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A B S T R A C T

In this article, line-up competition algorithm (LCA), a brand-new nonlinear programming method based

on the principle of evolution, is applied to solve time-delay optimal control problems (TDOCPs). The

problems are first discretized based on the concept of control vector parametrization, and then solved by

LCA. Since the delay differential equations are directly integrated without using the auxiliary procedures

such as model conversion and data interpolation, most TDOCPs can be solved very conveniently under

such solution framework. Meanwhile, a more efficient sampling strategy is adopted to promote the too

slow convergence of the basic LCA. By solving six typical examples, including five pure mathematical

problems and one chemical engineering problem, the modified LCA demonstrates a robust and efficient

property in optimizing time-delay unsteady systems.
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1. Introduction

For fast adapting to the changes of market demand, high-priced
chemical commodities are often produced by unsteady (or batch)
processes. Without a fixed set-point to regulate the deviations
through proportional–integral—derivative (PID) controller loops,
these unsteady systems often rely on the manipulations of
experienced workers. In recent years, digital computers are widely
applied to design, operation and control of chemical processes.
Using numerical optimization techniques to off-line determine
unsteady operating policy, the so-called optimal control problem

(OCP), and then integrating the obtained policy into distributed
control systems (DCS) have been a very promising way toward the
automation of unsteady chemical systems. Owing to the highly
nonlinear, multi-modal and discontinuous natures embedded in
most chemical systems, to determine such an optimal input policy
is in general very challenging. Moreover, derived from distributed
nature or delayed elements in engineering systems, for example
recycle stream, transportation and measurement lag, time delay
(or time lag) is also a common phenomenon that interferes the
operations of unsteady chemical systems. The existence of time
delay implies the process outputs are unable to respond to the
inputs immediately. Thus, ignoring such factor embedded in
unsteady chemical systems must significantly affect the feasibility
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of the obtained operating policy. Therefore, how to efficiently solve
time-delay optimal control problems (TDOCPs) is very meaningful
for chemical community.

Concerning the solution of time-delay optimal control pro-
blems (TDOCPs), Banks and Burns (1978, 1979) first use the
averaging approximation to deal with the past history of linear
time-delay systems. The resultant problems which have the same
size as the original ones can be further solved by the use of the
minimum principle. Later, such solution procedure is extended to
the solution of nonlinear time-delay systems. Wong et al. (1985)
propose solving a series of delay-free problems with a set of
piecewise constant input by using the second kind Oguztöreli
kernel matrix to convert time-delay states. Based on the Páde
approximation, Lee (1993) uses the auxiliary state variables to
estimate time-delay terms. As a result, the augmented models can
be optimized by any well-established technique. Actually, such a
procedure is very indirect. Even the approximation errors can be
reduced by adding more state variables, the computational times
spend in the numerical integrations must be increased consider-
ably. Especially, all above methods only acquire approximate
solutions. With the advances of the numerical integrators for delay
differential equations (DDEs), Dadebo and Luus (1992) and Dadebo
and McAuley (1995) suggest directly applying the model equations
to the solution of TDOCPs by iterative dynamic programming (IDP).
Owing to the backward solution manner, however, IDP still
requires to interpolate the data from the last iteration to estimate
the historical information of time-delay states. To avoid the data
interpolation, Chen et al. (2000) use the Taylor’s expansion to
hed by Elsevier B.V. All rights reserved.

mailto:dysun@mail.ncut.edu.tw
http://www.sciencedirect.com/science/journal/18761070
http://dx.doi.org/10.1016/j.jtice.2009.04.013


Nomenclature

f right-hand side ordinary differential equations

L0 the lower bound of the decision vector

u control vector

U0 the upper bound of the decision vector

g inequality constraint

h equality constraint

I½xðt f Þ� performance index

L0
i the lower bound for the i-th decision variable

N f numbers of family in one generation

Ng numbers of generation

Nm numbers of member in a family

NP numbers of dimension of control vector

P numbers of time division from t0 to t f

t0; t f initial and final time

U0
i the upper bound for the i-th decision vector

Greek symbols

b region contraction factor

g i pseudo-random number from a normal distribu-

tion of zero mean and one standard deviation

Dvi search region for the i-th time grid

ei tolerance factor

z uniform random number ranging from 0 to 1

l the heuristic parameter with the value of 1/3 or

lower

ji i-th discretized control variable

J measure function for final state constraint

sc the distance from the current best variable to its

nearest bound

ji the i-th decision variable in Eq. (5d)

F decision vector in Eq. (5d)

C measure function for path constraint

vi i-th time grid
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estimate time-delay state variables under the framework of IDP.
However, both procedures derived from IDP often rely on a large
number of time and state grids to refine the solutions. Conse-
quently, the enlarged problem size often leads to a slow
convergence. In recent years, using nonlinear programming
(NLP) techniques to solve delay-free OCPs under the framework
of control vector parametrization becomes very popular. The
solution procedures for such kind of methods are in general
divided into outer and inner loops. In outer loop, objective value
and/or gradient are evaluated with the help of numerical
integrators. These results are then passed to the inner loop to
further optimize the parameterized controls (decision variables).
In general, the gradient-based optimizers may converge the
solutions of delay-free OCPs very rapidly. Unfortunately, such
kind of optimizers are unable to apply in the solutions of TDOCPs
owing to the associated discontinuities. As a result, the direct
methods that optimize the parameterized controls based on
whether the objective value is improved or not become the only
way to solve time-delay optimal control problems. Even such kind
of methods are conceptually very straightforward, rare papers
explore such applications in our reviews.

