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a b s t r a c t

As the high growth of population of vehicles, the traffic accidents are becoming more and more serious in
recent years. Most occurrences of the car accidents results from the distraction, inattention and driving
fatigue of the driver. Hence, in order to avoid the driver being in danger as much as possible. In the lane
detection, in order to enhance lane boundary information and to suitable for various light conditions all
day, we combine the self-clustering algorithm (SCA), fuzzy C-mean and fuzzy rules to process the spatial
information and Canny algorithms to get good edge detection. In the lane departure warning, the system
uses instantaneous information from the lane detection to calculate angle relations of the boundaries.
The system sends a suitable warning signal to drivers, according to degree different of the departure.
These experiments have been successfully evaluated on the PC platform of 3.2-GHz CPU and the average
frame rate is up to 14 fps.
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1. Introduction

Intelligent Transportation System (ITS) is a system that applies
advanced technologies such as electronics, communication, infor-
mation, image processing, and various sensors to catch real-time
information that helps not only to improve transportation safety
and mobility, enhance productivity, but also reduce transportation
impacts on the environment. According to the website of the US
Department of Transportation’s (USDOT) ITS program, the applica-
tions of ITS can generally be divided into two parts, intelligent
infrastructure systems and intelligent vehicle systems. Systems
such as arterial management, freeway management, traveler infor-
mation, information management, emergency management, elec-
tronic payment, etc. are intelligent infrastructure applications.
Other systems, such as collision avoidance systems, and driver
assistance systems, are intelligent vehicles applications of. Similar
to the USDOT ITS program, other countries such as Japan and Tai-
wan also includes the Advanced Vehicle Control and Safety System
(AVCSS) in their ITS field. Among these ITS applications, we can
easily conclude that car safety is one of the most important issues
in many countries.

Several researchers around the world have been developing vi-
sion-based ASV systems for lane detection, lane following and lane
departure warning; however, most of them present limitations in
009 Published by Elsevier Ltd. All r
situations involving shadows, varying illumination conditions,
bad conditions of road paintings and other image artifacts.

Chen, Jochem, and Pomerleau (1995) developed a roadway
departure warning system by setting a downward-looking video
camera to monitor the vehicle’s lateral displacements. LeBlanc
et al. (1996) proposed a road-departure prevention system that
predicts the vehicle’s path and compares such path with the sensed
road geometry to estimate the time to lane-crossing (TLC); how-
ever, the vision-based sensor requires good lighting and pavement
conditions to detect lane boundaries. Kwon et al. (1999) developed
a vision-based lane departure warning system that considers two
warning criteria: the lateral offsets and the time to lane-crossing
(TLC). With some considered states of giving alarm or giving low
level warning, they divided the warning level into three levels: give
an alarm state, give a low level warning state, and give no alarm
state. Risack, Mohler, and Enkelmann (2000) proposed a lane keep-
ing assistance system, which warns the driver on unintended lane
departures. In fact, they used an existing video-based lane detec-
tion algorithm and compared different methods to detect lane
departure, using several assumptions on driver behavior in certain
situations to distinguish between intended and unintended lane
departures. Lane departures are successfully detected by their
technique, but they also needed roads in good conditions and good
lighting conditions. Lee (2002) proposed a lane departure detection
system that estimates lane orientation through an edge distribu-
tion function (EDF), and identifies changes in the traveling direc-
tion of a vehicle. However, the EDF may fail in curved roads with
dashed lane markings. A modification of this technique (Lee, Kee,
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& Yi, 2003) includes a boundary pixel extractor to improve its
robustness. However, curved lanes may still cause problems, be-
cause a linear model (computed using the Hough transform) is
used for fitting lane boundaries. Hsu, Cheng, Tsuei, and Huang
(2002) developed a LDWS that considers the angle of lane bound-
aries and adaptively measured both of the angles and their differ-
ences to see the vehicle’s motion. The processing speed was 10
frames/s. Apostoloff and Zelinsky (2003) proposed a lane tracking
system based on particle filtering and multiple cues. This method
does not track explicitly the lanes, but it computes parameters
such as lateral offset and yaw of the vehicle with respect to the
center of the road. Although the method appears to be robust un-
der a variety of conditions (shadows, different lighting conditions,
etc.), it cannot be used to estimate curvature or detect if the vehicle
is approaching a curved part of the road. Hsu (2003) applied radial
basis probability networks (RBPN) as the pattern recognition
mechanism that measures and records vehicle’s lateral displace-
ment and its rate of change, and compare the trajectory with the
training patterns to find one classification that fits most and see
if the vehicle is about to lane departure. Three warning levels:
warning, caution, and safety were considered. McCall and Trivedi
(2004) proposed a method for lane detection using steerage filters.
Such filters perform well in picking out both circular reflector road
markings as well as painted line road markings. Filter results are
then processed to eliminate outliers based on the expected road
geometry and used to update a road and vehicular model along
with data taken internally from the vehicle. Such a technique is ro-
bust with respect to lighting changes and shadows, but has short-
comings for relatively curved roads (because this method relies
basically on a linear model). Jung and Kelber (2004) developed a
lane departure warning system based on a linear-parabolic lane
model. They divided the road ahead the vehicle into two filed: near
and far. A linear function is used to fit the near vision field, and a
quadratic function is used for the far field. The warning algorithm
of Jung and Kelber was comparison of the orientation of both left
and right lane boundaries. In order to reduce the influence of noise,
the orientations were averaged in five consecutive frames in this
study (15 frames/s). Jung and Kelber (2005) also provided a
LDWS using lateral offset (LO) with uncalibrated camera that
takes into account the lateral offset and its rate of change were
considered.

