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a b s t r a c t

A simple calculation method of a practical PI/PID controller tuning for integrating processes with dead-
time and inverse response based on a model is presented in this study. First, analytical expressions for
PI/PID controller settings based on the model using a direct synthesis method for disturbance rejection
eywords:
irect synthesis PID tuning
egulatory control
inimum IAE searching

(DS-d) are employed. Next, optimum tuning parameter (�) for DS-d based on the model and minimum
IAE criterion are obtained via the golden-section searching technique. These optimum � data are then
empirically correlated into two equations. Thus, PI/PID controller settings for the model can easily be
obtained from the parameter � using DS-d formulas. The advantage of the proposed method is that DS-d
PI/PID settings could be expediently sought by simple calculations using these equations without any

n res
ce cha
oiler level control tedious design. Simulatio
better for load/disturban

. Introduction

The integrating process, whose dynamics also possess both
eadtime and inverse response characteristics, is of particular

nterest. However, it is difficult to control. Besides inverse response
haracteristic, if a bounded step disturbance is entered to the pro-
ess input, its effect on the output is usually unbounded, as shown
n Fig. 1. The classic example of such process dynamics has been
bserved in a boiler steam drum, in which the feed water to the
oiler is manipulated to control its level. Although drum-type
oilers are quite popular in process industries, it is somewhat sur-
rising that the development of the control on such dynamics seem
o be relatively scarce in the literature. Åström and Bell [1] recently
roposed a nonlinear dynamic model for natural circulation drum-
oilers from first principles. Kim and Chio [2] also presented a boiler

evel dynamic model, which is based on conservation rules of mass,
omentum, and energy, together with constitutional equations.
owever, for practical control purposes, an approximated dynamic
odel instead of a complex rigorous model for boiler steam drum

s generally required. Luyben [3] recommended using an open-loop
ransfer-function model for the process dynamics as:
p(s) = Kp(−�as + 1)e−�s

s(�s + 1)
(1)
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E-mail address: huangct@thu.edu.tw (C.-T. Huang).
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ults have demonstrated that the proposed tuning technique can perform
nges than other available methods in the literature.

© 2010 Elsevier Ltd. All rights reserved.

A model identification procedure based on open-loop step-
response data using Matlab software is also presented. In addition,
Luyben [3] proposed a frequency-domain PI/PID controller tuning
technique using Matlab software. This method, however, requires
solving simultaneous nonlinear algebraic equations to find a reset
time (�I). Then, it iteratively finds a controller gain (Kc) that gives a
maximum peak in the closed-loop servo log modulus curve of +2 dB.
Fundamentally, Luyben’s method [3] is a servo-control approach,
and computer software (such as Matlab) is generally required for
solving these complex numerical problems.

On the other hand, the direct synthesis (DS) design method,
which is one kind of model-based approaches, allows the con-
trol system designer to specify the desired closed-loop behavior
directly from the process model. Chen and Seborg [4] have pointed
out that most DS approaches in the literature are usually based
on the desired closed-loop transfer function for set-point changes.
Consequently the resulting DS controllers tend to perform well for
set-point changes, but the load/disturbance response might not be
satisfactory. However, for many process control applications, such
as boiler level control, load/disturbance rejection is more important
than set-point tracking. Chen and Seborg [4], therefore, investi-
gated disturbance problem and developed a novel direct synthesis
design for disturbance rejection, which is denoted as DS-d. In addi-
tion, Chen and Seborg [4] also derived several DS-d analytical

expressions for PI/PID controllers based on some common types
of process models. Meanwhile, the DS controllers normally need
a single tuning parameter, the desired closed-loop time constant
(�). The �-tuning method was originally proposed by Dahlin [5], in
which an appropriate � is on-line chosen, and is widely used in the

dx.doi.org/10.1016/j.jprocont.2010.04.003
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont
mailto:huangct@thu.edu.tw
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Although the developed PID relations based on DS-d [4] in Eqs.
Fig. 1. Open-loop step response of the integrator process with inverse response.

rocess industries. However, to find an optimum � using on-line
rial-and-error method sometimes may not so adequate for plant
ngineers. Still, there is no guideline for selecting an appropriate �
alue for DS-d design in the literature.

