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Abstract

The atomic force microscope system (AFM) has become a popular and useful instrument to

measure the intermolecular forces with atomic resolution that can be applied in electronics, biological

analysis, materials, semiconductors, etc. This paper studies the bifurcation phenomenon and complex

nonlinear dynamic behavior of the probe tip between the sample and microcantilever of an atomic

force microscope using the differential transformation method. The dynamic behavior of the probe

tip is characterized with reference to bifurcation diagrams, phase portraits, power spectra, Poincar�e
maps, and maximum Lyapunov exponent plots produced using the time-series data obtained from

differential transformation method. The results indicate that the probe tip behavior is significantly

dependent on the magnitude of the vibrational amplitude. Specifically, the probe tip motion changes

from T-periodic to 3T-periodic, then from 6T-periodic to multi-periodic, and finally to chaotic

motion with windows of periodic motion as the vibrational amplitude is increased from 0 to 5.0.

Furthermore, it is demonstrated that the differential transformation method is in good agreement for

the considered system.

& 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Recently, many significant researches have been studied to design, analyze, and
implement micro- and nanosystems. The atomic force microscope (AFM) provides a
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powerful tool for surface analysis applications in the nano-electronics and materials and
biotechnology fields. Specifically, AFM-based system provides additional capabilities and
is advantageous relative to other microscopic methods with regard to studies of surfaces
and structures by providing reliable measurements at the nanoscale [1,2].
The nonlinear dynamic behavior of an AFM system between microcantilever and

sample is a major concern since any irregular motion of the AFM probe tip inevitably
degrades the precision of the measurement results. Burnham et al. [3] studied the dynamics
of a microcantilever–sample interaction in AFM system experimentally and showed that
the microcantilever performed chaotic motion under specific physical conditions. Ashhab
et al. [4] modeled the microcantilever of an AFM using a single-frequency mode
approximation and analyzed the chaotic dynamics of the cantilever–sample system using
the Melnikov method. Sebastian et al. [5] predicted the behavior of the cantilever during
tapping mode operation by a harmonic balancing and averaging technique. In addition,
Basso et al. [6] utilized the Lennard–Jones potential within the dynamics for the AFM
system and found the chaotic region of operation. Lee et al. [7] analyzed the effects of van
der Waals and Derjaguin–Muller–Toporov forces on the tip–sample interactions induced
in dynamic force microscopy (DFM). The authors also presented detailed experimental
results, which provided valuable new perspectives and insights into DFM. Ruetzel et al. [8]
applied the Galerkin method to investigate the nonlinear dynamics of an AFM probe tip
under the assumption that the tip–surface interactions were governed by Lennard–Jones
potentials. Based upon their analysis, the authors showed that the probe tip exhibited a
broad range of dynamic phenomena, including both periodic and chaotic motion.
However, chaotic behavior will cause the probe fatigued and then the controlling method
is developed. In 2007, Yan et al. [9] designed variable structure control (VSC) for a chaotic
symmetric gyro with linear-plus-cubic damping. The results show that the stable or
unstable (chaotic) nonlinear gyros can be controlled and asymptotically driven by the
system orbits to arbitrarily desired trajectories. Yau [10] presented a robust fuzzy sliding
mode control (FSMC) scheme for the synchronization of two chaotic nonlinear gyros
subject to uncertainties and external disturbances. The proposed scheme has a lower
implementation cost and complexity.
None of the studies reviewed above presented phase portraits, power spectra, Poincar�e

maps, maximum Lyapunov exponent plots, or bifurcation diagrams to confirm the validity
of their predictions for the AFM behavior or to clarify the origins of the chaotic motion
observed in the AFM system. Accordingly, the present study investigates the dynamic
behavior of an AFM probe tip using two numerical methods, namely the differential
transformation method [11] and the Runge–Kutta method and then characterizes the
dynamic response of the system with reference to phase portraits, power spectra, Poincar�e
maps, and maximum Lyapunov exponent plots. Finally, the onset of chaotic behavior in
the AFM system is identified using bifurcation diagrams of the tip displacement and tip
velocity, respectively, in which the amplitude of the probe tip vibration is taken as the
bifurcation parameter.
The remainder of this paper is organized as follows. Section 2 presents a mathematical

model for the relationship of the microcantilever tip and sample surface and describes the
solution of this model using the differential transformation method. Section 3 compares
and contrasts the numerical results obtained by the differential transformation method and
the Runge–Kutta method for the dynamic response of the microcantilever tip at various
vibrational amplitudes. Subsequently, the nonlinear dynamic behavior of the probe tip is
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analyzed with reference to phase portraits, power spectra, Poincar�e maps, maximum
Lyapunov exponent plots, and bifurcation diagrams, respectively. Finally, Section 4 draws
some brief conclusions.
2. Mathematical modeling