As a special class of direct optimizers, evolutionary algorithms
(EAs) including genetic algorithm, evolutionary strategy and
evolutionary programming are very popularly used in recent to
solve difficult optimization problems. All these methods are based
on the principle of evolution in nature. The major differences
between them are that genetic algorithm stresses gene operations,
whereas evolutionary strategy and evolutionary programming focus
on the behavior change of individuals (Yan and Ma, 2001). In past
decade, many papers (Babu and Angira, 2006; Michalewicz et al.,
1992; Simant and Upreti, 2004; Wang and Chiou, 1997) discuss the
use of EAs to the solutions of delay-free optimal control problems.
However, because the diversity of population and the balance of
local and global searches are hard to maintain, the aforementioned
EAs often demonstrate slow convergence, and even get local
solutions in some cases. To improve these drawbacks, Yan and
Ma (2001, 2003) and Yan et al. (2004) propose the line-up
competition algorithm (LCA) based on the concept of cooperation
and competition among biological populations. In basic LCA,
independent and parallel evolutions are carried out in sub-regions.
Since these regions are different in size, the trial vectors that are
randomly generated in different sub-regions have diverse driving
force to propel mutation. Thus, LCA may produce the population
with higher diversity than common EAs. Through competition and
cooperation among these population, the global optimum can be
approached very rapidly. By testing various static optimization
problems, the method has been proved to be very robust and
efficient. However, when the basic LCA is applied to the solution of
delay-free OCPs, the convergent quality becomes very unsatisfac-
tory (Sun et al., 2007). Therefore, the authors suggest introducing
normal (or Gaussian) sampling policy to replace uniform sampling
policy originally used in the basic LCA. Compared with other EAs,
such modification is confirmed to be very efficient in converging the
solutions to the vicinity of global optimum within 1%.

In this study, we use well-developed delay differential equations
(DDEs) integrator as inner solver coupled with the modified LCA as
outer optimizer to solve TDOCPs under the framework of control
vector parametrization. Because the objective value can be directly
determined by the integration of DDEs, the procedures for
approximating time-delay states are basically unneeded unless
the problems are very highly nonlinear. Compared with the existent
methods, the proposed procedure may greatly simplify the solution
of TDOCPs, and quickly approach to the vicinity of the global
optimum. In the rest of this article, Section 2 presents the
formulation of time-delay optimal control problems. Section 3
briefly introduces the line-up computation algorithm. The improve-
ment of LCA and the detailed computational steps are also presented
in this section. Section 4 discusses how to discretize a TDOCP based
on control vector parametrization and how to rebuild continuous
input by given parameters. The numerical examples are illustrated
in Section 5. Finally, the conclusions are made in Section 6.

2. Problem formulation

Let us consider an unsteady system described by a set of
ordinary differential equations with constant time delay t,

ẋ ¼ fðxðtÞ;xðt � tÞ;u; tÞ (1a)

with the initial conditions

xð0Þ ¼ x0 (1b)

and the initial state profile

xðtÞ ¼ cðtÞ � t � t<0 (1c)

where x and u respectively denote ðn� 1Þ state vector and ðm� 1Þ
control inputs physically restricted by

u � u � ū (1d)

In the field of chemical engineering, Eq. (1) are in general
derived from mass and/or energy balance relations. Therefore, the
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aim of this problem is to find the continuous uðtÞ over t2 ½0; t f �, by
which one of the following objective function is minimized.

� Bolza type

I1½x;u� ¼ Q½xðt f Þ� þ
Z t f

0
Vðx;u; tÞdt (2)

� Lagrange type:

I2½x;u� ¼
Z t f

0
Lðx;u; tÞdt (3)

� Mayer type:

I3½x;u� ¼ L½xðt f Þ� (4)

where t f represents the fixed ending time. Notably, Eqs. (2) and (3)
can be easily converted into Eq. (4). For instant, I1 can be rewritten asZ t f

0
Vðx;u; tÞ þ d

dt
Q½xðtÞ�

� �
dt þQ½xðt0Þ�

Because the minimization of I1 does not affect Q½xðt0Þ�, we only
consider the first term. By defining L�Vðx;u; tÞ þ ðd=dtÞQ½xðtÞ�,
the Bolza-type objective function is converted into Lagrange-type.
Furthermore, the evaluation of Eq. (3) can be carried out by
integrating the state equation

ẋnþ1 ¼ Lðx;u; tÞ

with the initial condition xnþ1ð0Þ ¼ 0. Thus, the conversion from
Eqs. (3) and (4) is achieved. Without lose the generality, the Mayer-
type objective function is adopted in further discussions. On the
other hand, the objective function have to change its sign for
maximization problems.

3. An overview of line-up competition algorithm

Used as the outer optimizer in solving TDOCPs, the line-up
competition algorithm is originally devised to optimize the
nonlinear, non-convex and multi-modal problems as follows

I½F� (5a)

subject to

hðFÞ ¼ 0 (5b)

gðFÞ � 0 (5c)

L0 �F � U0 (5d)

where F� ½j1; . . . ;jNc
�0 means the decision vector, h and g are

the equality and inequality constraints, respectively. Furthermore,
F is physically restricted by the lower and upper bounds,
L0� ½L0

1; . . . ; L0
c �
0

and U0� ½U0
1 ; . . . ;U0

c �
0
.