Furthermore, the proportional-integral-derivative (PID) con-
roller remains the widely used controller in the process industries
ecause it is robust and is easy to operate. For a feedback control
ystem, one normally obtains the optimum PID controller settings
ased on a process model. Smith and his colleagues [6] developed
ptimum PID controller settings for the first-order-plus-dead-time
odel based on various integral criteria using time-domain opti-
ization approach. Controller settings can easily be calculated from

he model parameters via some empirical formulas. Lately, Huang
nd his colleagues [7,8] developed optimum tuning formulas using
he similar method for open-loop unstable process models and the
econd-order-plus-dead-time model. They [7,8] also employed an
nti-reset-windup PID control algorithm and more complex empir-
cal formulas. Moreover, if the model parameters of the process are
pecified, each PID parameter is a function of � in DS-d design [4].
hus, optimum �, instead of PID parameters, can be obtained from
he model parameters in the DS-d calculations using the previous
ptimum searching techniques [6–8]. Accordingly, the study tries
o find an optimum � for DS-d PID controller settings based on
he model of Eq. (1) via some empirical formulas using previous
echniques [6–8].

This paper is organized as follows. Section 2 presents the DS-d
ormulations for the model. Section 3 develops tuning relationships
or finding optimum � data based on the minimum IAE criterion. An
nti-reset-windup PID control algorithm is employed. These opti-
um � data are then correlated into two equations: one for PID and

he other for PI settings. Three simulation examples are presented
n Section 4, where the proposed tuning technique is compared

ith Luyben’s tuning method [3]. Finally, in Section 5, discussion
nd conclusions are conducted.

. Direct synthesis design for load/disturbance rejection
DS-d)

Consider the standard block diagram of the feedback control
ystem shown in Fig. 2. The closed-loop transfer function for

oad/disturbance rejection is

Y

L
= Gl(s)

1 + Gp(s)Gc(s)
(2)
Fig. 2. Block diagram of a simple feedback control system.

If the desired closed-loop transfer function for load/disturbance
rejection, (Y/L)d, and the nominal process models, i.e. G̃p(s) and
G̃l(s), are all available. The direct synthesis controller Gc(s) for
load/disturbance rejection (DS-d) then becomes

Gc(s) = G̃l(s)

(Y/L)dG̃p(s)
− 1

G̃p(s)
(3)

Using a truncated power-series expansion and/or the first-order
Pade approximation in Eq. (3), Chen and Seborg [4] developed ana-
lytical DS-d PI/PID relations for several process models by assuming
G̃l(s) = G̃p(s) and an ideal PID controller, i.e.

Gc(s) = Kc

(
1 + 1

�Is
+ �Ds

)
(4)

We have tried to use the method of Chen and Seborg [4] to develop
DS-d PID analytical expressions for Eq. (1) in this study. The results,
however, are not so straightforward, since redundant equations are
met. On the other hand, if the term (1 − �as) in Eq. (1) is approxi-
mated to a dead time by a truncated power-series expansion, i.e.
1 − �as ≈ e−�as, Eq. (1) then becomes

Gp(s) = Kp(−�as + 1)e−�s

s(�s + 1)
≈ Kpe−(�a+�)s

s(�s + 1)
= Kpe−�as

s(�s + 1)
(5)

where �a is a redefined time delay, and �a = �a + �. Since analytical
DS-d PID expressions of the last transfer function of Eq. (5) have
already been developed by Chen and Seborg [4], one therefore can
use them for Eq. (1) in this study. Furthermore, the specified closed-
loop transfer function for Eq. (5) proposed by Chen and Seborg [4]
is(

Y

L

)
d

= Kdse−�as

(�s + 1)3
(6)

where � is the closed-loop time constant, and Kd = �I/Kc . Accord-
ingly, the DS-d PID tuning relations [4] for the studied model of Eq.
(1) can be approximated as:

Kc = (� + � + �a)(3� + � + �a)

Kp(� + � + �a)3
(7)

�I = 3� + � + �a (8)

�D = 3(� + �a)�� + (� + �a)2� − �3 + 3��2

(3� + � + �a)(� + �a + �)
(9)

From the above equations, it is apparent that � is the only parameter
for PID settings when the model parameters (i.e., Kp, �a, � and �) are
given.

