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This investigation proposes an improved particle swam optimization (PSO) approach to solve the
resource-constrained scheduling problem. Two proposed rules named delay local search rule and bidirec-
tional scheduling rule for PSO to solve scheduling problem are proposed and evaluated. These two sug-
gested rules applied in proposed PSO facilitate finding global minimum (minimum makespan). The delay
local search enables some activities delayed and altering the decided start processing time, and being
capable of escaping from local minimum. The bidirectional scheduling rule which combines forward
and backward scheduling to expand the searching area in the solution space for obtaining potential opti-
mal solution. Moreover, to speed up the production of feasible solution, a critical path is adopted in this
study. The critical path method is used to generate heuristic value in scheduling process. The simulation
results reveal that the proposed approach in this investigation is novel and efficient for resource-con-
strained class scheduling problem.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction problems. There are some algorithms were studied to solve sched-
Scheduling notion has been widely applied in many fields, such
as production planning (Zhai, Tiong, Bjornsson, & Chua, 2006), pro-
cess scheduling in operating systems (Shaw et al., 1999), classroom
arrangement (Mathaisel & Comm, 1991), aircrew-scheduling
(Chang, 2002), nurse scheduling (Ohki, Morimoto, & Miyake,
2006), food industrial (Simeonov & Simeonovova, 2002), control
system (Fleming & Fonseca, 1993) and grid computing (Buyya,
Abramson, & Giddy, 2000). Generally, these problems commonly
accompany the cost considerations related to certain constraints;
therefore, scheduling scheme plays an important role in obtaining
solutions for constraints satisfaction and cost minimization.

The resource-constrained scheduling problem (Merkle, Midden-
dorf, & Schmeck, 2002) is an optimization problem considering how
to schedule the activities of a multiprocessor system such that the
makespan of the schedule is minimized while satisfying given prece-
dence constraints between the activities and resource requirements
of the scheduled activities per time unit do not exceed the given dif-
ferent types of resources capacity limit. However, the minimum
makespan is hard to be obtained since the inestimable situation of
constraints. Most scheduling problems are confirmed to be NP-com-
plete combinatorial problems, especially for large scale scheduling
ll rights reserved.
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uling problems and obtain optimal solution. Branch-and-bound
method (Jalilvand, Khanmohammadi, & Shabaninia, 2005) is able
to find optimal solutions of scheduling problem. However, the
execution time required is impractical when the number of activi-
ties increases. Comparatively, several greedy-based algorithms
such as shortest job first (SJF) (Lupetti & Zagorodnov, 2006) and
priority scheduling (Li, Bettati, & Zhao, 1997) are able to solve the
resource-constrained scheduling problem in feasible time, but it is
hard to accommodate the algorithm to the changed problem’s con-
straints situation. Hence, the optimal solution is seldom obtained by
greedy-based algorithms.

Hopfield and Tank (1985) first proposed a type of artificial neu-
ral network; named Hopfield neural network (HNN) for solving
optimization problems. The HNN mimics the cooperation of all
neurons in the brain (cerebrum) and learns to solve problems.
We have applied HNN to scheduling multiprocessor job with re-
source and timing constraints (Huang & Chen, 1999). Furthermore,
Chen, Lo, and Huang (2007) combined competitive scheme with
slack neurons to solve real-time job scheduling problems. In
HNN, the neurons’ output is decided based on the input informa-
tion; synaptic weights and bias inputs from outside of the neuron.
An energy (cost or fitness) function is adopted to confine the prob-
lems’ constraints and targets. The solution of a scheduling problem
is yielded as the energy function converges. However, the energy
function is not easy to be designed once the constraints of the
scheduling problems become complicated.
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Many studies solve the resource-constrained scheduling prob-
lem using the meta-heuristics based methods, such as genetic
algorithm (GA) (Liu & Wang, 2005), simulated annealing algorithm
(SA) (Bouleimen & Lecocq, 2003), tabu search (TS) (Thomas & Salhi,
1998), ant colony optimization (ACO) (Merkle et al., 2002), particle
swarm optimization (Luo, Wang, Tang, & Tu, 2006), and others.
The GA mimics the mechanism of natural selection as global evo-
lution (Holland, 1987); then a more superior solution part will be
inherited via crossover operation, and increasing the diversity of
solution via mutation process. Both crossover and mutation steps
are used to expect obtaining a better solution of the studied
problem.

Originally, simulated annealing was investigated by Kirkpatrick
et al. as a stochastic method for combinatorial optimization prob-
lem (Kirkpatrick, Gelatt, & Vecchi, 1983). The optimal solution is a
stable state when the thermal energy of the system minimized.
Therefore, the required procedure is to decrease the thermal en-
ergy of the system by cooling down temperature parameter. The
temperature lowered as the iteration goes. Restated, cooling the
system to lower energy state. Moreover, the SA applies a probabil-
ity to decide whether allows the system toward the higher energy
state to avoid trapped on the local optimum. Tabu search is an ap-
proach to prevent the search from sinking into the local minimum.
The key skill used in tabu search is to record the solutions which
have been obtained. Therefore, the following search can avoid
searching the same obtained solutions (Glover Fred., 1989).

The ACO emulates the foraging behavior of ants (Dorigo & Gam-
bardella, 1997). The ant left pheromone on the trail of the searched
path from nest to the destination. The pheromone deposited on the
way is for other ants to identify and communicate with each other.
Additionally, the amount of pheromone is inverse proportional to
the length of path; a large amount of pheromone is accumulated
at the shorter path. Accordingly, ants are toward the path with
plenty of pheromone. The maximum amount of pheromone on
the path can be regarded as an ant notification signal indicating
where the shorter path is located at. Hence, the amount of phero-
mone increases rightly as more ants pass through the shortest
path. It is a self-reinforce situation of searching the shortest path,
this situation will result fast convergence and trap in local optimal
solution. Therefore, an evaporation mechanism is applied in ACO to
reducing the pheromone to obtain global optimal solution. Using
ACO to solve multiprocessor system scheduling with precedence
and resources constraints was proposed (Chen, Lo, Wang, & Wu,
2006; Chen, Zhang, Hao, & Dai, 2006).