The behavior of an AFM microcantilever tip is modeled through a lumped-parameter’s
system approach as shown in Fig. 1. The cantilever is modeled as a spring-mass system
which is excited by the motion of spring base. The dynamic behavior of this system can be
represented in the following form [12,13]:

mt
€Y ðtÞ þ cð _Y ðtÞ� _DðtÞÞ þ kðY ðtÞ�DðtÞÞ ¼ FvðtÞ ð1Þ

where Y(t) and D(t) denote the cantilever tip displacement and the base motion relative to
the fixed base frame, respectively. mt, c, and k are the cantilever tip mass, damping
coefficient, and spring stiffness, respectively. Fv(t) is the van der Waals force that is defined
in the following form [13]:

Fv ¼
CHk

ðZb�Y Þ2
�

Rm
6CHk

30ðZb�Y Þ8
ð2Þ

where Zb denotes the distance from the sample to the fixed base frame, Rm denotes the
molecular diameter, and the model parameter CH is defined as CH=AHRt/6k where AH is
the Hamaker constant and Rt the cantilever tip radius.
Fig. 1. AFM microcantilever tip model through a lumped-parameter’s system.
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The cantilever is driven through D(t) as follows:

DðtÞ ¼ Ad sinðotÞ ð3Þ

where Ad is the drive amplitude and o the frequency. If D(t) is replaced in cantilever–
sample interaction Eq. (1), it yields

€Y ðtÞ þ
c

mt

_Y ðtÞ�Ado
c

mt

cosðotÞ�o2
t Ad sinðotÞ þ o2

t Y ðtÞ ¼
CHo2

t

ðZb�Y Þ2
�

Rm
6CHo2

t

30ðZb�Y Þ8

ð4Þ

where o2
t ¼ k=mt. The equations of motion in state-space form can now be presented as

Y1ðtÞ ¼ Y ðtÞ; Y2ðtÞ ¼ _Y ðtÞ ð5Þ

_Y 1ðtÞ ¼ Y2ðtÞ ð6Þ

_Y 2ðtÞ ¼ �
c

mt

Y2ðtÞ þ Ado
c

mt

cosðotÞ þ Ado2
t sinðotÞ�o2

t Y1ðtÞ

þ
CHo2

t

ðZb�Y1Þ
2
�

Rm
6CHo2

t

30ðZb�Y1Þ
8

ð7Þ

In order to express the equations of motion above in a non-dimensional form, the results
in [14] are used with the critical value of Ys=3/2(2CH)

1/3. Hence the system equations
transfer to

X1

�

¼ X2 ð8Þ

X2

�

¼ �A1X2 þ A2A1O cos Otþ A2 sin Ot�X1 þ
A3

ðZ�X1Þ
2
�

A3A4
6

30ðZ�X1Þ
8

ð9Þ

with initial conditions of

X1 ¼ 0; and X2 ¼ 0 ð10Þ

where t=ott, X1=Y1/Ys, X2=Y2/otYs, Z=Zb/Ys, A1=4/27, A2=Rm/Ys, A3=Ad/Ys,
A4=c/mtot, O=o/ot, and (.) denotes the derivative with respect to the normalized time t.
In the above, X1 indicates the displacement of the microcantilever tip (where a positive

value indicates a displacement towards the sample), X2 denotes the velocity of the
microcantilever tip, and Z is the vibrational amplitude of the dither piezoelectric actuator
which drives the tip. Note that both X1 and Z are non-dimensionalized by the gap between
the tip and the sample under equilibrium conditions. In the case where the excitation
frequency is close to the natural frequency of the microcantilever, O=1.
Differential transformation is one of the most widely used of all techniques for solving

differential equations due to its rapid rate of convergence and its minimal computational
error. Furthermore, compared to the integral transformation approach, differential
transformation has the further advantage that it can be used to solve nonlinear differential
equations. In order to calculate the system equations, differential transformation (DT)
method is used and it is one of the most widely used techniques for solving both linear and
nonlinear differential equations due to its rapid convergence rate and minimal calculation
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error. The basic principles of the DT method approach can be summarized as follows:
Let P(t) be analytic in the time domain T. Furthermore, let