3. Development of tuning relationships

3.1. Tuning for PID controller
(7)–(9) are not exactly analytical results, since several approxi-
mations are assumed, they are quite useful. The controller tuning
requires only a single tuning parameter, i.e. the desired closed-loop
time constant (�). However, it looks that there is no guideline for
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electing an appropriate � value for Eqs. (7)–(9) in the literature.
urthermore, finding an appropriate � by on-line trial-and-error is
ot so adequate in practice. This study tries to find an optimum �
ased on the model parameters of Eq. (1) by computer searching.
hus, appropriate PID settings can be calculated from Eqs. (7)–(9).

In order to develop practical PID tuning relations, Gl(s) = Gp(s)
n Fig. 2 is assumed throughout this study, which is similar to Chen
nd Seborg [4]. In addition, a practical PID control algorithm dubbed
he reset-feedback form of PID controller is chosen. The feedback
ontrol system shown in Fig. 2, therefore, becomes a configuration
f Fig. 3, which is the system considered in this study. As shown in
ig. 3, the reset-feedback PID algorithm can be described as:

c(t) =

⎧⎨
⎩

1 for u(t) > 1

u(t) for − 1 ≤ u(t) ≤ 1

−1 for u(t) < −1

⎫⎬
⎭ (10)

here

(t) = P(t) + I(t) + D(t) (11)
nd

(t) = Kce(t) (12)

I
dI(t)

dt
+ I(t) = uc(t) (13)

Fig. 4. Block diagram of the dimensionles
ontrol system considered.

�D

N
dD(t)

dt
+ D(t) = −Kc�D

dy(t)
dt

(14)

The above PID control algorithm avoids ‘derivative kick’ and pro-
vides noise filter. Without loss of generality, the noise filtering
constant N is fixed, and N = 10 is used throughout the study [9].
In addition, a saturation function (−1 ≤ uc ≤ 1) with anti-reset
windup compensation is also considered. It should be noted that the
anti-reset windup compensation is a necessary part for industrial
PID controllers. Furthermore, Smith and Corripio [10] have pointed
out: “Reset windup protection is an option that must be bought in
analogy controllers. It is a standard feature in any computer-based
controller.” Details of this PID control algorithm can be found else-
where [9–12]. Such kind of control study using the reset-feedback
PID controller is considered to be more realistic for a practical sit-
uation.

Moreover, for the purpose of expressing the process model and
controller in general, we consider that the transfer functions of pro-
cess model and controller are represented as dimensionless in this
study. Let ŝ = s� as dimensionless Laplace-transformed variable,

the process model in Eq. (1) can, therefore, be represented as

Gp(ŝ) = Kp�(−�̂aŝ + 1)e−�̂·ŝ

ŝ(ŝ + 1)
(15)

s system with optimum searching.
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here �̂a = �a/� and �̂ = �/� are all dimensionless variables.
imilarly, the parameters of PID control algorithm can also be rep-
esented as dimensionless forms, i.e. �̂I = �I/� and �̂D = �D/�. In
ddition, the dimensionless closed-loop time constant is denoted
s �̂ = �/�, and the DS-d PID tuning relationships of Eqs. (7)–(9)
hen become

= KcKp� = (1 + �̂ + �̂a)(3�̂ + �̂ + �̂a)

(�̂ + �̂ + �̂a)
3

(16)

ˆI = 3�̂ + �̂ + �̂a (17)

ˆD = 3(�̂ + �̂a)�̂ + (�̂ + �̂a)
2 − �̂3 + 3�̂2

(3�̂ + �̂ + �̂a)(�̂ + �̂a + 1)
(18)

ubsequently, a dimension feedback control system based on the
rocess model for computer searing is given in Fig. 4. For a given
rocess model, i.e. �̂a and �̂, the response of dimensionless control
ystem in Fig. 4 to a step change in the load disturbance (L) can
herefore be obtained by a simulation using Matlab and Simulink.

ithout losing linearity, a small magnitude (say 0.2) of step change
n load disturbance has been chosen, and the IAE value for the step
hange can therefore be obtained, as shown in Fig. 4. The definition
f IAE (integral of the absolute value of the error) is

AE =
∫ t̂f

0

|e(t̂)| dt̂ (19)

here t̂f is the dimensionless final time. In this study, t̂f is chosen to
e the time at which