The particles swarm optimization (PSO) is first proposed by Ken-
nedy and Eberhart (1995). In PSO, a swarm of particles spreads in
the space and the position of a particle represents a solution of a
dedicated problem. Each particle would move to a new position
based on the global experience of the swarm and the individual
experience of the particle for the global optimum. The PSO has been
applied to solve the scheduling problems. Luo et al. (2006) used PSO
to solve resource-constrained project scheduling problem (PCPSP);
they showed that the PSO is applicable to various combinatorial
problems and scheduling problems. Zhang, Sun, Zhu, and Yang
(2008) solved flowshop scheduling problem (FSP) in terms of the
PSO, and Chen, Lo et al. (2006) and Chen, Zhang et al. (2006) solved
task scheduling in grid based on PSO. Hence, this investigation fur-
ther modifies the PSO by involving extra mechanisms to enhance
the efficiency in solving the scheduling problem.

The characteristics of above stated algorithms are concluded as
follows.

� Most of them require a fitness function to evaluate the quality
and feasibility of the obtained solution.

� The features or characteristics of a good solution are referred to
when constructing a new solution.
� In GA, a fragment of the good solution is combined with another
fragment of another feasible solution to build a new solution.

� ACO and PSO algorithms infer new solution from the helpful
experience, and are possible to produce premature conver-
gence. Accordingly, these two algorithms will converge to the
local optimal solution. Therefore, most suggested algorithms
usually include additional techniques to escape from the pre-
mature convergence. For example, randomly disturbing the
system or depressing the self-reinforce is applied (Selman,
Kautz, & Cohen, 1994). Eventually, there are two aspects to
improve the algorithm for scheduling global optimal solution;
one is to enhance the heuristic ability (exploitation ability),
the other is to strengthen the ability of escaping local optimum
or expanding the searching area in the solution space (explora-
tion ability).

This study improved PSO to solve scheduling problem for opti-
ma or near-optima schedule by minimizing makespan. This im-
proved PSO uses the critical path method to enhance the
heuristic ability (exploitation ability). The critical path method
considers only logical dependencies between activities but re-
sources availability. However, the critical path method still helps
speeding up PSO to gain the feasible solution when the conflict
of resources is not acute. Meanwhile, a delay local search to lead
the solution is applied in this improved PSO to escape from the lo-
cal optima (exploration ability). With delay local search, the sched-
uling system leaves some activities not to be activated
occasionally and hence remains some unused resources available
for other activities. Moreover, bidirectional scheduling combines
forward and backward scheduling to expand the searching area
in the solution space is integrated into this improved PSO (Li &
Willis, 1992). The resources allocation for forward and backward
scheduling is different, and hence two different schedules may
be obtained, namely, schedules become diversified. The experi-
mental simulations demonstrate that the approach of this study
for the cases of RCPSP is able to obtain more optima or near-opti-
ma solutions.

This article is organized as follows. Section 2 introduces the
RCPSP and PSO, and describes how to use PSO to solve RCPSP. Sec-
tion 3 presents that the proposed novel PSO uses the critical path
method to enhance the heuristic ability (exploitation), escapes
from the local optima using delay local search (exploration) and
expands the searching area in the solution space in terms of inte-
grating the bidirectional scheduling. The simulated cases and re-
sults of experiments are displayed in Section 4. Finally, Section 5
presents the conclusions and discussions.
2. The resource-constrained scheduling problem and particle
swam optimization (PSO)

2.1. Resource-constrained scheduling problem

The scheduling application has been applied in various fields.
Among them, the resource-constrained scheduling application is
a general scheduling problem involving activities to be scheduled
to some identical processors with precedence and resource con-
straints satisfied. Activities are confined to the various constraints
and achieve a certain object. The studied scheduling problem with
resource constraint in this investigation is defined as follows:

� The object of the scheduling is to find the minimal makespan
schedule.

� There’re N activities in the multiprocessor system, Every activity
requires a processing duration dj (j = 1,...,N). Meanwhile, activi-
ties are non-preemptive in the schedule.



Table 1
Pseudo code of proposed novel PSO (NPSO).

1. Initialize
2. Loop
3. i = 0
4. The bidirectional scheduling rule decides using forward scheduling

or backward scheduling solution
5. Loop
6. i = i + 1
7. Initialize t = 0, and Ji(t = 0)
8. Loop
9. Loop
10. Select one activity j0 2 Ji(t) with activity selection rule
11. If delay local search is activated then either continue or

delay activities
12. else schedule activity j0 start at time t
13. Ji(t) = Ji(t)�{j0}
14. Until j0= £

15. t = t + 1
16. Until Ji(t) = £

17. Update the local or global optimal solution if necessary
18. Until all particles have built a complete solution
19. Updating position and velocity of every particle by Eq. (1)
20. Until End condition is reached
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� Activities have precedence constraints; a feasible schedule is an
assignment of activities to processors such that an activity
comes in the schedule when all its predecessors have finished.
Let Pj (Sj) be the set of direct predecessors (relative to the direct
successors) of activity j. Activity 0 is the start activity that has no
predecessor while activity (N + 1) is the finishing activity that
has no successor. The start activity and the finishing activity
have no resource requirements for any type of resources and
have no processing duration.