On the basis of several researchers worldwide have been devel-
oping vision-based ASV systems. Almost of methods proposed be-
fore are only suitable for particular weather situation.
Consequently, they do not adapt to real environment. Therefore,
in order to improve the situation describe above. We proposed
our methods to solve all kinds of weather and we aim at develop-
ing a Drive Assistance System (DAS) that can help the driver to be
aware of dangerous situations which may have been ignored by
the driver due to inattention or fatigue. As stated earlier, in this re-
search, we focus to solve two problems- lane detection and road-
way departure – under all kinds of weather.

The organization is listed as follows. In Section 2, the camera
configuration and system framework is first introduced. The lane
boundary detection procedure is developed in Section 3, and the
lane departure warning is presented in Section 4. In Section 5,
the experiments results will be shown. The conclusions are shown
in the last Section.
Fig. 1. The flow chart of system operation.
2. Camera configuration and system framework

In this Section, the fundamentals of this research are discussed.
A vision-based driver assistance system usually needs calibration
before operating. We want to build an easy-to-install driver assis-
tance system, so that it can be used without knowing the details of
the configuration. If the system was commercialized, customers
would be able to use it directly without reading manual.

In the literature, it is quite popular to use vanishing point detec-
tion for camera calibration. Camera calibration is meant to deter-
mine the parameters of transformation between the image
coordinate and the vehicle coordinate. There are many approaches
to the task of camera calibration. The most typical one, such as DLT
method (Abdel-Aziz & Karara, 1971), is to model the transforma-
tion as parametric linear transformation, and then solve the
parameters based on a set of known points in the world coordinate
system and their corresponding points in the image coordinate
system. The main shortcoming of this approach is inconvenient
to physically measure a larger quantity of points in the world coor-
dinate system. Instead of taking data of numerous points in world
coordinate system, some approaches (Echingo, 1990; Wang & Tsai,
1991) use calibration targets that has some known geometric
properties. In this case, the main drawback is however that calibra-
tion target must be precisely installed. Another related research
(Bas & Crisman, 1997) is to measure the height and the tilt of the
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camera, which plus the information of the given vanishing point al-
lows one to compute the focal length and the pan of the camera.

According to the above research, the camera calibration facili-
tates the transformation of the image coordinates and the world
coordinates. Through the calibration, we can acquire the lateral
and longitudinal information in the real world coordinate system.
In addition, this work applies the method developed by Thomas
(2000), to modify the calibration experiment results with mathe-
matical formulas. Based on the modified information, this research
further applies the a–b filter and the simple moving average meth-
od to dynamically predict the relative distance and velocity, both
laterally and longitudinally. The objectives to camera calibration
are to transform the image system captured from the CCD camera
to the real world system and to build the transformation mecha-
nism between the image and world coordinates. First, we have
an experimental vehicle equipped with a JVC GR-DV4000U CCD
camera mounted on the front windshield inside the experimental
vehicle that captures front view images. The size of the captured
image is 320 � 240 pixels. Second, an industrial personal computer
placed in the trunk of the vehicle, with an image catching program
developed for this study.