∣∣e(t̂)
∣∣ is continuously less than 10−10 for 1000

imensionless sampling times. This ensures that the step-response
pproaches steady state at this time. Furthermore, a typical plot of
AE versus �̂ for �̂a = 0.5 under various �̂ using PID control is drawn
n Fig. 5. It can be found from Fig. 5 that IAE has a minimum value;
he relationship between IAE versus �̂ for given model parameters
i.e., �̂a and �̂) is a unimodal function [13]. Thus, optimization of the
ystem response based on the minimum IAE criterion involving the
etermination of the parameter �̂ is implemented by the golden-
ection search method [13], as shown in Fig. 4. Then, PID parameters
f the dimensionless system, i.e., K, �̂I, and �̂D, are calculated by
he dimensionless DS-d block in Fig. 4 using Eqs. (16)–(18). The
ptimum �̂, instead of optimum PID parameters, for minimum IAE,
herefore, can be obtained from the given model parameters by

omputer searching.

As shown in Fig. 4, optimum �̂ (or �/�) data based on the process
odel for several discrete values of �̂a and �̂ can be obtained by

omputer searching. The specified ranges of 0.01 ≤ �a/� ≤ 1.0 and
.01 ≤ �/� ≤ 1.0, which are considered to be the most applicable

Fig. 6. Optimum search results for PID control. (a) Optimum
Fig. 5. A typical plot of IAE versus �/� for �a/� = 0.5 under PID control.

ranges for the model, are searched in this study. Fig. 6(a) shows
optimum values of �/�, which are obtained by computer searching,
with respect to various model parameters �a/� and �/�. Numerical
values of these optimum data lie within the range of 0.05 < �/� <
1.90. These data are then empirically fitted into an equation by a
least-squares method. The criterion of standard error of estimate
(SE) is employed for selecting an empirical equation. Examination
of SE indicates that the smaller the value of SE, the more precise the
predictions. Besides, the multiple correlation coefficient (R), which
corresponds to an F-test on least-squares fitting, is also employed,
and R closing to 1.0 means a good fit. [14] The fitting result for these
optimum �/� data therefore is:

�

�
= 0.1569 + 1.3228

(
�

�

)
+ 1.1616

(
�a

�

)
− 0.4092

(
�

�

)2

− 0.3544
(

�a

�

)2
(R = 0.9995, SE = 0.0332) (20)

Accordingly, the appropriate tuning factor � can be directly calcu-
lated from the process parameters (�a, �, and �) via Eq. (20) in ranges
of 0.01 ≤ �a/� ≤ 1.0 and 0.01 ≤ �/� ≤ 1.0. Then, one can obtain the

tuning parameters of PID controller by substituting the calculated
� and the model parameters into Eqs. (7)–(9). Furthermore, a com-
parison between these �/� data obtained by computer searching
and those �/� values calculated by Eq. (20) is also given in Fig. 6(b).
It can be found from the scatter plot of Fig. 6(b) that the fitting

values of �/�. (b) Scatter plot for curve fitting results.
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Fig. 7. Optimum search results for PI control. (a) Opti

esults are generally close to the original data, except for the lower
alues of �/�.

.2. Tuning for PI controller

For an industrial boiler drum, using a PI level controller is more
opular than using a PID level controller. Luyben [3] has pointed
ut that the derivative action is seldom used in these applications
ecause of the noisy level signal. However, to develop analytical
xpressions for PI controller tuning either from Eq. (1) or from Eq.
5) using the DS-d method of Chen and Seborg [4] can normally
ot succeed. In order to solve this problem, we simply let �̂D = 0

n Fig. 4 to find an optimum �̂ while retaining the benefits of the
S-d control system. Thus, there are only Eqs. (16) and (17) in

he DS-d block of Fig. 4 for computer calculations. These optimum
alues of �/� obtained by computer searching for DS-d PI control
n the range of 0.01 ≤ �a/� ≤ 1.0 and 0.01 ≤ �/� ≤ 1.0, therefore,
re given in Fig. 7(a). Numerical values of these optimum data lie
ithin the range of 1.10 < �/� < 2.73. Again, these data are then

mpirically fitted into an equation by a least-squares method, and
he fitting result is