� There are different types of resources available in the system.
Each type of resource has a limited quantity. Let Q be a set of
q resource types and Rk (k = 1, . . . ,q) is the resource capacity
for resource type k. Every activity j requires various resources
rj;1; rj;2; . . . ; rj;q, where rj,k denotes the quantity of resource type
k demanded by activity j when activity j is scheduled. Moreover,
resource can be reallocated to other activities when that
resource is released from finished activities.

� Moreover, the resource constraints also assumed that the total
amount of a resource type k required by scheduled activities
can not exceed Rk at any time, such that

P
j2SiðtÞrj;k � Rk, where

the Si(t) is the set of activities scheduled by particle i at time t.
Therefore, the solution Si contains different activities scheduled
at different time.

2.2. The particle swarm optimization (PSO)

The particle swarm optimization (PSO) is a multi-agent general
meta-heuristic method, and can be applied extensively in solving
many tough problems. The PSO consists of a swarm of particles
in the space; the position of a particle is indicated by a vector
which presents a solution. PSO is initialized with a population of
M particles randomly spreads in the space and then starts to search
for the best position (namely, schedule herein). At each step or iter-
ation, the local best of each particle and global best of the swarm
are determined through evaluating the performances, i.e., the fit-
ness values or makespan, of current distribution of particles. A par-
ticle moves to a new position as a new solution which is guided by
the velocity (a vector). Therefore, the velocity plays an important
role in creating a new solution.

There are two experience positions are used in the PSO. One is
the global experience position of all particles of the swarm, which
memorizes the global best solution obtained from all positions
(solutions) of all particles. The other is the individual experience
position of each particle, which memorizes the local best solution
acquired from the positions (solutions) which have been passing
through by the corresponding particle. These two experience posi-
tions combining the weighted previous velocities are used to
determine the impact or influence on the current velocity. Re-
stated, the current velocity retains part of previous velocity (called
the inertia) and driving particle toward the direction based on the
global experience position and the individual experience position.
Accordingly, the particles can reach new positions (solutions)
based on their own inertia and experiences.

Let an N dimension space (the number of dimension is corre-
sponding to the components of solution) has M particles. For the
ith particle (i = 1, . . . ,M), the position (solution) consists of N com-
ponents, i.e., Xi = {Xi1,. . ., XiN}, Xij is the jth component of the posi-
tion. The velocity of particle i is Vi = {Vi1,. . ., ViN}, where Vij is the jth
component of the velocity. The individual experience is a position,
Li = {Li1,. . ., LiN} denotes the local best solution for the ith particle.
Moreover, G = {G1,. . ., GN} represents the global best experience
shared among all the population of particles achieved so far. The
mentioned parameters above are used to update the jth compo-
nent of the position and the jth component of velocity for the ith
particle, as shown in Eq. (1).
Vnew
ij ¼ w� Vij þ c1 � r1 � ðLij � XijÞ þ c2 � r2 � ðGj � XijÞ

Xnew
ij ¼ Xij þ Vnew

ij

(
; j ¼ 1; . . . ; N

ð1Þ

where w is an inertia weight used to determine the influence of the
previous velocity on the new velocity. The c1 and c2 are learning fac-
tors. They are used to drive the ith particle how to approach the
new position either for close to the individual experience position
or expecting close to global experience position. Furthermore, the
r1 and r2 are the random numbers uniformly distributed in [0, 1],
controlling the tradeoff between the global and local exploration
abilities during search. The values of w, c1 and c2 are assumed to
be positive herein.

3. Improved particle swarm optimization

The procedure of the proposed improved particle swam optimi-
zation is shown as in Table 1. The delay local search rule and bidi-
rectional scheduling rule will be discussed in Section 4.

For particle i, each activity j has a defined priority prij > 0
(j = 1,. . .,N) for deciding which activity will be selected. Generally,
the activity with the higher priority will be selected first, and as-
sign to one processor. In this proposed PSO, the activity’s priority
prij determination is based on the Xnew

ij .

3.1. Heuristic function design with critical path consideration

To speed up convergence of the algorithm for problem, the crit-
ical path is involved in this study. The critical path is computed
without the consideration of resources constraints. One activity
has a higher heuristic value, while the time is close to or over
the activity’s latest starting time obtained from critical path. Re-
stated, the critical path is applied to determine the heuristic value
which hence affects the probability based on greedy property for
selecting activity j of particle i at time t, and is used in the activity
selection rule. The heuristic value definition is given in Eq. (2).

The critical path method in this study is used to obtain the
activity’s earliest starting time Eststj, latest starting time Lststj

and the difference Dj between Lststj and t (Dj = |Lststj–t|). The gijt

is defined as the heuristic value for scheduling activity j of ith par-
ticle at time t. Intrinsically, the gijt is defined for the timing con-
straints for activity j, to meet the timing requirement. The
activity j is unable to be selected at time t when the time t is earlier
than activity’s earliest starting time, then the gijt is set to zero.
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Furthermore, the activity j’s earliest starting time is ahead of cur-
rent time t but the latest starting time is behind the time t, the gijt

is inverse proportional to the Dj. The gijt increases as the Dj in-
creases when the time t is already later than the activity j’s latest
starting time. Restated, the activity j is associated with higher gijt

if the time t approaches the latest starting time of activity j.
Moreover, the notion of state transition rule of ACO is utilized to

generate the new solution in this study. The state transition rule
used in ACO is computed by the pheromone ad heuristic value.
Accordingly, the heuristic value applied in this proposed novel
PSO would affect the probability of selecting activity j of particle
i at time t.

