij � xijÞ2; ð14Þ
where ~xij and xij is the jth prediction for the ith state and xij the corresponding measured value; n and m are the numbers of
the state variables to be sampled and the total sampling numbers, respectively. Notably, n may be smaller than or equal to N
in most cases. In optimal control problems, Eq. (13a) can be one of the following formulations:

� Bolza type
I ¼ H½tf � þ
Z tf

0
Xðx;U; tÞdt: ð15Þ
� Lagrange type:
I ¼
Z tf

0
Kðx;U; tÞdt: ð16Þ
� Mayer type:
I ¼ K½tf �; ð17Þ
where U means the parametrized control input (s); tf represents the fixed ending time. Because Eqs. (15) and (16) both can
be converted into Eq. (17) by adding a new state variable, the Mayer-type objective function, Eq. (17), is adopted in further
discussions. To follow the above formulations, the objective functions need to change theirs sign in maximization problems.

The methods commonly used in the solution of Eq. (13) can be classified as collocation approach and integration ap-
proach. Using some trial function to approximate state variables, collocation approaches [11,12] convert Eq. (13) into a strict
algebraic form. Then, the model parameters and the coefficients can be simultaneously determined by a well-established
optimization technique. Generally speaking, the collocation approaches may converge the solutions very rapidly, especially
when the initial guesses are close to the optimum. For highly nonlinear systems, however, largely increasing the order of trial
function and the numbers of collocation elements becomes required in order for reducing the approximation errors. As a
result, the local convergence might become a very serious problem in further optimization. The integration approaches con-
tain outer and inner loops in solution procedure. Therein, the outer loop is responsible for the selection and production of
trial parameters by the use of deterministic [13,14] or stochastic [15–20] optimizers. The new parameters are then passed
to the inner loop to estimate the objective value. Such a solution procedure is conceptually very straightforward in use.
Regarding the optimizers in outer loop, the deterministic optimizers which use the gradient to update the parameters in
general have fast convergent rate. However, such kind of methods may fail to reach the global solution once the systems
are nonlinear, multi-modal and/or discontinuous. In stochastic optimizers, on the other hand, the parameters are directly
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given via a specially-designed mechanism. Whether the objective value is improved or not is the only consideration in select-
ing parameters. Thus, the stochastic methods are often more applicable to different kinds of problems. Since no deterministic
techniques may guarantee global convergence in solving PS problems [14], this work applies the line-up competition algo-
rithm in the outer loop of integration approach to select unknown parameters. Furthermore, Eqs. (13b)–(13d) consist of the
so-called differential-algebraic equations (DAEs). Numerically, such kind of system is very stiff to integrate. Currently,
DASSL-like solvers [21] are recognized as the standard integrator in solving DAEs. Once Eq. (13d) is absent, Eq. (13) consist
of pure ordinary differential equations. DVERK [22] is the recommended tool for numerical integration.

4. Numerical illustrations

In this section, some examples are provided to illustrate the use of the line-up computation algorithm, which is coded by
Compaq Visual Fortran 6.6a under Windows XP operating system. All the following computations are executed on the com-
puter with Intel Core2 Quad Q6600 CPU and 2 Giga of random access memory (RAM).

4.1. Case 1: enzyme effusion problem

The first example to be discussed is described by
Table 1
Measur

t

0.1
2.5
3.8
7
10.9
15
18.2

Table 2
The ide

p1

0.32
0.28
0.27
0.27
0.27
dx1

dt
¼ p1ð27:8� x1Þ þ

p4

2:6
ðx2 � x1Þ þ

4991
t
ffiffiffiffiffiffiffi
2p
p exp �0:5

lnðtÞ � p2

p3

� �2
 !