Qðt; kÞ ¼
dkPðtÞ

dtk
; 8t 2 T ð11Þ

At time t=ti, Q(t,k)=Q(ti,k), where k belongs to a set of non-negative integers, denoted
as the K domain. Therefore, Eq. (11) can be rewritten as

PiðkÞ ¼ Qðti; kÞ ¼
dkPðtÞ

dtk

� �
t¼ti

; 8k 2 K ð12Þ

where PiðkÞ represents the spectrum of P(t) at t=ti in the K domain.
If P(t) is analytic in the time domain T, then P(t) can be represented as

PðtÞ ¼
X1
k¼0

ðt�tiÞ
k

k!
PðkÞ ð13Þ

Note that this equation represents the inverse transformation ofPðkÞ.If PðkÞ is defined as

PðkÞ ¼MðkÞ
dkqðtÞPðtÞ

dtk

� �
t¼t0

; where k ¼ 0; 1; 2; . . .;1 ð14Þ

then the function PðtÞ can be expressed as

PðtÞ ¼
1

qðtÞ

X1
k¼0

ðt�tiÞ
k

k!

PðkÞ

MðkÞ
ð15Þ

where M(k)a0 and q(t)a0. Here, M(k) is a weighting factor and q(t) is a kernel
corresponding to P(t). If M(k)=1 and q(t)=1, then Eqs. (12) and (14) and Eqs. (13) and
(15) are equivalent. In the analyses performed in this study, the differential transformation
operation is performed with M(k)= ~H

k
=k! and q(t)=1, where ~H is the time horizon of

interest. PðkÞ is given by

PðkÞ ¼
~H

k

k!

dkPðtÞ

dtk

� �
t¼t0

; where k ¼ 0; 1; 2; . . .;1 ð16Þ

Using DT method, a differential equation in the domain of interest is transformed to an
algebraic equation in the K domain and P(t) is given by a finite-term Taylor series plus a
remainder, i.e.

PðtÞ ¼
Xn

k¼0

t�t0 ~H
� �k

PðkÞ þ Rnþ1 ð17Þ

In order to accelerate the rate of convergence and improve the accuracy of the
calculations, the overall t domain is split into a number of sub-domains and DT method is
then used to solve the differential equation in each domain. For example, consider the case
in which the time domain is split into a total of n sub-domains. In the first sub-domain
(i.e.0rtrt1,t0=0), the one-dimensional differential transformation of function P(t)is
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given by

PðtÞ ¼
Xn

k¼0

t�t0
~H 0

� �k

P0ðkÞ ð18Þ

whereP0ð0Þ ¼ P0. Applying the DT method to Eq. (18), the dynamic equation of the
system of interest can be solved over the entire period spanned by the first sub-domain.
The end point of function P(t) in the first sub-domain is P1. Furthermore, t has a value of
~H 0. Therefore, P1(t) is obtained as

P1 ¼ P ~H 0

� �
¼
X1
k¼0

P0ðkÞ ð19Þ

Note that P1 represents the initial condition for the second sub-domain and therefore
P1ð0Þ ¼ P1. The function P(t) can be expressed in the second sub-domain as

P2 ¼ Pð ~H 1Þ ¼
X1
k¼0

P1ðkÞ ð20Þ

In general, the function P(t) can be expressed in the (i�1)th sub-domain as

Pi ¼ Pi�1 þ
X1
k¼1

Pi�1ðkÞ ¼ Pi�1ð0Þ þ
X1
k¼1

Pi�1ðkÞ;¼ 1; 2; 3; . . .. . .n ð21Þ

Using the T spectra method described above, function P(t) can be solved throughout the
entire domain.
Table 1 summarizes the principal differential transformation operations in the K

domain, where the symbol ‘‘^’’ denotes the differential operator and ‘‘�’’ denotes the
convolution operation.
Assume that f(t) and g(t) are two uncorrelated functions of t, and that F(k) and G(k) are

the corresponding transformation functions, respectively. The basic properties of the DT
method approach can be summarized as follows:
1.
Tab