Gijt ¼

0; if Eststj > t
1

ðDjþ1Þ ; if Eststj 6 t < Lststj

1
ð2�Dj=cÞ

; otherwise

8>><
>>: ; j 2 JiðtÞ

where Dj ¼ jLststj � tjand c is a large enough constant

ð2Þ
3.2. Priority decision of activity

In this proposed PSO, the new solution generation is based on
activity priority. The priority prij is calculated based on as the in-
verse of the solution Xnew

ij , where the Xnew
ij is the start processing

times of activity j for new solution of particle i. The new solution
(position) generated by particle is not used directly for schedule,
but transformed to a priority. Therefore, a smaller Xnew

ij has a higher
priority prij indicating the new solution suggests the activity j with
high priority needs to be started earlier. Restated, a larger prij indi-
cates that the activity j is possible selected earlier. The priority of
activity is defined as listed in Eq. (3).

Prnew
ij ¼ Xnew

ij

� ��1
ð3Þ
Fig. 1. The schedule generation procedure of the proposed PSO.
3.3. Activity selection rule and resource consideration

The priority prij is extended to define prcgijt under resource con-
straints and other consideration. For the resource constraints, each
activity j is associated with a constraint state value cijt (j = 1,. . .,N)
for particle i at time t. The value of cijt is decided to indicate the re-
sources availability of remaining resources at time t, since some re-
sources are already allocated to scheduled activities. Restated, the
cijt is a constraint state value based on the resource constraints at
time t. This constraint state value is set to zero (cijt = 0), once activ-
ity j is prohibited to be selected at time t due to that the required
resources are more than remaining resources. Otherwise, the con-
straint state value is set to one, cijt = 1. Restated, activity j at time t
is a candidate activity when cijt =1. Meanwhile, Ji (t) is a set consist-
ing of all candidate activities which can be assigned to run at time
t. An activity is included in Ji (t) based on the precedence among
activities. An activity is then excluded from Ji (t), if the activity is
selected for execution.

The probability, Pbijt, of activity j 2 JiðtÞ used for activity selec-
tion at time t is determined by prcgijt (the product of prij, cijt, and
gijt). The pbijt is a normalized prcgijt as shown in Eq. (4). Moreover,
the activity selection rule at time t is designed as shown in Eq. (5).

Prcgijt ¼ prij � cijt � gijt

Pbijt ¼
prcgjitP

k2JiðtÞprcgikt

; if j 2 JiðtÞ

0; otherwise

8<
: ð4Þ

j0 ¼
arg max

j2JiðtÞ
fprcgijtg; if q < q0&

P
j2JiðtÞ

cijt – 0

S; if q P q0&
P

j2JiðtÞ
cijt – 0

8><
>: ð5Þ
The activity j’ is selected from Ji (t) according to the product of prij

and gijt values, for those activity j with cijt = 1, then the scheduling
process is processed until Ji (t) is empty. The activity selection is
decided by maximum prcgijt when q < q0. Otherwise activity j0 is cho-
sen according to S value. S is a random variable selected according
to the probability distribution, Pbijt, as given in Eq. (4). The q is a
random number uniformly distributed in [0, 1], and the q0 is a pre-
defined parameter in [0, 1]. The gijt value will be higher, if the time t
is closing to the latest starting time of activity j, or the time t is over
the latest starting time based on Eq. (2), then a higher prcgijt will be
induced. Accordingly, the activity j will have the higher probability
(Pbijt) to be selected.
3.4. Solution representation and schedule generation

The position vector of each particle presents a solution; all the
components of the position vector are the start times of all activi-
ties. If there are N activities in the scheduling system, the dimen-
sion of the space in which the particles move is N. Thus, the N
components of the position vector present N start times of N activ-
ities. The schedule generation procedure for particle i of this inves-
tigation is summarized as Fig. 1.

In the new solution generation rule of this proposed PSO, the
start time of activities (Xij) and priority (prij) of activities are up-
dated according to Eqs. (1) and (3) respectively. Afterward, the par-
ticles construct new schedule using activity selection rule Eq. (5).
Furthermore, the individual (or global) experience is replaced by
the new solution when the new solution is better than existing
individual (or global) experience.
4. Solution searching mechanisms

In this work, two solution space searching mechanisms are ap-
plied. One is called delay local search rule which is used to alter
some activities in schedule while generating new solution. The
other is the bidirectional scheduling rule which employs alternate
forward with backward scheduling to expand the searching area in
the solution space.
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4.1. Delay local search rule

Generally, the allocation of resources in the scheduling process
is to have as maximum activities processed as possible at any time,
and the resulting schedule is sound. However, this way may cause
some resources occupied by activities for a span of time, and lead
some crucial activities to delay start at an inappropriate time for
optimal scheduling (minimum makespan). Restated, this delay is
mainly caused by the short of certain resources occupied by previ-
ous scheduled activities. For instance, if one activity requiring
many resources at time t is selected for execution, then some other
activities requiring same resources will be prohibited from being
selected to process for period of time. Accordingly, these delayed
activities result in a larger makespan than that of the optimal
solution. Hence, this study involves a mechanism of delay local
search to delay some activities being selected from Ji(t). This
mechanism would leave remaining resources available and these
Fig. 2. Simulation case for 13 activities with precedence and resource constraints.

Fig. 3. Scheduling result without using delay local search, with forward scheduling

Fig. 4. Scheduling result by using delay local search method with forward schedulin
available resources can be allocated to other activities properly. Re-
stated, one activity can be processed later to let the other activities
be processed ahead to yield global optimal solution under the re-
source constraints. This delay local search is indicated in the step
11 of proposed novel PSO in Table 1.

The delay local search rule as illustrated in Eq. (6). Using this
delay local search, some resources requested by selected activity
will be reserved for other activities. A activity is delayed if q5q0,
where q is the random number uniformly distributed in [0, 1], q0

is a predefined small value (0 < q0 < 1). The q0 is defined as a delay
rate to indicate the delay probability. Restated, a activity j0 selected
from Ji (t) will not be assigned to processor at time t once the activ-
ity being selected and q5q0. This mechanism is similar to the
mutation operation of genetic algorithm (GA).

delayðj0; tÞ ¼
true; if q � q0

false; otherwise

(
ð6Þ

Fig. 2 depicts an example case for 13 activities with precedence and
resource constraints. Figs. 3–6 all use the forward scheduling mech-
anism. Figs. 3 and 4 are the schedule results with and without delay
local search applied, the resources allocation is also shown in Fig. 5.
Fig. 6 lists the remaining available resources for each type of
resources for each time slot with and without using the delay local
search.