;

dx2

dt
¼ p4

2:7
ðx1 � x2Þ;

ð18Þ
where the parameters to be identified are p1, p2, p3 and p4. The measured data of this problem may be referred from Table 1.
Notably, the initial conditions of the original problem are unknown, thus, the state values of x1 and x2 are considered as the
added parameters, p5 and p6, to search. As a result, the aim of this problem is to find a set of parameters, p1, p2, p3, p4, p5 and
p6, to minimize the following objective function:
I ¼
X28

j¼1

ð~x1j � x1jÞ2: ð19Þ
Using basic genetic algorithm with 500 generations, Nyarko and Scitovski [18] report the best parameters to be 0.284,
2.671, 0.392 and 0.161 with I ¼ 4068:38. Khalik et al. [20] determine the best parameters to be 0.2619, 2.6336, 0.3524
and 0.2575 with I ¼ 4136:73 by using the proposed real-coded GA with 300 generations. Table 2 shows the results by
LCA using various Nf, Nm and b after 50 generations. The total members Nf � Nm in one generation are 200. Besides the results
for Nf = 1, the other objective values are obviously smaller than the above-reported values. Therein, the best identified
parameters are 0.2747, 2.6558, 0.3667 and 0.1998 with I ¼ 3935:4. Fig. 3 shows two trajectories of x1: one is acquired by
the measured data, while the other is determined by the model with the best parameters. Besides the spike point, most solu-
tions can properly fit the measured data. Such phenomenon might result from the model error. Notably, the LCA can be re-
garded as a special kind of direct random search algorithm as Nf = 1. The corresponding objective value also shown in Table 2
is obviously unsatisfactory. Such outcomes seem to imply the policy of using multiply families in LCA is very effective in
improving the solutions.
ed data for enzyme effusion problem.

x1 t x1 t x1 t x1

27.8 21.3 331.9 42.4 62.3 81.1 23.5
20 22.9 243.5 44.4 58.7 91.1 24.8
23.5 24.9 212 47.9 41.9 101.9 26.1
63.6 26.8 164.1 53.1 40.2 115.4 33.3
267.5 30.1 112.7 59 31.3 138.7 17.8
427.8 34.1 88.1 65.1 30 163.2 16.8
339.7 37.8 76.2 73.1 30.6 186.7 16.8

ntified parameters and the objective values for Case 1 by LCA.

p2 p3 p4 I Nf Nm b

77 2.7050 0.4060 0.0201 5799.9 1 200 0.9
20 2.6655 0.3782 0.1998 4027.6 5 40 0.9
40 2.6563 0.3645 0.2000 3943.5 10 20 0.85
47 2.6558 0.3667 0.1998 3935.4 20 10 0.85
23 2.6517 0.3651 0.1996 3960.6 25 8 0.85
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Fig. 3. The trajectories of x1 for Case 1 from the measured data and the model.
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4.2. Case 2: glucose conversion problem

Proposed by Rai and Constantinides [23], this model is used to formulate the conversion of glucose to gluconic acid by
simple oxidation of sugar, which can be summarized as
dx1

dt
¼ b1x1 1:� x1

b2

� �
;

dx2

dt
¼ b3x1x4

b4 þ x4
� 0:9082b5x2;

dx3

dt
¼ b5x2;

dx4

dt
¼ �1:011

b3x1x4

b4 þ x4

� �
ð20Þ
with the initial conditions
xð0Þ ¼ ½0:5;0:;0:;50:�0: ð21Þ
The true values for b1, b2, b3, b4 and b5 are 0.949, 3.439, 18.72, 37.51 and 1.169, respectively. In this case, we first use the
above model coupled with the true parameters to generate 50 sets of nominal data. Then, these data are given to LCA to iden-
tify the parameters. The objective function to be minimized is thus defined as
I ¼
X4

i¼1

X50

j¼1

ð~xij � xijÞ2: ð22Þ
Determined by LCA with 200 total members in one generation, the solutions of this problem are shown in Table 3. The
best identified parameters are 0.9713, 3.4231, 18.7445, 38.6261 and 1.1663 by LCA with 100 generations. The corresponding
objective value can be reduced to 0.182. The corresponding trajectories for x1, x2, x3 and x4 acquired by the model with the
true and the identified parameters are shown in Fig. 4. The data generated by the model with identified parameters almost
comply with the nominal ones. As the previous example, the objective value acquired by LCA with Nf = 1 is very bad.