To achieve these two objectives, a single camera is installed on a
real vehicle to grab the scenes from a real traffic environment for
lane detection and roadway departure application under all kinds
of weather. Fig. 1 shows the proposed system operation conceptual
flowchart. In the locating phase, it consists of two procedures; lane
detection and roadway departure estimates. Finally, the detected
lane boundaries and roadway departure estimated will be used
to detect the potential dangerous situations via hazard identifica-
tion procedure. If the driver is in the dangerous situations, an auto-
matic voice system or warning signal system will warn the driver
via a loud speaker or warning signal color degree, according to var-
ious departure situations.
3. Lane detection

At the beginning of this architecture, the RGB coordinate will be
transformed into the YCbCr one so that the illumination compo-
Fig. 2. (a) The gray image; (b) the histogram of gray image; (c) after u
nent will be totally retained because we only require monochro-
matic information of each frame to process the data. Then, the
automatic brightness compensation about deal with of the image
content will be described in Section 3.1. The preprocessing step
for edge detection will be presented in Section 3.2. Next to the pro-
cessing step, we used fan scanning detection to get border lines of
possible vehicles, as described in Section 3.3.

3.1. Automatic brightness compensation using fuzzy rules

Before discussing how to search for the lane-marking, the step
of color transformation must be executed. In general, most of the
algorithms shown in the past theses with respect to lane detection
have only considered the grey-level component. This reason is that
the contrast between the lane boundary and the normal road plane
can be easily seen by normal people as usual even if the colors of
lanes are not necessarily the same. As a result, the information of
luminance for each frame must be stored in our system using the
RGB-to-YIQ transformation. On the other hand, the remaining
chrominance components such as I and Q are not taken seriously
due to the insensitive perception about human eyes. The formula-
tion of transformation can be described by Eq. (1)
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Based on previous research, we know that the brightness variations
will have an impact on the analysis of lane line. To improve this sit-
uation, we first calculate each as the pixel of the accumulated value
in each gray level image and calculate of each pixel of the accumu-
lated value by way of intensity profile of roadway part block in the
image. Then, we have to calculate the center of the area (COA) in the
entire image. The formulation of calculate can be described by Eq.
(2), where i ¼ 1;2; . . . ;255 denotes the gray-level, Hi denotes accu-
mulation of pixel.

COA ¼
Pi¼255

i¼0 ðHi � iÞPi¼255
i¼0 Hi

ð2Þ
sing the SCA cluster and (d) after using the fuzzy C-mean cluster.
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To continue, we calculate two distribution values that separate out
the light component and dark component by way of intensity pro-
file of the roadway part block of the image. We use the self-cluster-
ing algorithm (SCA) (Lin & Xu, 2006) and fuzzy C-mean (John &
Langari, 1999) to analyze the cumulative value of each pixel on
the histogram. The transformation in data is illustrated by Fig. 2
and the detailed procedures are as follow:

The proposed SCA is a one-pass algorithm that dynamically esti-
mates the number of clusters in a dataset and finds their means in
the input data space. For the above reason, the SCA can cluster the
input space quickly. The details of the SCA algorithm are described
in the following steps:

� Step 0: Create the first cluster C1 by simply taking the position of
the first input data as the first cluster mean Cci_1 where i means
the ith input variables. Set a dimension distance value to 0 (see
Fig. 3a).

� Step 1: If all of the training input data have been processed, the
algorithm is finished. Otherwise, the current input example,
xi½k�, is taken and the distances between this input example
and all already created cluster mean Cci_j are calculated:

Di j½k� ¼ kxij½k� � Cci jk; ð3Þ

where j ¼ 1;2; . . . ;R denotes the jth cluster, k ¼ 1;2;3; . . . ;N rep-
resents the kth input, and i ¼ 1;2; . . . ;n represents the ith
dimension.

� Step 2: If the distance calculation in Eq. (3) is equal to or less
than all of the dimension distances CDi_j that represent the ith
dimension distance in the jth cluster (set to 0 initially), then
the current input example belongs to a cluster with the mini-
mum distance:

D min
j
½k� ¼ min

Xn

i¼1

kxi½k� � Cci jk
 !