Suppose Si(t) is the set of activity scheduled by particle i at time
t. In the example of Fig. 2 and the resulting schedule in Fig. 3, Si

(1) = {2, 3, 4} at time 1, the activity 2 will be finished at time 3.
Activity 10 would be assigned for processing at time 4 according
to the precedence, i.e., Si (4) = {3, 4, 10}. The candidate activities
at time 5 are represented by the set Ji (5) = {3, 6, 7, 10}. Neverthe-
less, the set of activity scheduled by particle i at time 5 is Si (5) = {3,
7, 10} but Si (5) = {3, 6, 7, 10} since the total amount of R3 resources
available is 12, which is insufficient for processing activities 6 and
10 concurrently. And, activity 6 and 10 must be mutual excluded at
the same time. Hence, the activity 6 has to be delayed to start until
activity 10 finish at time 13.

However, if the delay local search is applied appropriately at
time 4, the activity 10 is excluded from being assigned for running.
Accordingly, the set of the selected activities at time 5, Si (5) = {3, 6,
7} is possible, and the activity 6 can start earlier. Restated, activi-
ties 6 and 10 are not allowed to use resource R3 simultaneously,
based on the resource requirement. Moreover, activities 5 and 6
need more resource R4 than system provided, hence, activities 5
(Makespan = 39, 100 iterations, 10 particles, 3 processors: P1, P2, P3 are used).

g (Makespan = 34, 100 iterations, 10 particles, 3 processors: P1, P2, P3 are used).



Fig. 5. The total distribution of the resources used with/without delay local search applied.

Fig. 6. The resources allocation for each type of resources.
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and 6 are prohibited to execute at same time. Consequently, the
application of delay local search increases the resource utilization
and hence is able to yield shorter makespan solution. If the delay
local search is activated at time 4 and put away the selection of
activity 10, the makespan is 34 as shown in Fig. 4, otherwise, the
makespan is larger than 34 as displayed in Fig. 3.



Fig. 7. The Gantt chart of resulting schedule only by using backward scheduling (Makespan = 34, 100 iterations, 10 particles, 3 processors: P1, P2, P3 are used).

R.-M. Chen et al. / Expert Systems with Applications 37 (2010) 1899–1910 1905
4.2. Bidirectional scheduling rule

The general scheduling scheme allots activities to processors to
yield solution while satisfying all the required constraints such as
resources, precedence and other constraints. Generally, the system
has different resources allocation would cause diverse solutions.
Hence, Li and Willis (1992) suggested applying bidirectional sched-
uling to discover other solutions, since the situations of resources
requested by activities in forward and backward scheduling are
different, the resulting schedules are different. The forward sched-
uling and backward scheduling would search for solutions in dif-
ferent searching area of the solution space.

Some scheduling cases are appropriate by forward scheduling,
and some scheduling cases are suitable using backward schedul-
ing. Hence, this study alternates forward scheduling with back-
ward scheduling during iteration to increase the scheduling
efficiency. In this study, two particle swarms are employed; one
consists of forward scheduling particles and the other comprises
of backward scheduling particles. Then, the forward scheduling
particle works on the ordinary problem instance, and the backward
one works on the reversed problem instance. Restated, the directed
paths of the precedence graph are reversed. Forward and backward
particles work separately on their own position and velocity matri-
ces. Although the solutions generated by backward scheduling are
not always better than the one by forward scheduling. However,
the backward scheduling provides an opportunity to diversify the
solutions and increase the opportunity to obtain the optimal
solution.

The simulation results of the example case (illustrated in Fig. 2)
scheduled by bidirectional scheduling without delay local search
are displayed in Figs. 7–9. The Gantt charts of resulting schedule
by the forward/backward scheduling without using delay local
search are show in Figs. 3 and 7 respectively. And the allocation
of the total resources consumed by the forward/backward schedul-
ing without using delay local search is listed in Fig. 8. The usage of
the individual resource allocated to both the forward scheduling
and backward scheduling on the simulation case is displayed in
Fig. 9. The makespan of the resulting schedule using backward
scheduling is 34, and the makespan is larger than 34 for the for-
Fig. 8. The distribution of the total resources use
ward scheduling as shown in Fig. 3. Restated, the optimal schedule
can be obtained by backward scheduling.
5. Experimental examples and results

This study simulates the Single Mode Data Sets cases in PSPLIB
[29] library, these cases consist of 30–120 activities. The simula-
tion parameters used in this investigation are set as listed in Table
2. The feasible solutions (the position of particles) are maintained
by every activity’s start processing time during iteration. The
objective of the studied algorithm is to find the schedule with min-
imal makespan. The simulation program is coded by C language and
running at the PC with Pentinum4 3.4 GHz CPU.

The following simulations were applied to verify how many
cases of PSPLIB library can be solved to yield optimal solution or
lower bound solution by the proposed novel PSO. In PSPLIB library,
the benchmark optimal or lower bound solution for each instance
is also included. There is no processor constraint is given in PSPLIB.
Hence, in the simulations, the number of processor is assumed suf-
ficient for all instance cases.

There are 5 approaches are compared in this study and as listed
in Table 3, they are proposed novel particle swarm optimization for
scheduling (denoted by PSO+), PSO with bidirectional scheduling
(indicated by PSO Bidirectional), PSO with delay local search
(PSO Delay), traditional PSO (PSO), and ant colony optimization
for scheduling as in (Chen et al., 2006; Chen et al., 2006) is denoted
by ACO.