Firstly, the LCA uniformly generates N f trial vectors over the
entire search space. This first generation of trial vectors, named
as fathers, are then queued in sequence, named as line-up,
according to the corresponding objective values. The father
having the best objective value is placed at the first position of
this sequence, whereas the poorest is at the last place.
Obviously, the line-up is raked in ascending order for a
minimization problem, or in descending order for a maximiza-
tion problem. So far, the first generation is completed. The size
of search space is then reduced and systematically divided into
N f regions (or sub-spaces). Based on the corresponding position
in the line-up, each father is allocated one of the sub-regions to
further produce Nm trial vectors, named as ‘‘offsprings’’. The
father and its offsprings consist of a family. Noted that the
fathers placed in the front of line-up are given the smaller sub-
regions, whereas the fathers at the rear positions are given the
larger ones. Currently, the entire search space has been occupied
by N f families, each having Nm þ 1 members. All the members in
the same family also compete with each other based on the idea
of ‘‘survival of the fittest’’. The family member having the best
objective value is chose as the candidate to strive for a more
prior position in the next line-up. The aforementioned proce-
dures, including division, sequencing and selection, go further
until a given generations.

From the above descriptions, the important features of LCA can
be summarized as follows. First, each family takes charge of
seeking the best solution in the given sub-space. Thus, through the
competitions inside each family, the possible solutions spreading
over the entire search space can be thoroughly examined. Second,
the current better solutions can be effectively refined by allocating
smaller sub-spaces to the front families. Meanwhile, the ability of
the rear families to escape from the local sub-regions are also
reinforced by giving larger search spaces. Third, with unceasingly
adjusting the sizes of the sub-spaces during solutions, all the
families are endowed with the missions to refine the current better
solutions and to seek the new global one. Thus, the local
convergence is able to be surpassed effectively, even some families
gather around a local solution. As a result, the global solution can
be quickly approached through the above competition and
cooperation among families. Furthermore, the region contraction
strategy also accelerate the rear families to converge the solution
toward global optimum.

3.1. The improvement of LCA

Like most evolutionary algorithms, the original LCA evenly
samples new trial members from each sub-region based on
uniform distribution. Such sampling policy regards all trial vectors
in the same search space as having identical probability to be
selected. Therefore, it is theoretically possible to reach the global
optimum, provided the numbers of sampled members are huge
enough (Masri and Bekey, 1980). Although the uniform sampling
policy is very exhaustive, it also faces the criticism of excessive
objective function evaluations and too slow convergence. Such
impact becomes more serious for high-dimensional problems. In
the past, many strategies are taken to tackle the aforementioned
problem. Luus and Jaakola (1973) introduce the concept of region
reduction to enhance the refinement of current optimum, which is
the so-called Luus–Jakkola optimization procedure. Evidently, the
basic LCA has contained such concept. Applying the basic LCA is
unable to fast converge the high-dimensional optimization
problems, such as discretized delay-free OCPs. Therefore, based
on the concept by Goulcher and Casares (1978), the authors
suggest sampling the new trial members in each family from the
neighborhood of the current best solution based on the standard
normal (or Gaussian) distribution. As generally known, the normal
distribution is a class of continuous probability distributions. The
members in this class are defined by two parameters: mean and
variance (or standard deviation squared). The standard normal
distribution is a normal distribution with zero mean and unit
variance. Once the trial members in LCA are selected based on the
standard normal distribution, the father in each family is
considered as the mean. The size of the variance for each family
is calculated as the function of the father, low and upper bounds on
the trial members and a heuristic parameter with the value of 1/3.
Thus, since the new trial members around the father have more
chances to be selected, the refinement of the solutions in prior
families can be enhanced. For the solutions of rear families, the
improvement can be intensified through competition and coop-
eration among the families. The detail computational steps for LCA
are presented in the next.
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3.1.1. The proposed algorithm

1. Assign the numbers of generation, member and family, namely
Ng , Nm and N f .

2. Set the generation counter g as 1. Uniformly generate N f

decision vectors

F
ð�; f ;gÞj f ¼ 1; . . . ;N f

n o
(6)

as the fathers of the first generation over the entire searched

space. The f th decision vector in Eq. (6) consists of Nc decision

variables

F
ð�; f ;gÞ ¼ ½jð�; f ;gÞ

1 . . .jð�; f ;gÞ
c . . .jð�; f ;gÞ

Nc
�
0

(7)

The value of jð�; f ;gÞ
c can be initially assigned, or produced by an

uniform random number generator as follows

jð�; f ;gÞ
c ¼ L0

c þ z 	Dð f ;gÞ
c (8)

where D
ð f ;gÞ
c ¼ U0

c � L0
c means the size of the search space for the

c th decision variable; z is an uniform random number ranging

from 0 to 1.
3. Calculate the corresponding objective value for each father.

fðFð�; f ;gÞ
; Ið�; f ;gÞÞj f ¼ 1; . . . ;N f g (9)

4. (Competitions between families) According to the correspond-
ing objective values, line up the fathers and the associated
search spaces in ascending/descending order for minimization/
maximization problems, namely

fðFð�; f ;gÞ
; Ið�; f ;gÞ;D

ð f ;gÞÞjð f ¼ 1; . . . ;N f Þg
#ordering

fðF̃
ð�; f ;gÞ

; Ĩ ð�; f ;gÞ
; D̃
ð f ;gÞ
Þjð f ¼ 1; . . . ;N f Þg

where D
ð f ;gÞ � ½Dð f ;gÞ

1 ; 	 	 	 ;Dð f ;gÞ
Nc
�
0

is the size vector of the f th

decision vector, D̃
ð f ;gÞ
� ½D̃

ð f ;gÞ
1 ; . . . ; D̃

ð f ;gÞ
Nc
�
0

is the new size vector

after ordering.
5. Reduce the search region of the worst family, D̃

ðN f ;gÞ
to act as the

search region for the next generation

D b 	 D̃
ðN f ;gÞ

(10)

where the default value of b is 0.9.
6. Add 1 to the counter g. Calculate the new bounds and new

searching space for each family in the next generation via
Eq. (10).