�

�
= 1.2700 + 0.4271

(
�

�

)
+ 1.2173

(
�a

�

)
+ 0.1699

(
�

�

)2

− 0.3032
(

�a

�

)2
(R = 0.9998, SE = 0.0424) (21)

ccordingly, the appropriate tuning factor � for PI control can
e directly calculated from the process parameters (�a, �, and �)
ia Eq. (21) in ranges of 0.01 ≤ �a/� ≤ 1.0 and 0.01 ≤ �/� ≤ 1.0.
hen, upon substituting the calculated � into Eqs. (7) and (8), one
an obtain the tuning parameters for PI controller. Furthermore,

comparison between these �/� data obtained by computer
earching and those �/� calculated by Eq. (21) for PI controller
ettings is also given in Fig. 7(b). It can be found from the scatter
lot of Fig. 7(b) that the fitting results are generally close to the
riginal data, except for the lower values of �/�. A nonlinear
east-squares fitting can normally not be perfect, especially in such

ulti-variable problems. It has also been found that the calculated
/� using these formulas may not be so optimum on Figs. 6 and 7

n the condition when both values of �a/� and �/� are quite small

say, approaching to 0.01). Thus, the tuning formulas of Eqs. (20)
nd (21) can only provide appropriate � values, which are closing to
ptimum. In addition, it should be noted that these formulas of Eqs.
20) and (21) are empirical and should not be extrapolated beyond
he correlation ranges, i.e. 0.01 ≤ �a/� ≤ 1.0 and 0.01 ≤ �/� ≤ 1.0.
values of �/�. (b) Scatter plot for curve fitting results.

3.3. Set-point weighting

DS-d design methods are usually based on specification of the
desired closed-loop transfer function for load/disturbance changes.
Consequently, the resulting DS-d controllers tend to perform well
for load/disturbance responses, but the set-point change might not
be satisfactory. Chen and Seborg [4] employed a set-point weight-
ing, which was originally proposed by Åström and Hägglund [9], to
reduce large overshoot for DS-d controllers. A set-point weighting
for PI control structure is:

u(t) = Kc

{
[br(t) − y(t)] + 1

�I

∫ t

0

[r(�) − y(�)] d�

}
(22)

where b is the set-point weighting coefficient, and 0 ≤ b ≤ 1. Fur-
thermore, Chen and Seborg [4] also pointed out that the large
overshoot for the set-point response of the DS-d PI/PID controller
can normally be eliminated by setting b = 0.5. Accordingly, the set-
point weighting with b = 0.5 is also employed for the proposed DS-d
PI/PID settings throughout the servo-control studies.

4. Simulation examples

In order to evaluate the effectiveness of the proposed controller
tuning method, a simulation study is performed using three numer-
ical examples. Throughout the simulation, the reset-feedback PID
control algorithm as shown in Fig. 3 is employed, and the con-
troller output may meet constraints. Without losing linearity, a step
change with small magnitude 0.2 is introduced either in distur-
bance or in set point for the simulation studies of Examples 1 and
2. Example 3 presents a simulation study in which the process is
upset by a large load change with magnitude of 0.8. Performance of
the closed-loop response for each case is evaluated by IAE, settling
time (ts), percent overshoot (OS%), and maximum peak height (Mp).
For both disturbance and set-point changes, the settling time (ts)
here is defined as the error to come within some prescribed band
of the steady-state value (i.e., zero) and remain in this band. The
band limits ±0.005 are chosen in this study. In addition, the over-
shoot is the maximum peak deviation exceeding the ultimate value

of response curve to the magnitude of set-point change. The maxi-
mum peak height (Mp), which is also called the maximum deviation
[12], is used for load/disturbance change. Furthermore, the set-
point weighting coefficient b = 0.5 is also chosen for servo-control
studies.
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ig. 8. Comparison of disturbance responses using PID control for Example 1.

xample 1. The case studied by Luyben [3] is considered, where
he process is described by

p(s) = 0.547(−0.418s + 1)e−0.1s

s(1.06s + 1)
(23)

ubstituting the above process parameters into Eq. (20), the tuning
actor � = 0.722 is calculated. Then, substituting the � value and
he process parameters into Eqs. (7)–(9), one has Kc = 4.066, �I =
.683, and �D = 0.650 for PID controller tuning. Typical response
urves based on the proposed settings and that of Luyben [3] to a
isturbance change with magnitude 0.2 are shown in Fig. 8. It is
lear that the proposed settings can get faster response than that of
uyben. In addition, comparing the IAE values in Fig. 8, the proposed
uning has IAE = 0.166, and Luyben’s tuning has IAE = 1.364. From
hese results, it is evident that the proposed method can provide
etter controller tuning than that of Luyben [3].