Figs. 10–13 demonstrate the simulation results of all 480 in-
stances for 30, 60, 90 activities cases and 600 instances for 120
activities case. To evaluate the studied algorithm, each instance
was run for 10, 100, and 1000 iterations. These figures show that
the proposed novel PSO (denoted by PSO+, combining the critical
path method, delay local search and bidirectional scheduling
method) is able to find more optimal schedules than the other clas-
ses of PSO and ACO algorithms.

Table 4 illustrates the 30 activities example instance j301_6 in
PSPLIB. Fig. 14 display the case j301_6 simulation results and total
distributions of the resources used by the PSO and PSO+ methods.
d by the forward and backward scheduling.



Fig. 9. The resource allocation of each type of resources.

Table 2
Parameters setting.

Parameters Value

Number of particles: M 10
Initial positions of particles: Xi Random value
Initial priority: prij Random value
Initial velocity of particles: Vi 0
Inertia weight: w 0.7
Learning factors: c1 and c2 0.7
Predefined parameter for delay rate: q0 0.05
Parameter in heuristic value determination: c 50
Parameter in activity selection: q0 0.95

Table 3
Five approaches setting.

Critical path
method

Delay local
search

Bidirectional
scheduling

PSO+ s s s

PSO bidirectional s � s

PSO delay s s �
PSO � � �
ACO s � �
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In this instance case, there are 4 types of resource, 30 activities and
sufficient processors available are assumed. The makespan of
scheduling result using PSO is 49 and the makespan of scheduling
result by PSO+ is 48(optimal). Fig. 14a shows the total resource
usage comparison by using PSO and PSO+ methods. Fig. 14b and
c display the resulting schedules using traditional PSO and PSO+
respectively. Moreover, the simulation results of the 120 activities
instance (j12022_4 in PSPLIB) using the PSO and PSO+ methods are
demonstrated in Fig. 15. The simulation results of case j12022_4



Fig. 13. The simulation results of using PSO+, PSO bidirectional, PSO delay, PSO, and
ACO for 120 activities.

Fig. 10. The simulation results of using PSO+, PSO bidirectional, PSO delay, PSO, and
ACO for 30 activities.

Fig. 11. The simulation results of using PSO+, PSO bidirectional, PSO delay, PSO, and
ACO for 60 activities.

Fig. 12. The simulation results of using PSO+, PSO bidirectional, PSO delay, PSO, and
ACO for 90 activities.

Table 4
30 activities case (j301_6) with precedence and resource requirement constraints.

Activity# Successors Activity# Duration Required resources

R1 R2 R3 R4

1 2 3 4 1 0 0 0 0 0
2 5 7 8 2 10 0 0 0 4
3 11 3 1 0 0 0 10
4 6 16 4 9 4 0 0 0
5 15 23 5 3 6 0 0 0
6 10 12 6 1 3 0 0 0
7 9 14 25 7 7 0 4 0 0
8 13 8 1 0 0 0 2
9 24 9 4 10 0 0 0
10 22 10 10 0 0 0 2
11 14 16 24 11 6 0 0 10 0
12 13 21 12 2 0 0 0 6
13 17 24 30 13 3 0 7 0 0
14 18 14 1 0 0 3 0
15 16 29 15 3 0 0 0 6
16 19 16 1 0 0 10 0
17 18 17 3 0 0 0 7
18 20 31 18 10 0 0 0 9
19 28 19 1 0 6 0 0
20 26 20 3 5 0 0 0
21 28 21 4 0 3 0 0
22 28 22 2 8 0 0 0
23 27 23 4 1 0 0 0
24 26 31 24 2 3 0 0 0
25 30 25 4 0 9 0 0
26 29 26 6 0 0 0 7
27 30 27 9 0 0 0 7
28 31 28 2 0 0 0 5
29 32 29 1 0 0 9 0
30 32 30 1 0 0 9 0
31 32 31 9 0 0 4 0
32 32 0 0 0 0 0

Available resources 12 10 10 12
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are similar to that of case j301_6. Restated, the PSO+ method can
yield optimal makespan of the solution schedule.

The scheduling problems in PSPLIB have 30, 60, 90, and 120
activities cases. The 30, 60 and 90 activities problem cases each
has 480 instances, 120 activities problem case has 600 instances.
To further evaluate the studied algorithm, each instance was run
for 1000 iterations; and each problem size case was tested 10
trials.
The assessment of different approaches is represented by the
solution quality. The solution quality is commonly measured by
the relative percentage deviation (RPD):

RPD ¼
Pinstancesð100%� Obtained�Best

Best Þ
instances

ð7Þ

ARPD ¼
PtrialsRPD

trials
ð8Þ

BRPD ¼minfRPDg ð9Þ

In Eq. (7), the Obtained is the makespan of solution obtained by cer-
tain approach for certain instance, best is the optimum solution or
the lower bound of this instance in the library. Therefore, RPD of



Fig. 14. (a) The distribution of the total resources used by PSO and PSO+, (b) PSO scheduling result and (c) PSO+ scheduling result of case j301_6.

Fig. 15. The distribution of the total resources used by the PSO and PSO+ scheduling of case j12022_4.

Table 5
The comparison of ARPD among different approaches.

Problem size/approach PSO+ (%) PSO bidirectional (%) PSO delay (%) PSO (%) ACO (%)

30 0.54 0.84 1.03 2.07 1.57
60 3.71 3.80 4.04 5.26 4.34
90 3.79 3.89 4.42 5.61 4.32
120 9.38 9.38 11.39 14.00 10.21
Average 4.36 4.48 5.22 6.73 5.11
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Table 6
The copmparison of BRPD among different approaches.