; ð4Þ

D min
i j
½k� ¼ kxij½k� � Cci jk; ð5Þ

where j in Eq. (5) represents the jth cluster that is computed
using Eq. (4). The use of Eqs. (4) and (5) is to find the minimum
sum of all the dimension distances in a cluster with the kth input
data. The constraint is described as follows:

D min
i j
½k� 6 CDi j; ð6Þ
Fig. 3. A brief clustering process using
If no new clusters are created or no existing clusters are updated
(the cases of ðx1½4�; x2½4�Þ and ðx1½6�; x2½6�Þ in Fig. 3b), the algo-
rithm returns to Step 1. Otherwise, the algorithm goes to the next
step.

� Step 3: Find a cluster from all existing cluster centers by calcu-
lating Si j½k� ¼ Di j½k� þ CDi j; j ¼ 1;2; . . . ;R; then choosing the
cluster center with the minimum value:

S min
i j
½k� ¼ D min

i j
½k� þ CDi j; where j ¼ 1;2; . . . ;R: ð7Þ

In Eqs. (5) and (6), the minimum distance from any cluster mean
to the examples that belong to the cluster is not greater than the
threshold Dthr, though the algorithm does not keep any infor-
mation of previous examples. However, we find that the formu-
lation only considers the distance between the input data and
the cluster mean in Eq. (7). But the special situation (Kwon
et al., 1999) shows that the distances between the given point
xi (Hsu, 2003) and both cluster means Cci_1 and Cci_2 are the
same as in Fig. 4. In the aforementioned technique, the cluster
C2, which has small dimension distances CDi_2, will be selected
to expand according to Eq. (7). However this causes a problem in
that the cluster numbers increase quickly. To avoid this problem,
we state a condition, as follows: If there are two D min j½10�
computed in Eq. (6) that D min1½10� ¼ D min2½10� and
ðCD1 1 þ CD2 1 > CD1 2 þ CD2 2Þ

Then D min
1 1
½10� ¼ D1 1½10�; ð8Þ

D min
2 1
½10� ¼ D2 1½10�; ð9Þ

where ðD min1½10�Þ represents the minimum distance between
the 10th input data and the mean of the 1st cluster that is calcu-
lated by Eq. (6); ðD min2 1½10�Þ represents dimension distance
between the 2nd dimension of the 10th input data and the 2nd
dimension mean of the 1st cluster that is calculated by Eq. (7);
D2 1½10� represents dimension distance between the 2nd dimen-
sion of the 10th input data and the 2nd dimension mean of the
1st cluster that is calculated by Eq. (5). In Eqs. (8) and (9), we find
that when the distances between the input data and both clusters
are the same, the formulation will choose the cluster that has the
large dimension distance CD1 1 and CD2 1.

� Step 4: If Smini j½k� in Eq. (7) is greater than Dthr, the input exam-
ple xi [k] does not belong to any existing cluster. A new cluster is
SCA with samples in 2-D space.



Fig. 4. A special SCA case.
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created in the same way as described in Step 0 (the cases of
ðx1½3�; x2½3�Þ and ðx1½8�; x2½8�Þ in Fig. 3c), and the algorithm
returns to Step 1.

� Step 5: If S mini_j [k] is not greater than Dthr, the cluster is
updated by moving its mean, Cci_j, and increasing the value of
its dimension distances. The new mean is moved to the point
on the line connecting the input data, and the distance from
the new mean to the point is equal to its dimension distance
(the cases of ðx1½5�; x2½5�Þ and ðx1½9�; x2½9�Þ in Fig. 3d). The details
for updating the equations are as follows:

if CDi j < ðxi½k� � Cci j þ CDi jÞ=2
Then CDi j ¼ ðxi½k� � Cci j þ CDi jÞ=2;

ð10Þ

Cci j ¼ xi½k� � CDi j if Cci j >¼ xi½k�; ð11Þ
Cci j ¼ xi½k� þ CDi j if Cci j < xi½k�; ð12Þ

where k ¼ 1;2;3; . . . ;N represents the kth input, j represents the
jth cluster that has a minimum distance in Eq. (4), x represents
the input data, and i represents the ith dimension. After this step
is performed, the algorithm returns to Step 1.

After the steps of SCA, we can find some of the more obvious
representatives of several groups from cumulative values of each
pixel. Then, we get several groups from SCA and into the fuzzy C-
mean to analyze. The details of the fuzzy C-mean algorithm are de-
scribed in the following steps:

The fuzzy C-mean algorithm is based on the minimization of the
following criterion function (Eq. (13)) which is the sum of the
squared Euclidean distances between an input sample and a clus-
ter center, weighted by the fuzzy membership function.