Moreover, we also add ±5% of errors to the generated data to simulate measured noise. The parameters used in LCA are set
the same as that shown in Table 3. The best parameters for such modification are determined to be 0.9595, 3.4788, 18.2332,
36.7789, 1.1742 with I ¼ 23:972 as shown in Table 4. The corresponding trajectories for x1, x2, x3 and x4 are shown in Fig. 5.
Obviously, the model with the identified parameters still respond the trend of the dynamics of this case under the measured
noise.



Table 3
The identified parameters and the corresponding objective values for Case 2 by LCA.

b1 b2 b3 b4 b5 I Nf Nm b

0.9728 3.6490 20.3508 46.2900 1.1462 3.160 1 200 0.97
0.9688 3.5963 20.0145 44.6754 1.1722 1.505 5 40 0.97
0.9713 3.4231 18.7445 38.6261 1.1663 0.182 10 20 0.97
0.9668 3.4901 19.0927 40.1180 1.1677 0.257 20 10 0.90
0.9022 3.5458 19.7913 39.3689 1.1539 0.830 25 8 0.90
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Fig. 4. The trajectories from the true model and the estimated model for Case 2 by LCA with Nf = 10 and Nm = 20.

Table 4
The identified parameters and the objective values for Case 2 with ±5% measured errors.

b1 b2 b3 b4 b5 I Nf Nm b

1.0264 3.4732 16.9582 35.0996 1.1871 24.963 5 40 0.97
0.9668 3.6936 21.3644 49.9978 1.1769 28.353 10 20 0.97
0.9767 3.4453 17.6394 35.0240 1.1760 23.992 20 10 0.90
0.9595 3.4788 18.2332 36.7789 1.1742 23.972 25 8 0.90
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4.3. Case 3: photochemical reaction in continuous stirred tank reactor

The third example to be discussed is a three-input optimal control problem described by eight differential equations

dx1

dt
¼ 6:0� qx1 � 17:6x1x2 � 23:0x1x6x3;

dx2

dt
¼ u1 � qx2 � 17:6x1x2 � 146:0x2x3;

dx3

dt
¼ u2 � qx3 � 73:0x2x3;

dx4

dt
¼ �qx4 þ 35:2x1x2 þ 51:3x4x5;

dx5

dt
¼ �qx5 þ 219:0x2x3 � 51:3x4x5;

dx6

dt
¼ �qx6 þ 102:6x4x5 � 23:0x1x6u3;

dx7

dt
¼ �qx7 þ 46:0x1x6u3;

dx8

dt
¼ 5:8ðqx1 � 6Þ � 3:7u1 � 4:1u2 � 5:u2

3 þ qð23x4 þ 11x5 þ 28x6 þ 35x7Þ;
q ¼ 6:0þ u1 þ u2

ð23aÞ
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with the initial conditions
xð0Þ ¼ ½0:1883;0:2507; 0:0467; 0:0899;0:1804;0:1394;0:1046;0�0: ð23bÞ
The control inputs are bounded by
0 6 u1 6 20;
0 6 u2 6 6;
0 6 u3 6 4:

ð23cÞ
The aim of the problem is to find the continuous inputs, u1(t), u2(t) and u3(t), that satisfy Eqs. (23a)–(23c) to maximize the
objective function.
I ¼ x8ðtf Þ; ð23dÞ
where tf = 0.2. Using iterative dynamic programming with 10 time stages to solve this problem, Luus [24] reports the best
objective value to be 20.09. Smith [25] uses evolutionary programming to solve this problem by discretizing the problems
into 30 or 50 consecutive subproblems. The acquired best and worst solutions are 20.0914 and 20.0512. Although the solu-
tion are very close to the previously reported value, it is obvious that the size of the discretized problem is too big.