Problem size/approach PSO+ (%) PSO bidirectional (%) PSO delay (%) PSO (%) ACO (%)

30 0.31 0.58 0.62 1.33 1.29
60 3.20 3.40 3.51 4.23 3.85
90 3.45 3.52 3.98 4.71 3.88
120 8.55 8.57 10.35 12.17 9.25
Average 3.88 4.01 4.62 5.61 4.57

Table 7
The comparison of ARPD among different delay rates.

Problem size/delay rate 0.05 (%) 0.01 (%) 0.005 (%) 0.001 (%)

30 0.301 0.347 0.368 0.433
60 3.290 3.157 3.186 3.237
90 3.711 3.467 3.443 3.455
120 9.633 8.740 8.663 8.630
Average 4.234 3.928 3.915 3.939

Table 8
The comparison of BRPD among different delay rates.

Problem size/delay rate 0.05 (%) 0.01 (%) 0.005 (%) 0.001 (%)

30 0.115 0.161 0.184 0.215
60 2.950 2.845 2.854 2.895
90 3.408 3.182 3.179 3.167
120 8.907 8.101 8.009 7.965
Average 3.845 3.572 3.556 3.560
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certain problem size is calculated by averaging the difference be-
tween Obtained and best of all instances. Since each problem size
case was simulated 10 trials, an average relative percentage devia-
tion (ARPD) is defined as shown in Eq. (8) and a best relative per-
centage deviation (BRPD) is defined as listed in Eq. (9).

Table 5 lists the comparison of ARPD among different ap-
proaches for different scale problems. For example, the ARPD, an
average of 4.36% and a maximum of 9.38% were achieved using
proposed PSO+. Meanwhile, the comparison of BRPD among differ-
ent approaches is given in Table 6.

According to Tables 5 and 6, the experiment results on different
problem sizes by proposed PSO+ are better than that by other
approaches.

Moreover, to verify the effect on the solution of using the pro-
posed delay local search, different delay rates were investigated
in this work. The delay rate is similar to the mutation rate in GA
method. The ARPD and BRPD of the simulation results using various
delay rates are shown in Tables 7 and 8.
6. Conclusions and discussion

This study proposes a novel PSO scheme to solve precedence
and resource-constrained scheduling problems. A critical path
method is applied to facilitate the new activity selection in Eqs.
(4) and (5). Moreover, a delay local search mechanism (Eq. (6)) is
utilized to escape from local optimum solution. Furthermore, this
investigation applied bidirectional scheduling mechanism of alter-
nate forward and backward scheduling to expand the searching
area in the solution space. The simulation results reveal that this
improved novel PSO is effective and efficient to solve the class of
PSPLIB scheduling problems. The number of optimal solutions
yielded by proposed novel PSO is obvious superior to other tradi-
tional methods such as ACS and PSO as shown in Figs. 10–13.
The more optimal solutions found as iteration increased. Espe-
cially, for the problem size of 30 activities instances, the proposed
method is able to find 450 optimal solutions in 480 instances
(93.75%) when 10,000 iterations tested. Meanwhile, the PSO+ ap-
proach derived form PSO outperforms ACO approach in PSPLIB
problems. It can be seen that the PSO+ integrated with appropriate
search methods in this study can effectively improve the algo-
rithm’s efficiency as listed in Tables 5 and 6.

Moreover, a small value of the delay rate is suggested to find
sound solution quality. Essentially, delay local search is to stir a
small disturbance in solution space. However, a small fixed delay
rate used in large scale problem would cause large disturbance
since large scale problem has large amount of solution population.
Hence, to yield small PRD, the larger scale problem requires the
smaller delay rate as proved in Tables 7 and 8.

Furthermore, some other important features of this study are
summarized below.

1. The variation of resources usage is an important factor in the
scheduling algorithms. Therefore, make efficient use of
resources shorten the resulting schedule makespan.

2. The suggested delay local search makes some determined activ-
ities delayed, and is able to have the better resource utilization
of the system. Hence, the order of processing activities is chan-
ged and therefore yields the resulting optimal solution.

3. Additionally, bidirectional scheduling alternatively applying
forward and backward scheduling mechanism can further
increase resource utilization efficiency while searching for the
optimal solution in different area in the solution space. There-
fore, optimal solution can be yielded.

4. One of the important characteristics about the scheduling algo-
rithms is its efficiency, the computation complexity. The execu-
tion time of this improved PSO is proportional to the number of
particles M and activities N. For each particle, a solution
requires N executions of activity selection rule, and activity
selection rule would calculate the probability of selection for
each activity (also N executions). Restated, the computation
complexity of O(M � N2) for each iteration is provided.

This study mainly studies the scheduling problems with prece-
dence and resource constraints, and the processors are assumed to
be identical. More complex conditions or situations should be fur-
ther considered such as the setup time between activities of a cer-
tain machine, or if there is communication cost between two
activities which are processing in different processors. Moreover,
in a dynamic situation, there may be some emergency activities
arriving at a certain time or changing the resources available and
requirement. Meanwhile, the design of heuristic value is also pos-
sible to be improved for better solution.
References

Bouleimen, K., & Lecocq, H. (2003). A new efficient simulated annealing algorithm
for the resource-constrained project scheduling problem and its multiple mode
version. European Journal of Operational Research, 140(2), 268–281.

Buyya, R., Abramson, D., & Giddy, J. (2000). Nimrod/G: An Architecture for a
Resource Management and Scheduling System in a Global Computational Grid.
The Fourth International Conference on High-Performance Computing in the Asia-
Pacific Region, 1, 283.



1910 R.-M. Chen et al. / Expert Systems with Applications 37 (2010) 1899–1910
Chang, S. C. (2002). A new aircrew-scheduling model for short-haul routes. Journal
of Air Transport Management, 8(4), 249–260.