JFCM ¼
X

i

XC

k¼1

lkðiÞ
qkFðiÞ � mkk2 ð13Þ

In this formula lkði; jÞ is the kth membership function on the ith in-
put sample, and

PC
K¼1lkðiÞ ¼ 1; mk is the kth cluster center, C is the
Fig. 5. (a) The two values that separate out the light and dark component from entire i
intensity profile of roadway part block.
amount of clusters, q is a parameter of the degree of fuzziness, and
k � k is the Euclidean distance method. This algorithm iteratively up-
dates the following equations:

lkðiÞ ¼
XC

n¼1

jFðiÞ � mkj
FðiÞ � mn

� �2=ðq�1Þ
" #�1

; 1 6 K 6 C ð14Þ

mk ¼
P

iukðiÞq � FðiÞP
iukðiÞq

; 1 6 K 6 C ð15Þ

The equations are updated until the change of JFCM in Eq. (13)
reaches a pre-specified small number, the center locations then be-
come optimal. Once the centers are refined, every input sample is
assigned to its nearest center, thus the segmentation is achieved.

Before we use fuzzy C-mean algorithm to segment images, we
should assign the c and the initial cluster centers because we want
to get values that separate out the light component and dark com-
ponent. To do so, we only need a small number of clusters. If there
are too many regions, it will reduce the performance and the sub-
ject region may not complete.

After the steps of fuzzy C-mean, we can get two values that sep-
arate out the light component and dark component from the entire
image and intensity profile of roadway part block (see Fig. 5).

After, we chose distance estimate method to calculate COA and
the two values (light and dark) from the entire image. We chose a
smaller value knowing that the COA deflection is a smaller value.
Therefore, through the above-mentioned method, we can know
the brightness changes of the current image. We also chose to ana-
lyze the distance between light and dark of variation through
intensity profile of roadway part block.

Next, a fuzzy rule-based system was constructed with the fuzzy
‘‘IF X AND Y THEN Z” rule. In this study, two basic parameters were
taken as the premises of the fuzzy rules: the distance estimate ðdÞ
and the light and dark variation ðvÞ. After we tested some images,
we found that the performance and the completeness of bright
compensation are satisfying when the two parameter fuzzy rules
mage and (b) the two values that separate out the light and dark component from
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are set to 5. The distance estimate d was divided into five member-
ship functions: MAD represents maximum distance, GD represents
greater distance, MD represents middle distance, SD represents
smaller distance, and MID represents minimum distance. The
light-dark variation v is divided into five membership functions:
MAV represents maximum variation, GV represents greater varia-
tion, MV represents middle variation, SV represents smaller varia-
tion, and MIV represents minimum variation. There were five
gradation lighting compensation outputs: MAC represents maxi-
mum compensation, GRC represents greater compensation, MOC
represents moderate compensation, SMC represents smaller com-
pensation, and MIC represents minimum compensation, controlled
by the consequential outputs from the fuzzy rules. We therefore
established 25 fuzzy logic rules as listed below and shown in Fig. 6.
Fig. 6. Fuzzy rule table for brightness compensation control units (d: distance; v:
light-dark variation).

Fig. 7. Fuzzy logic membership functions.

Fig. 8. The brightness co
The membership functions for the brightness compensation are
shown in Fig. 3.8, where (a) is the membership functions of dis-
tance estimate, (b) is the membership functions of light-dark var-
iation, and (c) is the membership functions of output operations.
For the distance d, as shown in Fig. 7a, when d < 0, we consider
it is ‘‘very minimum distance”, and ‘‘very maximum distance”
when d > 50. In Fig. 7b, when the light-dark variation v is larger
than 50, we say it is ‘‘very maximum variation”, and when the va-
lue of v is smaller than 0, we say it is ‘‘very minimum variation”.
Fig. 7c shows the consideration of comfortable bright compensa-
tion for all kinds of the weather.

In this study, the compensation scale is set to between 0.6 and
1.4. The l represents the degree of membership of different mem-
bers. It describes the membership of both the premise term and the
consequent term of the fuzzy rules.