L̃
ð f ;gÞ
c ¼max j̃ð�; f ;gÞ

c � f 	D
N f

� �
; L0

c

� �
(11)

Ũ
ð f ;gÞ
c ¼ min j̃ð�; f ;gÞ

c þ f 	D
N f

� �
;U0

c

� �
(12)

D
ð f ;gÞ
c ¼ Ũ

ð f ;gÞ
c � L̃

ð f ;gÞ
c c ¼ 1; . . . ;Nc f ¼ 1; . . . ;N f (13)

7. Generate Nm decision vector for each family. The c-th variable of
the m-th vector in the f-th family is determined by

jðm; f ;gÞ
c  j̃ð�; f ;g�1Þ

c þ lgsc m ¼ 1; . . . ;Nm (14)

where sc is the distance from the current best variable j̃ð�; f ;g�1Þ
c

to its nearest bound, namely

min fðŨð f ;gÞ
c � j̃ð�; f ;g�1Þ

c Þ; ðj̃ð�; f ;g�1Þ
c � L̃

ð f ;gÞ
c Þg (15)
g is a pseudo-random number from a normal distribution of

zero mean and one standard deviation; l is the heuristic

parameter with the value of 1/3.
8. (Competitions between members) Select the member with the

best objective value from the f th family, namely

fðFðm; f ;gÞ
; Iðm; f ;gÞÞj f ¼ 1; . . . ;N f g !

Select
ðFð�; f ;gÞ

; Ið�; f ;gÞ;D
ð f ;gÞÞ

(16)

To further elaborate the above descriptions, a simplified flow
chart is shown in Fig. 1. The modified LCA has been proved to be very
robust and efficient in solving delay-free OCPs (Sun et al., 2007). The
authors try to extend this algorithm to the solution of TDOCPs.

4. Control vector parametrization

To apply the line-up competition algorithm, the control input(s)
in Eq. (1) are needed to be discretized, which is the so-called
control vector parametrization. For simplifying the use of
notations, the following formulation is restricted to the single-
input systems. Thus, the dimension of control vector is reduced to
1, namely uðtÞ 2R1. Such treatment is very straightforward to
extend to multi-inputs systems. Consisting of Eqs. (4) and (1), a
TDOCP is discretized into P consecutive sub-problems along with
the time horizon from 0 to t f

min
ðj1 ;v1Þ;...;ðjPþ1 ;vPþ1Þ

I ¼ L½xðt f Þ� (17)

subject to

ẋ ¼ f ðxðtÞ;xðt � tÞ;uiðtÞ; tÞ
xðtÞ ¼ cðtÞ � t � t<0

xð0Þ ¼ x0

u � uiðtÞ � ū

8 t2 ½vi;viþ1Þ i ¼ 1; . . . ; P

(18)

where ji means the control at the i-th time grid vi; uiðtÞ denotes
the control input applied in the duration of ½vi;viþ1Þ. Because v1

and vPþ1 are respectively corresponding to 0 and t f , the goal of the
above problem is stated as finding 2P parameters to minimize
Eq. (17) subject to Eq. (18). Thus, a TDOCP with infinite dimension
is converted into a finite-dimensional NLP problem, which can be
further optimized by LCA.

In integrating the above DDEs, many mathematical expressions
including step-type function (Vassiliadis et al., 1994a,b), ramp-
type function (Carrasco and Banga, 1997), wavelet and B-splines
functions (Binder et al., 2000; Schlegel et al., 2005) are considered
to evaluate the value of uiðtÞ. Therein, step-type function and
ramp-type function would be the most convenient forms from
engineering points of view. However, TDOCPs contain intrinsic
discontinuity as previously mentioned. Using the strategies of
step-type function must bring new artificial discontinuities into
solutions. Therefore, the policy of using ramp input with fixed time
interval (RIFTI) is good for reducing the above difficulty. The
expression for a RIFTI is described as

uiðtÞ ¼
jiþ1 � ji

viþ1 �vi
ðt �viÞ þ ji i ¼ 1; . . . ; P þ 1 (19)

where vi� t f ði� 1Þ=P. As a result, the time grids are excluded from
the decision variables. The problem consisting of Eqs. (17) and (18)
is recast as

min
j1 ; 			 ;jPþ1

I ¼ L½xðt f Þ�

subject to Eq. (18) with RIFIT.



Fig. 1. The flow diagram of LCA.

Fig. 2. A diagrammatic representation for solving time-delay optimal control

problems by LCA.
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Notably, many DDE solvers such as DDE (Paul, 1995), DKLAG6
(Corwin et al., 1997) and DDVERK (Enright and Hayashi, 1997),
have been proposed in recent. Based on continuous Runge-Kutta
formula with defect control, DDVERK provides a very convenient
interface to integrate with the proposed algorithm. We select
DDVERK as the inner solver of this study to evaluate the objective
functions. The scheme for solving a TDOCP by LCA under control
vector parametrization is illustrated in Fig. 2.