To solve this problem under the frame work of integration approach coupled with LCA, the time horizon ranging from t0

to tf is evenly divided into P sections. Consequently, the time length of the jth section is
DT ¼ tf

P
¼ xjþ1 �xj j ¼ 1; . . . ; P; ð24Þ
where xj and xj+1 denote the grid points at the starting and ending time of the jth section. Obviously, there are P + 1 time
grids evenly spreading over the entire time horizon, and x1 and xP+1 are corresponding to t0 and tf. If /i,j denotes the value of
ui(t) at t = xj. The continuous input ui is thus approximated by {/i,jjj = 1,. . .,P + 1}. By the above parametrization, Eq. (23) can
be re-posed as
min
f/i;j ji¼1;...;3;j¼1;...;Pþ1g

I ¼ x8ðtf Þ ð25aÞ
subject to
dx1

dt
¼ 6:0� qx1 � 17:6x1x2 � 23:0x1x6x3;

dx2

dt
¼ u1;j � qx2 � 17:6x1x2 � 146:0x2x3;

dx3

dt
¼ u2;j � qx3 � 73:0x2x3;

dx4

dt
¼ �qx4 þ 35:2x1x2 þ 51:3x4x5;

dx5

dt
¼ �qx5 þ 219:0x2x3 � 51:3x4x5;

dx6

dt
¼ �qx6 þ 102:6x4x5 � 23:0x1x6u3;j;

dx7

dt
¼ �qx7 þ 46:0x1x6u3;j;

dx8

dt
¼ 5:8ðqx1 � 6Þ � 3:7u1;j � 4:1u2;j � 5:u2

3;j þ qð23x4 þ 11x5 þ 28x6 þ 35x7Þ;

q ¼ 6:0þ u1;j þ u2;j;

0 6 u1;jðtÞ 6 20;
0 6 u2;jðtÞ 6 6;
0 6 u3;jðtÞ 6 4;
8t 2 ½xj;xjþ1Þ i ¼ 1; . . . ; P;

ð25bÞ
where ui,j (t) denote the ith control applied in the duration of [xj,xj+1). Notably, when the objective value is estimated in
inner loop, the value of ui,j (t) can be interpolated by piecewise constant (PC) function
ui;jðtÞ ¼ /i;j ð26Þ
or piecewise ramp (PR) function
ui;jðtÞ ¼
/i;jþ1 � /i;j

xjþ1 �xj
ðt �xjÞ þ /i;j: ð27Þ



Table 5
The objective values for Case 3 by LCA with PC-type and PR-type control inputs.

Nf Nm I by PC function I by PR function

8 25 20.0631 20.0657
10 20 20.0537 20.0728
20 10 20.0832 20.0779
25 8 20.0716 20.0477
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Fig. 5. The trajectories from the true model and estimated model with 5% measured noise.
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Fig. 6. The best state trajectories in Example 3, where I ¼ 20:0832.
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By setting P = 10, we solve this problem by LCA with various Nf, Nm and b. The value of b is given as 0.99. The total trial
members are given as 200. Table 5 shows the objective values acquired by PC and PR functions after 300 generations. Most
objective values can be close to the known best value within 1%. Since the solutions are acquired by the system with 30 deci-
sion variables, it implies LCA is still very efficient in solving high-dimensional problem. The state trajectories and control
profiles for the case with I ¼ 20:0832 are, respectively, shown in Figs. 6 and 7.

5. Conclusions

In this study, the modified line-up competition algorithm is applied to solve nonlinear parameter selection problems.
Three typical problems, including two nonlinear parameter identification problems and one multi-input optimal control
problem, are used as demonstration for the proposed method. In order to convert into a PS problem, the inputs in the optimal
control problem are parametrized. The unspecified parameters embedded in the above problems are selected by LCA under
the framework of integration approach. The results show that in addition to being very efficient to converge to the global
solutions, the method is also very robust to the initial conditions of optimization. Compared with other EAs, the solution pol-
icies used in LCA is simple and direct.
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