Next, we got the output from consequent operation and substi-
tution ‘‘a” of the parameter in Eq. (16). We used through Eq. (16) to
calculate brightness compensation of each pixel in the image.
Fig. 8a is parameter ‘‘a” of light compensation curve, where as
Fig. 8b is parameter ‘‘a” of dark compensation curve.

compensation pixelði; jÞ ¼ pixelði; jÞ
255

� �a

� 255 ð16Þ

After the above method, we can get better images information and
enhance the accuracy of follow-up procedure in Fig. 9. Fig. 9a is the
original gray image, where as Fig. 9b is the passed through bright
compensation gray image. We can see (see Fig. 9b) of the more
obvious advantages of that approach in the areas circled in red.

3.2. Canny edge detection

Edges characterize boundaries and therefore a problem of fun-
damental importance in image processing. Edge detecting an im-
age significantly reduces the amount of data and filters out
useless out information, while preserving the important structural
properties in an image.

The Canny edge detection algorithm (Gonzalez, Woods, & Ed-
dins, 2003) is known to many as the optimal edge detector. Can-
ny’s intentions were to enhance the many edge detectors
already out at the time he started his work. He was very successful
in achieving his goal and his ideas and methods can be found in
his paper, ‘‘A Computational Approach to Edge Detection”. In
(Gonzalez et al., 2003), Canny followed a list of criteria to improve
current methods of edge detection. The first and most obvious cri-
terion is low error rate. It is important that edges occurring in
images should not be missed and that there be no responses to
non-edges. The second criterion is that the edge points be well
localized. In other words, the distance between the edge pixels
as found by the detector and the actual edge is to be at a
minimum. A third criterion is to have only one response to a
single edge. This was implemented because the first 2 were not
mpensation curve.



Fig. 9. (a) The original gray image and (b) the passed through brightness compensation gray image.
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substantial enough to completely eliminate the possibility of
multiple responses to an edge.

Based on these criteria, the Canny detector first smoothes the
image to eliminate and noise. It then finds the image gradient to
highlight regions with high spatial derivatives. The algorithm then
tracks along these regions and suppresses any pixel that is not at
the maximum (non-maximum suppression). The gradient array is
now further reduced by hysteresis. Hysteresis is used to track
along the remaining pixels that have not been suppressed. Hyster-
esis uses two thresholds and if the magnitude is below the first
threshold, it is set to zero (made a non-edge). If the magnitude is
above the high threshold, it is made an edge. And if the magnitude
is between the 2 thresholds, then it is set to zero unless there is
path from this pixel to a pixel with a gradient above T2. Applying
the above methods, the detection results are shown in Fig. 10,
Fig. 10a shows the edge detection without brightness compensa-
tion. Fig. 10b shows the edge detection with brightness compensa-
tion and according to the figure red circle regions shows that
brightness compensation can be enhanced the lane information.

3.3. Fan scanning detection

We will be scanning the images from a bottom-up, the middle
to both sides, where the first encounter of an edge pixel in each
row is saved and deleted all the other point. The process is contin-
ued as edge points are linked to form line segments in the image.
These line segments will be combined into lane line through the
following steps.

� Step 1: Calculate coordinate difference between the current edge
pixel with the previous edge pixel, If Dy < 3 and 05 Dx < 6, then
the point joins the previous edge pixel in the list. If not, then the
following principles to decide.

� Step 2: Calculate coordinate difference between the current edge
pixel with the preceding every list of end point. If Dy 5 3 and
0 5 Dx 5 6, then, the point accedes to the list of the homology.
If not, then this edge pixel builds into a new list.
Fig. 10. (a) The edge detection without brightness compensat
� Step 3: Based on the judgment of the two prior principles, Dx ¼ 0
situation is not permitted to continuous appear two times or
more times, to avoid finding out the vertical direction of line
segment.

Next, we have to get the line segments to link together to form
the lane line. We were respectively the list of the left-right sides
proceeding sort, and based on the number size of the edge point.
Then, we took out the longest list’s the start point and end point
from left to right sides, to estimate a straight line. Next, we calcu-
late the left–right side straight lines the intersection location; the
point is the preliminary estimates point to the image vanishing
point. It is calculated using Eqs. (17) and (18), where and repre-
senting the image the left (or right) in the longest list of the start
point and end point coordinates. In addition, a, b, c of straight line
equations ax + by + c = 0 three factors, and the subscript L and R on
behalf of the left or the right of the straights coefficient make up
the equation.