5. Illustrated examples

In this section, six well-known problems are provided to
demonstrate the proposed algorithm, which is coded by Compaq
Visual Fortran 6.6a under Windows XP operating system. All the
following computations are performed on the computer with Intel
Core2 Quad Q6600 CPU and 2 Giga of random access memory
(RAM).

Example 1. A single-input/two-outputs time-delayed system
(Chan and Perkins, 1973; Dadebo and Luus, 1992; Oh and Luus,
1976).

The first problem consists of the following differential
equations

ẋ1 ¼ x2ðtÞ
ẋ2 ¼ �10x1ðtÞ � 5x2ðtÞ � 2x1ðt � tÞ � x2ðt � tÞ þ uðtÞ
ẋ3 ¼

1

2
ð10x2

1ðtÞ þ x2
2ðtÞ þ u2ðtÞÞ

with the initial conditions

x0 ¼ ½1: 1: 0:�0

and the initial profiles

x1ðtÞ ¼ x2ðtÞ ¼ 1:0 � 1: � t � 0:

The objective function to be minimized is

I ¼ x3ð5Þ

Chan and Perkins (1973) convert this problem with t ¼ 1:0 by a
truncated Macluarin series approximation, then solve the con-
verted problem by parameter embedding technique. Checking the
solution by the truncated Taylor expansion and control vector
iteration, Oh and Luus (1976) obtain the minimized objective value
to be 2.932. By the use of two-pass IDP with 10 time divisions,
Dadebo and Luus (1992) acquire the minimum objective value to
be 2:953. This value is further reduced to 2:937 by 20 time
divisions. Notably, the linear interpolation is incorporated into IDP
to evaluate the value between the state grid and the delayed state
corresponding to that particular grid.



Table 1
The objective values for Example (1) by LCA with Ng ¼ 50 and b ¼ 0:9.

P N f Nm Basic Modified

5 3 16 2.9509 2.9484

4 12 2.9868 2.9483

6 8 2.9603 2.9487

8 6 2.9696 2.9479

10 3 16 2.9952 2.9323

4 12 2.9768 2.9321

6 8 2.9499 2.9319

8 6 2.9637 2.9321

Table 2
The objective values for Example 2 by LCA with Ng ¼ 50 and b ¼ 0:8.

P N f Nm Basic Modified

5 4 20 2.9723 2.9482

5 16 2.9838 2.9485

8 10 2.9966 2.9485

10 8 2.9761 2.9471

10 4 20 2.9854 2.9346

5 16 2.9688 2.9338

8 10 2.9917 2.9323

10 8 2.9820 2.9326

Fig. 4. The convergence curves for the cases of Example 1, where Nm ¼ 8, N f ¼ 10

and b ¼ 0:8.
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In our solutions, the total trial members, N f � Nm, in one
generation is firstly given as 48. The b factor is set as 0.9. As shown
in Table 1, the objective values by the modified LCA after 50
generations are converged to the vicinity of 2.948 for P ¼ 5, which
are smaller than the solutions by the basic LCA. We further add the
time divisions to 10. The modified LCA refines the objective values
to the vicinity of 2.932, while the basic one brings no further
improvements to the solutions. When the total trial members in
one generation are increased to 80, and the b factor is reduced to
0.8 to accelerate the rate of region contraction. As shown in Table 2,
the objective values by the modified LCA are still better than that
by the basic version. Therein, the solutions by P ¼ 10 are superior
to the solutions by P ¼ 5. Moreover, Figs. 3 and 4 both demonstrate
the modified LCA has faster initial convergence rate. Notably, the
objective values by the modified LCA with P ¼ 10 as shown in both
tables are smaller than 2.937 by IDP.

In the above solutions, the required information for the time-
delay state is determined by the DDE solver. Data interpolation is
never used. Therefore, the use of the proposed algorithm is very
direct and convenient. Because of forward solution manner of LCA,
the resultant problem sizes, compared to IDP, are much smaller.
Fig. 3. The convergence curves for the cases of Example 1, where Nm ¼ 6, N f ¼ 8 and

b ¼ 0:9.
Furthermore, in spite of using different N f and Nm, the modified
LCA may acquire the solutions with very similar value, which
demonstrates the robustness of LCA to different initial conditions
of optimization. Figs. 5 and 6 respectively show the optimal state
trajectories and the corresponding input by the modified LCA with
P ¼ 10, N f ¼ 6 and Nm ¼ 8.

Example 2. A harmonic oscillator with retarded damping (Banks
and Burns, 1978; Teo et al., 1984).

The model for this example are described by the differential
equations

ẋ1 ¼ x2ðtÞ
ẋ2 ¼ �x1ðtÞ þ x2ðt � 1Þ þ uðtÞ
ẋ3 ¼

1

2
u2ðtÞ

with the initial conditions

x ¼ ½10: 0: 0:�0

and the initial profile of x2 is

x2ðtÞ ¼ 10: � 1 � t<0
Fig. 5. The state trajectories for Example 1 by the modified LCA with P ¼ 10, N f ¼ 6

and Nm ¼ 8; I ¼ 2:9319.



Fig. 6. The control input for Example 1 by the modified LCA with P ¼ 10, N f ¼ 6 and

Nm ¼ 8; I ¼ 2:9319.

Table 4
The objective values for Example 2 by LCA with b ¼ 0:9.

P N f Nm Basic Modified

8 5 60 3.5541 3.4005

6 50 3.6295 3.3993

10 30 3.5467 3.3993

15 20 3.5641 3.3993

10 5 60 3.5572 3.4010

6 50 3.6912 3.3998

10 30 3.5718 3.4000

15 20 3.4981 3.3998
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The aim of this example is to find the optimal control that may
minimize the objective function at t f ¼ 2.