Furthermore, closed-loop response curves of the proposed PID
ettings and that of Luyben [3] for a set-point change with magni-
ude of 0.2 are shown in Fig. 9. It is found in Fig. 9 that Luyben’s
uning is very good for set-point changes, especially for lower

vershoot and less oscillation. Without the set-point weighting
oefficient, i.e. b = 1 in Eq. (22), the proposed settings, however,
an not perform well, since the overshoot is large. One reason to
xplain is that Luyben’s tuning is based on the servo control and
he proposed tuning is based on the regulatory control. Fortunately,

Fig. 9. Comparison of set-point responses using PID control for Example 1.
Fig. 10. Comparison of disturbance responses using PI control for Example 1.

the embedded set-point weighting coefficient with b = 0.5 of the
proposed DS-d PID tuning can really give a dramatic reduction in
overshoot. As shown in Fig. 9, the IAE value for b = 0.5 is also good;
however, the response is still oscillatory. In addition, owing to the
characteristics of the process dynamics, i.e. Eq. (1), the settling
time (ts) for each case in Fig. 9 is considered to be long. Compared
to the Luyben’s tuning, the ts value for each DS-d tuning case seems
to be less.

Similarly, one can obtain a tuning factor � = 1.849 for PI con-
troller settings by substituting the process parameters into Eq. (21).
Then, Kc = 1.319 and �I = 6.065 are obtained by substituting the �
value and the process parameters into Eqs. (7) and (8). The step-
response curves with their IAE values for the proposed PI settings
and that of Luyben [3] are shown in Fig. 10. From Fig. 10, it is clear
that the proposed tuning can get better performance than Luyben’s
tuning for load/disturbance changes. Moreover, the closed-loop
responses for the above PI controller settings for a set-point change
with magnitude of 0.2 in this process are shown in Fig. 11. It is
found from Fig. 11 that the performance of Luyben’s tuning is fine.
The proposed tuning embedded the set-point weighting coefficient
b = 0.5, however, can really improve the performance of the cor-
responding response, although the overshoot and oscillatory still

exist.

Example 2. Industrial processes often possess very high order
dynamics. In order to evaluate the effectiveness of the proposed

Fig. 11. Comparison of set-point responses using PI control for Example 1.
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ig. 12. Comparison of disturbance responses using PID control for Example 2.

ethod for higher-order processes, a fourth-order integrating
rocess with deadtime and inverse response:

p(s) = 0.5(−0.5s + 1)e−0.7s

s(0.4s + 1)(0.1s + 1)(0.5s + 1)
(24)

s assumed to be the actual process dynamics. Using step-response
ata of Eq. (24) and a nonlinear least-square fit, the actual process
hen is approximated to the process model, G̃p, as

˜ p(s) = 0.5183(−0.4699s + 1)e−0.81s

s(1.1609s + 1)
(25)

comparison of the actual process response and the model
esponse is also given in Fig. 1.

Then, a tuning factor � = 1.501 is obtained by substituting the
odel parameters of Eq. (25) into Eq. (20). Subsequently, the PID

ontroller settings based on the nominal process model, i.e. Eq.
25), are sought by substituting the � value and model parameters
nto Eqs. (7)–(9). The proposed PID settlings based on the nomi-
al model of Eq. (25), therefore, are: Kc = 1.267, �I = 5.782, and
D = 0.925. In addition, PID controller tuning based on the nominal

rocess model using Luyben’s method [3] is also obtained, and the
uning parameters are: Kc = 0.867, �I = 24, and �D = 1.12. Further-

ore, the step responses of the actual process, i.e. Eq. (24), using
he above PID controller settings under various changes are shown
n Figs. 12 and 13.

ig. 13. Comparison of set-point responses using PID control for Example 2.
Fig. 14. Comparison of disturbance responses using PI control for Example 2.