a ¼ y1 � y2

b ¼ x2 � x1

c ¼ x1y2 � x2y1

ð17Þ

vy ¼ aLcR � aRcL

aRbL � aLbR
ð18Þ

In the formula (18) vy is the intersection y coordinate for the in two
straight lines as well as the y coordinates of the vanishing point.
Therefore, edge points of the vy and upward do not have to be dealt
with, so that we will be able to prevent vehicles and road scenery
generation of edge point to cause an incorrect detection of the lane.
Then, we have to consider the left and right sides of the link list
respectively, from the second long list to the shortest list and check
whether to merger with the longest list. If so, we will combine the
two lists; if not, we will continue to check the next list. The princi-
ples of the merger as follow:

� Step 1: We first take out the longest list the start point and end
point coordinates (the A line segment in Fig. 11).
ion (b) the edge detection with brightness compensation.



Fig. 12. The result of the link in the same lane line segment.

Fig. 13. The result of the depicted in actual image.

Fig. 14. Orientation of

Fig. 11. Sketch of the merger line segment.
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� Step 2: Then, we use these two points to estimate a straight line
(the dotted line in Fig. 11) and it is factor calculation formula as
shown in (17).

� Step 3: Then, we take out the start point and end point coordi-
nates from the list of the merger (the B line segment in Fig. 11).

� Step 4: We calculate distance from to two points, dis1 and dis2,
as follow:

dis ¼ jaxþ byþ cjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p ð19Þ

� Step 5: If dis1 < th1; dis2 < th2; then we will combine the two
lists and to get a new list.

When the road is not straight, the two may not be in the same
segment of the straight line (Fig. 11 of the A, B line segment).
Therefore (th1, th2) will be a distance of two line segments to cal-
culate thresholds. That is the farther the distance, the greater the
threshold set. So the threshold is defined as follows:

threshold ¼ ya� yb
4

þ 2 ð20Þ

In the formula, ya want to merge the list to y coordinate of the start
point or end point. If the new list at the top of the longest list, yb is y
coordinates from the end of the longest list. If the new list at the un-
der of the longest list, yb is y coordinates from the start of the lon-
gest list. If the new list in the longest at the middle of the list, the
threshold set 2. The result is shown in Fig. 12.

After, the line segments are merged using start point and end
point to depict the actual image (see Fig. 13).
lane boundaries.

Fig. 15. Results of the various warning signal display.



Fig. 16. The experimental architecture.
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4. Lane departure warning

We use measurement, namely, the angles of both sides of lane
lines to identify if the hazards to road driving arise. Therefore,
how to evaluate the angles will be shown in the follows. If the vehi-
cle is traveling in a straight portion of the road and stays at the cen-
ter of the lane, we should expect symmetry (for the near vision
field) in the orientations of left and right lane bound-
ariesðhl þ hr ¼ 0Þ, as depicted in Fig. 14. If the vehicle drifts to its
left, both hl and hr increase. If the vehicle drifts to its right, both
hl and hr decrease. In any case, the value jhl þ hr j gets away from
zero. Thus, a simple and efficient measure for trajectory deviation
is given by:

b ¼ jhl þ hr j ð21Þ

If b gets sufficiently large, the vehicle is leaving the center of the
lane. In this work, b is compared to a threshold T1, and a lane depar-
ture warning is issued if b > T1. Experimental results indicate that
T1 ¼ 15� is a good choice.

In the previous chapter 3, we have derived explicit models for
left and right lane boundaries, that are denoted by flðxÞ and frðxÞ,
respectively. Such models can be used to determine orientations
hlðxÞ and hrðxÞ:

hlðxÞ ¼ tan�1 f 0l ðxÞ
� �

; hrðxÞ ¼ tan�1 f 0r ðxÞ
� �

ð22Þ

Eq. (22) provides orientations hlðxÞ and hrðxÞ at any position x. How-
ever, to compute the symmetry measure b, we need to determine
Table 1
The specification of platform information.

CPU Intel Pentium 4 3.2 GHz
Memory 1 GB DDR400 RAM
Compiler Borland C++ Builder 6.0
OS Microsoft Windows XP
Resolution 320 � 240
Frame rate 30 FPS

Fig. 17. The programming int
such orientations in the near field (to obtain the vehicle’s current
orientation). In fact, hlðxÞ ¼ hl and hrðxÞ ¼ hr are actually constant
values within the near field, because flðxÞ and frðxÞ are both linear
functions for any x P xm.