I ¼ 5x2
1ðt f Þ þ x3ðt f Þ

Banks and Burns (1978) estimate the approximate objective
value to be 3:2587 by solving the corresponding two-point
boundary value problem, while Teo et al. (1984) reduce the
optimal value to 3.4023 and to 3.3991 for the problem with 20 and
48 time divisions.

We initially solve this problem by using 8 time divisions and
200 trial members in one generation. The b factor is set as 0.95.
Shown in Table 3, the objective values by the modified LCA are
almost the same as the best reported value. The convergence for
most solutions by basic LCA are still unsatisfactory. These results
further demonstrate the modified LCA is insensitive to the use of
different setting. Meanwhile, it is impossible to LCA that the global
optimum can be reached by small converted problem. Once the
trial members are increased to 300 in one generation, the
solutions by basic LCA shown in Table 4 get worse. Even using
different N f and Nm, notably, the modified LCA still converges the
solutions to the vicinity the best reported. Fig. 7 shows the optimal
input of this example by acquired LCA using P ¼ 8, N f ¼ 10 and
Nm ¼ 30.

Example 3. A modified singular control problem with time delay
(Yeo, 1980).

By modifying x2 into a time-delay state, the third example is
composed of the differential equations
Table 3
The objective values for Example (2) by LCA with b ¼ 0:95.

P N f Nm Basic Modified

8 4 50 3.5109 3.4012

5 40 3.4040 3.3998

10 20 3.4853 3.3996

20 10 3.4864 3.3996

10 4 50 3.4554 3.4034

5 40 3.4637 3.4006

10 20 3.4997 3.4009

20 10 3.4772 3.4004
ẋ1 ¼ x2ðt � tÞ
ẋ2 ¼ �x3ðtÞuðtÞ þ 16x5ðtÞ � 8:

ẋ3 ¼ uðtÞ

ẋ4 ¼ x2
1ðtÞ þ x2

2ðtÞ þ 0:0005ðx2ðtÞ þ 16:x5ðtÞ � 0:1x3ðtÞu2ðtÞ � 8:Þ2

ẋ5 ¼ 1:

with the initial conditions

x0 ¼ ½0: � 1: �
ffiffiffi
5
p

0: 0:�
0

and the initial profile

x2ðtÞ ¼ �1: � t � t � 0

The control input is bounded by

�4: � uðtÞ � 10:

The goal of time problem is to find the input uðtÞ so as to minimize
the objective function at t f ¼ 1:0.

I ¼ x4ðt f Þ

Notably, the original problem without time delay has been
discussed by Yeo (1980) and Luus (1989). The objective function
for the delay-free problem are reported to be around 0.1200.

In this example, the values of the time delay t are changed from
0.1 to 0.5. Using 100 total trial members, we initially assign
Ng ¼ 50, N f ¼ 5 and Nm ¼ 20 to solve this problem. Therein, the b
factor is given as 0.9. The corresponding optimal values for P ¼ 10
and P ¼ 20 are shown in Table 5. Obviously, the modified LCA
acquires smaller objective value than the basic LCA, and these
Fig. 7. The optimal input for Example 2 by LCA with P ¼ 8, N f ¼ 10 and Nm ¼ 30;

I ¼ 3:3993.



Table 7
The objective values for Example 4 by LCA with P ¼ 4 and b ¼ 0:9.

P N f Nm Basic Modified

4 4 50 5.0611 4.7976

5 40 5.2022 4.7970

10 20 5.1847 4.7973

20 10 5.1790 4.7970

Table 8
The objective values for Example 4 by LCA with P ¼ 6 and b ¼ 0:85.

P N f Nm Basic Modified

6 4 50 5.1811 4.7977

5 40 5.5198 4.8004

10 20 5.0687 4.7970

20 10 5.2378 4.7976

Table 5
The objective values by LCA with ðNg ;Nm;N f Þ ¼ ð50;5;20Þ for Example 3 with

different time delay.

t P ¼ 10 P ¼ 20

Basic Modified Basic Modified

0.1 0.20116 0.14526 0.16877 0.14588

0.2 0.23027 0.17825 0.20409 0.17782

0.3 0.25693 0.21354 0.23914 0.21423

0.4 0.30693 0.25251 0.27784 0.25298

0.5 0.33951 0.29396 0.31808 0.29470

Table 6
The objective values obtained by LCA with ðNg ;Nm;N f Þ ¼ ð50;10;10Þ for Example 3.

with different time delay.

t P ¼ 10 P ¼ 20

Basic Modified Basic Modified

0.1 0.20646 0.14580 0.19461 0.14590

0.2 0.24203 0.17789 0.23969 0.17951

0.3 0.28322 0.21403 0.27812 0.21462

0.4 0.34077 0.25271 0.31336 0.25491

0.5 0.37017 0.29417 0.34916 0.29584
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results are also very close each other. Once N f and Nm are both
changed to 10, the objective values by the modified LCA in Table 6
have no significant changes compared to the results in Table 5.
However, the solutions by the basic LCA have large fluctuations. It
seems to imply that the modified LCA is more robust to the initial
conditions of optimization than the basic LCA. For the cases with
P ¼ 10, N f ¼ 10 and Nm ¼ 10, the optimal input profiles for the
problems with different time delay are shown in Fig. 8.

Example 4. A time-varying time-delayed system (Dabedo and
Luus, 1992; Luus, 2000; Palanisamy et al., 1988).