Moreover, the proposed PI controller settings are sought by the
similar procedures, and the results are: Kc = 0.790 and �I = 8.572.
Still, one finds � = 2.431 by substituting the model parameters of
Eq. (25) into Eq. (21), and then substitutes this � and the model
parameters into Eqs. (7) and (8). In addition, PI controller set-
tings based on Eq. (25) using Luyben’s method are also obtained,
and the tuning parameters are: Kc = 0.563 and �I = 48. The step
responses of the actual process, i.e. Eq. (24), using the above PI con-
troller settings under various changes are shown in Figs. 14 and 15.
The simulation results for this example are just similar to that of
Example 1. Luyben’s tuning [3] can get a lower overshoot and less
oscillation for set-point changes. The proposed settings, however,
can get lower IAE value and faster response than Luyben’s tuning
for load/disturbance changes.

Example 3. Industrial processes may sometime encounter an
unusually large amount of load disturbance, and the final con-
trol element (or control valve) may reach a limit. When the valve
cannot be adjusted, the error remains nonzero for long periods of
time, and the ideal PID control algorithm, e.g. Eq. (4), continues to
calculate values of the controller output. The integral mode contin-
ually integrates the error, and the controller output value, therefore,

becomes a very large magnitude. Since the final control element can
change only within a restricted range, the large controller output
cannot affect the process. This situation is known as reset (integral)
windup, and it can cause a very poor control performance [10]. The

Fig. 15. Comparison of set-point responses using PI control for Example 2.
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Fig. 16. Step responses to a large load change for Example 3.

eset-feedback PID algorithm adopted in this study in Fig. 3 is con-
idered to be an anti-reset-windup algorithm. In order to evaluate
he effectiveness of the proposed techniques for anti-reset windup,
he same process and same tuning parameters of Example 2 are
hosen in this study. Different from Example 2, a large step change
ith magnitude of 0.8 is introduced in the load disturbance. The

imulation results in Fig. 16 show that the controller output (uc)
or either PID or PI control has met the constraint. Nevertheless,
he control performances of the proposed techniques seem to be
till fine.

. Conclusions

Industrial processes will sometimes encounter the dynamics
aving integrator with deadtime and inverse response, say boiler

evel control. Such processes are considered to be difficult to control
n process industries. Nevertheless, publications discussed on such
rocess control still seem to be relatively scarce in the literature.
uyben [3] developed a servo tuning technique, which needs iter-

tively find PI/PID parameters in frequency-domain using Matlab
oftware. However, the regulatory control is normally much more
mportant than the servo control for such processes. A computer-
ased study of a transfer-function model using DS-d equations for
ractical PI/PID controller settings in the most applicable ranges,

[

[

[
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therefore, is conducted in this investigation. Subsequently, PI/PID
controller tuning based on the model parameters for regulatory
control can be expediently obtained by simple calculations. The
main advantage of the proposed technique is that proper PI/PID
controller settings could be promptly sought by using a pocket
calculator without any tedious design or on-line trial-and-error.

Furthermore, the DS-d expressions for PI/PID tuning employed
in this study, i.e. Eqs. (7)–(9), are only approximated equations, but
the optimum � data are obtained under a very strict environment of
computer searching using the reset-feedback PID algorithm. Thus,
practical applications of these equations to the process are still
quite effective. In addition, DS-d design methods are usually based
on specification of the desired closed-loop transfer function for
load/disturbance changes. Consequently, the resulting DS-d con-
trollers tend to perform well for regulatory control, but the servo
control might not be satisfactory. From the simulation results in
Examples 1 and 2, it is found that Luyben’s tuning, which is devel-
oped based on the servo control, is very good for set-point changes,
especially for lower overshoot and less oscillation. Due to the cho-
sen IAE criterion, responses of the proposal tuning are oscillation
in most cases. In addition, without the set-point weighting coef-
ficient, the proposed DS-d settings normally do not perform well
for servo control. Fortunately, the proposed DS-d PI/PID settings
with weighting coefficient b = 0.5 can really improve the perfor-
mance for set-point changes. On the other hand, the proposed DS-d
PI/PID settings, however, can get much better performance than
Luyben’s settings for regulatory control. Comparing IAE values for
disturbance changes in these simulation examples, it is evident that
the proposed settings can provide dramatically lower IAE values
than that of Luyben [3]. Moreover, industrial processes may some-
time encounter an unusually large amount of load disturbance.
Simulation results in Example 3 have demonstrated that using the
reset-feedback PID algorithm and the proposed tuning formulas
can still perform well for large load change.
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