In order to reduce the influence of noise, temporal filtering is ap-
plied to estimate hl and hr , by averaging orientations in consecutive
frames. If hk

l and hk
r denote orientations in the kth frame of the video

sequence, then orientations in the current frame n are given by:

hn
l ¼

X9

k¼0

hn�k
l and hn

r ¼
X9

k¼0

hn�k
r ð23Þ

In general, lane departures can be classified as wanted or unwanted.
In the first case, the driver makes a voluntary lane change (to over-
take a car, for example), and turns on the blinker to indicate his in-
tent. The second case corresponds to involuntary lane changes that
usually occur when the driver falls asleep or is not paying attention
to the road. These cases are treated differently by our algorithm.

Based on the above formula (21) and (23), we have to calculate the
extent of deflect and give different levels warning signal. The judge
formula 24, 25 and warning signal display as follows (see Fig. 15):

� Step 1:

ifb> T1 then departure number¼ departure numberþ1 ð24Þ

� Step 2:
if departure number<3
thenðSafe ScopeÞ

Else if departure number P3 and departure number<5
thenðMild DangerousÞ

Else if departure number P5 and departure number<8
thenðModerate DangerousÞ

Else if departure number P8
thenðFatal DangerousÞ

ð25Þ
erface in the PC platform.



Fig. 18. The results of lane detection.
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5. Experimental results

5.1. Experimental setup

Fig. 16 shows that a JVC GR-DV4000U camera is mounted un-
der the rear-view mirror on the side of the vehicle to acquire
view image sequences and specification of platform information
in Table 1.

Fig. 17 shows the realistic programming interface in the PC plat-
form. Block (A) contains the input frame which is added the
approximating straight lane boundary detection, red line, by our
methods, as explained in Chapter 3. Block (B) contains the gray im-
age by RGB-to-YIQ, as explained in Section 3.1. Block (C) contains
the brightness compensation by fuzzy rule, as explained in Section
3.1. Block (D) show the output frame rate which responds to the
Fig. 19. The Results of lan
systematic performance. The warning alarm with different colors
of lane of LDW is contained by block (E). Block (F) displayed the
edge detection by Canny algorithm, as explained in Section 3.2.
At last, Block (G) display to retain more meaningful information
by Fan Detection, as explained in Section 3.3.

5.2. Explanation of experimental conditions

The driving environment is focused on highway with different
light conditions. The image sequences captured by the camera
are tested. At the same time, in order to observe and prove our
methods can maintain robust performance with tolerate the light
variation, we select the video segments with five different periods,
morning, noon, afternoon, nightfall, and night of one day for exper-
iment in the next section.
e departure warning.



Fig. 19 (continued )
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In Fig. 18, the testing environment considers the property with
respect to the conditions simultaneously. The detection results of
morning (a), noon (b), afternoon (c), nightfall (d) and night (e)
are processed by the same programming setting.

If the lane boundary is locked precisely by the lane detection
mechanism, the lane departing maneuver can be calculated.
Through, we measured the angles from our methods and we mete
out different warning signal by deviation of different degrees. The
departure detection results of morning (a), afternoon (b) and night
(c) are processed by the same programming setting in Fig. 19.
6. Conclusions

In the research, we proposed a new lane detection and lane
departure warning system based on fuzzy rules to analyze and it
can be applied to different weather periods. Initially, a combination
of the SCA, fuzzy C-mean and fuzzy rule is used to detect bright-
ness changes in the video scenes and enhance definite information.
Next, canny edge detection algorithm and fan detection are used to
lane boundaries in the compensation subsequent images. Finally,
orientation of the vehicle with respect to both lane boundaries is



Fig. 19 (continued )
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computed, and a symmetry measure is used to detect in lane
departure warning system.

Experimental results indicate that the proposed model provides
an accurate fit to lane boundaries, and can be used to obtain robust
information about their orientation. Also, these orientations are
used to produce a symmetry measure that correctly indicates ten-
dencies of lane departure in advance (thus, providing enough time
for the driver to correct his/her trajectory). Further work will con-
centrate on extending the proposed model to estimate orientation
of the vehicle with respect to both lane boundaries in world coor-
dinates. This would enable active safety (the car could actually take
over the steering wheel to prevent an accident) and autonomous
driving.
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