The fourth problem is described by the differential equations

ẋ1 ¼ tx1ðtÞ þ x1ðt � 1Þ þ uðtÞ
ẋ2 ¼ x2

1ðtÞ þ u2ðtÞ

with the initial conditions

x0 ¼ ½1: 0:�0
Fig. 8. The control inputs for Example 3 with different time delay by LCA with

P ¼ 10, N f ¼ 5 and Nm ¼ 6.
and the initial profile

x1ðtÞ ¼ 1:0 � 1 � t<0:

The aim of this problem is to minimize x2ðt f Þ at t f ¼ 2:0.

I ¼ x2ð2Þ

By the use of single term Walsh series, Palanisamy et al. (1988)
report the minimum value to be 6:0079. Using iterative dynamic
programming with 20 fixed divisions, Dadebo and Luus (1992)
determine the minimum value to be 5:0674. This value is largely
reduced to 4.7968 by using RIFTI and 10 variable time divisions
(Luus, 2000). However, the computational efforts including ten-
phase executions, each consisting 10 iterations, are still very
formidable.

To acquire a satisfactory solution, the total trial members in
each generation are increase to 200 in this example. After 50
generations, the solutions obtained by both versions of LCA for
P ¼ 4 are shown in Table 7. In these cases, b is set as 0.9. The
objective values by the modified LCA may approach to the best
reported value within 0:1%. Once P is increased to 6 and b is
reduced to 0.85, The values shown in Table 8 are still very close to
the above results. With respect to IDP, the problem sizes used by
LCA are small. Thus, the computational efforts of LCA can be largely
saved. The trajectories of the optimal inputs by modified LCA with
P ¼ 4 and P ¼ 6 are shown in Fig. 9.
Fig. 9. The optimal inputs for Example 4 by LCA with P ¼ 4 and P ¼ 6.



Table 9
The objective values and terminal errors of x1 for Example 5 by LCA with b ¼ 0:9

and v ¼ 1:0.

P N f Nm I x1ð2Þ

2 5 50 0.09369 �1:7354� 10�4

10 25 0.09373 �3:1060� 10�4

25 10 0.09392 �3:9971� 10�5

4 5 50 0.09390 �4:9633� 10�4

10 25 0.09429 �8:9099� 10�5

25 10 0.09389 �2:6988� 10�5

6 5 50 0.09417 �2:2609� 10�3

10 25 0.09460 �8:1096� 10�5

25 10 0.09493 �7:6992� 10�4

Table 10
The comparisons of the objective values for Example 6 by IDP and LCA with P ¼ 8

and Ng ¼ 100.

t N f Nm I I�

0.2 5 20 0.023699 0.023731

10 10 0.023727

20 5 0.023713

0.4 5 20 0.024480 0.024615

10 10 0.024498

20 5 0.024506

0.6 5 20 0.025092 0.025192

10 10 0.025115

20 5 0.025114

0.8 5 20 0.025514 0.025499

10 10 0.025548

20 5 0.025639

Table 11
The best objective values for Example 6 with t ¼ 0:8 by

LCA with P ¼ 8 and Ng ¼ 100.

N f Nm I

5 20 0.025496

10 10 0.025465

20 5 0.025493
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Example 5. The minimum energy control problem with terminal
constraints (Chyung and Lee, 1966; Dadebo and McAuley, 1995).

The fourth problem to be discussed is described as

ẋ1 ¼ �x1ðt � 1Þ þ uðtÞ

ẋ2 ¼
1

2
u2ðtÞ

with the initial conditions

x0 ¼ ½1: 0:�0

and the initial profiles

x1ðtÞ ¼ 1:0 � 1: � t � 0:

The control input is also restricted by

uðtÞ
0:

Thus, the aim of this problem is to find the optimal input so that the
objective function is minimized

I ¼ x2ðt f Þ

and x1ðtÞ is driven to the origin at t f ¼ 2:0, namely x1ð2Þ ¼ 0.
Chyung and Lee (1966) analytically determine the objective

value to be 0:09375. To handle the terminal constraint, Dadebo and
McAuley (1995) recommend using the weighted-absolute-error
function to penalize the violation. Thus, the objective function is
augmented as

I þ
Xh
‘¼1

j‘jx‘ðt f Þ � x
$

‘ j 1 � ‘ � n (20)

where h denotes the numbers of state variable with terminal
constraint. j‘ is the weighting factor corresponding to ‘-th state
variable, x‘, restricted by the terminal value x

$

‘ . Additionally, they
also suggest using quadratic approximation to improve the
estimation of the time-delay state. As a result, the objective value
is converged to 0.094963 by using IDP with 21 state grids, 5 trial
inputs and 8 time divisions. The terminal error is converged to
�3:2774� 10�4. Once the state grids are further added to 41, the
objective value is refined to 0.093538 and the terminal errors of
x1ð2Þ is �7:464� 10�3. Similar to Example (4), the above
computational efforts are very large owing to the enlarged
problem size.

To acquire satisfactory solutions, we set the total trial members
in one generation as 250 in this example. To make a fair
comparison, we use the same augmented objective function as
Eq. (20) to handle the terminal constraint. The penalty factor in
Eq. (20) is given as 1.0. The time divisions are respectively set as 2,
4 and 6. Table 9 shows these results by the modified LCA with
b ¼ 0:9. Obviously, most objective values are converged to the
analytical solution within 0.1%. LCA further uses very small
problem size to approach the global solution. Additionally, even a
very wider range of penalty factor, such as v ¼ 100 is used, the
objective function is still converged to the analytical solutions
within 0.1%. The terminal errors may be kept lower than
1:0� 10�3.