Chen, R. M., Lo, S. T., Wang, C. J., & Wu, C. L. (2006). Multiprocessor system scheduling
with precedence and resources constraints by ant colony system. 2006 ICS
Conference.

Chen, T., Zhang, B., Hao, X., & Dai, Y. (2006). Task scheduling in grid based on particle
swarm optimization. Parallel and distributed computing, 2006. ISPDC ‘06. The fifth
international symposium on (pp. 238–245).

Chen, R. M., Lo, S. T., & Huang, Y. M. (2007). Combining competitive scheme with
slack neurons to solve real-time job scheduling problem. Expert Systems with
Applications, 33(1), 75–85.

Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: A cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation, 1(1), 53–66.

Fleming, P. J., & Fonseca, C. M. (1993). Genetic algorithms in control systems
engineering: a brief introduction. IEE colloquium on genetic algorithms for control
systems engineering (pp. 1/1–1/5).

Glover F. (1989). Tabu Search – Part I. ORSA JOURNAL ON COMPUTING, 1(3), 190–206.
Holland, John H. (1987). Genetic algorithms and classifier systems: foundations and

future directions. Proceedings of the second international conference on genetic
algorithms on genetic algorithms and their application, 82–89.

Hopfield, J. J., & Tank, D. W. (1985). Neural computation of decision in optimization
problems. Biological Cybernetics, 52, 141–152.

Huang, Y. M., & Chen, R. M. (1999). Scheduling multiprocessor job with resource and
timing constraints using neural network. IEEE Transactions on System, Man and
Cybernetics. Part B, 29(4), 490–502.

Jalilvand, A., Khanmohammadi, S., & Shabaninia, F. (2005). Scheduling of sequence-
dependant jobs on parallel multiprocessor systems using a branch and bound-
based Petri net. In Emerging technologies, proceedings of the IEEE symposium (pp.
334–339).

Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings
IEEE international conference on neural networks (Vol. 4, pp. 1942–1948).

Kirkpatrick, S., Gelatt, C. D., Jr., & Vecchi, M. P. (1983). Optimization by Simulated
Annealing. Science, 220(4598), 671–680.

Li, C., Bettati, R., & Zhao, W. (1997). Static priority scheduling for ATM networks. In
18th IEEE real-time systems symposium (RTSS ‘97) (pp. 264–273).

Li, K. Y., & Willis, R. J. (1992). An iterative scheduling technique for resource-
constrained project scheduling. European Journal of Operational Research, 56,
370–379.
Liu, Z., & Wang, H. (2005). GA-based resource-constrained project scheduling with
the objective of minimizing activities’ cost. Lecture Notes in Computer Science,
3644, 937–946.

Luo, X., Wang, D., Tang, J., & Tu, Y. (2006). An improved PSO algorithm for resource-
constrained project scheduling problem, intelligent control and automation,
2006. In The sixth world congress on WCICA 2006 (Vol. 1, pp. 3514–3518).

Lupetti, S., & Zagorodnov, D. (2006). Data popularity and shortest-job-first
scheduling of network transfers. International Conference on Digital
Telecommunications (ICDT’06), p. 26.

Mathaisel, D., & Comm, C. (1991). Course and classroom scheduling: An interactive
computer graphics approach. Journal of Systems and Software, 15, 149–157.

Merkle, D., Middendorf, M., & Schmeck, H. (2002). Ant colony optimization for
resource-constrained project scheduling. IEEE Transactions on Evolutionary
Computation, 6(4), 333–346.

Ohki, M., & Morimoto, A., & Miyake, K. (2006). Nurse Scheduling by using
cooperative GA with efficient mutation and mountain-climbing operators. In
Third international IEEE conference on intelligent systems (pp. 164–169).

Project Scheduling Problem Library – PSPLIB: <http://www.129.187.106.231/
psplib/>.

Selman, B., Kautz, H. A., & Cohen, B. (1994). Noise Strategies for Improving Local
Search. Proceedings of the twelfth national conference on artificial intelligence, 1,
337–343.

Shaw, K. J., Nortcliffe, A. L., Thompson, M., Love, J., Fleming, P. J., & Fonseca, C. M.
(1999). Assessing the performance of multiobjective genetic algorithms for
optimization of a batch process scheduling problem. In Proceedings of the 1999
congress on evolutionary computation, CEC 99 (Vol. 7, p. 45).

Simeonov, S., & Simeonovova, J. (2002). Simulation scheduling in food industry
application. Mathematical and statistical methods. Food Processing and
Preservation, 20(1), 31–37.

Thomas, P. R., & Salhi, S. (1998). A Tabu search approach for the resource-
constrained project scheduling problem. Journal of Heuristics, 4(2), 123–139.

Zhai, X., Tiong, R. L. K., Bjornsson, H. C., Chua, D. K. H. (2006). A simulation-ga based
model for production planning in precast plant. In Proceedings of the 38th
conference on winter simulation winter simulation conference (pp. 1796–1803).

Zhang, C., Sun, J., Zhu, X., & Yang, Q. (2008). An improved particle swarm
optimization algorithm for flowshop scheduling problem. Information
Processing Letters, 108(4), 204–209.

http://www.129.187.106.231/psplib/
http://www.129.187.106.231/psplib/

	Using novel particle swarm optimization scheme to solve resource-constrained  scheduling problem in PSPLIB
	Introduction
	The resource-constrained scheduling problem and particle swam optimization (PSO)
	Resource-constrained scheduling problem
	The particle swarm optimization (PSO)

	Improved particle swarm optimization
	Heuristic function design with critical path consideration
	Priority decision of activity
	Activity selection rule and resource consideration
	Solution representation and schedule generation

	Solution searching mechanisms
	Delay local search rule
	Bidirectional scheduling rule

	Experimental examples and results
	Conclusions and discussion
	References