Example 6. Nonlinear two-stage continuous stirred tank reactor
system (Luus et al., 1995).

Originally developed by Aris and Amundson (1958) and further
used by Lapidus and Luus (1967) for stability analysis, this problem
consists of four time-delay differential equations described by

ẋ1 ¼ 0:5� x1ðtÞ � R1 ¼ f 1ðtÞ
ẋ2 ¼ �2½x2ðtÞ þ 0:25� � u1½x2ðtÞ þ 0:25� þ R1 ¼ f 2ðtÞ
ẋ3 ¼ x1ðt � tÞ � x3ðtÞ � R2 þ 0:25

ẋ4 ¼ x2ðt � tÞ � 2x4ðtÞ � u2½xð9tÞ þ 0:25� þ R2 � 0:25

where x1 and x3 are normalized concentration variables in tanks 1
and 2; x2 and x4 are normalized temperature variables in tanks 1
and 2. R1 and R2 denote the reaction terms in tanks 1 and 2, which
are described as

R1 ¼ ½x1ðtÞ þ 0:5�exp
25x2ðtÞ

x2ðtÞ þ 2

� �

R2 ¼ ½x3ðtÞ þ 0:5�exp
25x4ðtÞ

x4ðtÞ þ 2

� �

The initial state profiles for x1 and x2 and the initial conditions for
x3 and x4 are

x1ðtÞ ¼ 0:15 � t � t � 0

x2ðtÞ ¼ �0:03 � t � t � 0

x3ð0Þ ¼ 0:1

x4ð0Þ ¼ 0:



D.-Y. Sun, T.-C. Huang / Journal of the Taiwan Institute of Chemical Engineers 41 (2010) 54–64 63
The normalized controls are restricted by

�1 � u j � 1 j ¼ 1;2

This problem is to the controls u1 and u2 in the time duration
from 0 to 2 to minimize the objective function

I ¼
Z 2

0
½x2

1 þ x2
2 þ x2

3 þ x2
4 þ 0:1ðu2

1 þ u2
2Þ�dt

As stated in Section 1, the evaluation of the objective function
can be facilitated by adding a new state variable x5 by

ẋ5 ¼ x2
1 þ x2

2 þ x2
3 þ x2

4 þ 0:1ðu2
1 þ u2

2Þ

with the initial condition x5ð0Þ ¼ 0.
For this problem, many preliminary tests show that the

convergence to the optimal solution could not be obtained from
an arbitrary chosen initial policies. Such convergent difficulty also
encountered in the solution by IDP (Luus et al., 1995) might be
derived from the nature of discontinuity and high nonlinearity. In
order to acquire an feasible initial input, we first use the Taylor’s
expansion to approximate the time-delay term as follows

xðt � tÞ� xðtÞ � t
dx

dt1

As a result, the original model is reposed as a delay-free problem

ẋ1 ¼ f 1ðtÞ
ẋ2 ¼ f 2ðtÞ
ẋ3 ¼ x1ðtÞ � x3ðtÞ � t f 1 � R2 þ 0:25

ẋ4 ¼ x2ðtÞ � 2x4ðtÞ � u2½x4ðtÞ þ 0:25� � t f 2 þ R2 � 0:25

Once the value of t is given as 0.2, a rough but feasible control
policy can be determined by LCA with P ¼ 8, Ng ¼ 10, N f ¼ 10 and
Nm ¼ 100, and the corresponding objective value is converged to
0.02486. Using the above feasible policy as initial guess and giving
a range of �0:003, LCA re-solves the original model with t ¼ 0:2.
The acquired minimum values with various N f and Nm can be seen
in Table 10. Therein, the values shown below I� are the results by
IDP. LCA may get more smaller objective value than IDP for the case
with t ¼ 0:2. We further use the previous feasible input as the
initial guess of LCA to determine the optimal controls for the cases
with t ¼ 0:4;0:6 and 0.8. The corresponding objective values are
shown in Table 10. Additionally, the results by IDP are also list in
Fig. 10. The optimal inputs for Example (6) with various time delay by LCA.
the same table. In the case of t ¼ 0:4 and t ¼ 0:6, LCA has better
resultant convergence than IDP. For the case of t ¼ 0:8 the
objective value by LCA are slightly larger than the reported one by
IDP. To promote the numerical quality, we use the optimal input
acquired from the case with t ¼ 0:6 as the initial guess to re-solve
the case with t ¼ 0:8. As shown in Table 11, LCA with various N f

and Nm may further refine the objective value toward the known
optimum. The optimal inputs for different time delay are shown in
Fig. 10.

6. Conclusion

In this study, the line-up competition algorithm coupled with
the delay differential equation solver is applied to solve time-delay
optimal control problems. Based on the concept of control vector
parametrization, The TDOCP is first discretized, and then
optimized by the proposed algorithm. In order not to increase
the discontinuity, the continuous input in this study is approxi-
mated by a series of ramp inputs with fixed time divisions. Owing
to forward solution manner, the proposed algorithm barely use the
estimation of time-delay states in most problems. Thus, the
solution framework becomes very convenient and straightforward.
To efficiently generate new trial members, the uniform sampling
policy is replaced by the normal sampling strategy. Six typical
problems are used to demonstrate the performance of the
proposed method. From the numerical illustrations, the modified
LCA is proved to be efficient in convergence and robust to the initial
conditions of the optimization. Furthermore, because the method
may use small discretized problems to converge the solution, the
computational loads are also largely reduced.
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