Op

Op

Spe

Fu

Co

De
Linearity: If F(k)=D[f(t)], G(k)=D[g(t)], and C1 and C2 are independent of t and k, then

D½C1f ðtÞ þ C2gðtÞ� ¼ C1F ðkÞ þ C2GðkÞ ð22Þ
le 1

eration in the K domain with MðkÞ ¼ ~H
k
=k!, q(t)=1.

erator

ctrum X(k) X ðkÞ ¼
~H

k

k!
@kxðtÞ
@tk

� 	
t¼0

nction x(t)
xðtÞ ¼

Pk
l¼0

X ðkÞ t ~H
� �k

h i

nvolution
X ðkÞ � Y ðkÞ ¼

Pk
l¼0

X ðlÞY ðk�lÞ

rivative
ˆðkÞ ¼ k þ 1 ~H X ðk þ 1Þ
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Convolution: If z(t)=f(t)g(t), f(t)=D�1[F(k)] and g(t)=D�1[G(k)], then
2.
D½zðtÞ� ¼ D½f ðtÞgðtÞ� ¼ F ðkÞ � GðkÞ ¼
Xk

l¼0

F ðlÞGðk�lÞ ¼
Xk

l¼0

F ðk�lÞGðlÞ ð23Þ

Therefore, the differential transform of fm(t), where m is a positive integer, is obtained
as

D½f mðtÞ� ¼ F mðkÞ ¼ F m�1ðkÞ � F ðkÞ ¼
Xk

l¼0

Fm�1ðlÞF ðk�lÞ ð24Þ
3.
 Derivative: If f(t) and its derivatives f
0

(t), f
00

(t),y, f(n)(t) are continuous functions for the
interval [0, ~H ], then

D
dnf tð Þ

dtn

� �
¼
ðk þ 1Þðk þ 2Þ. . .ðk þ nÞ

~H
n F k þ nð Þ ð25Þ
In solving Eqs. (8) and (9) using the differential transformation method, the AFM
system model is transformed with respect to the time domain t, and hence the equation
becomes

k þ 1

H
X 1ðk þ 1Þ ¼ X 2ðkÞ ð26Þ

and

k þ 1

H
X 2ðk þ 1Þ ¼ �A1X 2ðkÞ þ A2A1O

OHð Þ
k

k!
cos

pk

2

� �
þ A2

ðOHÞk

k!
sin

pk

2

� �
�X 1ðkÞ

þ
A3

ð1�X 1ðkÞÞ
2
�

A3A4
6

ð1�X 1ðkÞÞ
8

ð27Þ

respectively.
3. Results and discussions

3.1. Numerical simulation results

As discussed above, the nonlinear behavior of the AFM tip displacement is analyzed in
this study using the differential transformation method. The dynamic behavior of the
AFM system is characterized with reference to power spectra, Poincar�e maps, maximum
Lyapunov exponent plots, and bifurcation diagrams produced using the time-series data
for the displacement and velocity of the microcantilever tip. Note that in producing these
various plots, the time-series data corresponding to the first 1000 revolutions are
deliberately excluded in order to ensure that the results reflect steady-state conditions.
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Table 2 compares the results obtained by the DT method and the Runge–Kutta (RK)
method for the displacement and velocity of the microcantilever tip at various values of the
vibrational amplitude of the dither piezoelectric actuator. It is seen that a good agreement
exists between the two sets of numerical results at H=0.01. However, the results at
H=0.001 are still in agreement to approximately 5–6 decimal places compared with
H=0.01 for DT method and even better than RK method for 2–3 decimal places. From
the above results, DT method used for AFM system will be more accurate than RK
method. In the following calculation, the DT method is used to calculate and analyze this
nonlinear problem.
Table 3 clarifies the effect of the time-step value on the Poincar�e maps for the

microcantilever tip at different values of the vibrational amplitude via DT method. It can
be seen that for a given vibrational amplitude, the tip displacement and velocity values
calculated using different values of the time step are in agreement to approximately 5–6
decimal places.

3.2. Phase portraits

As shown in Fig. 2, the phase portraits of the tip displacement at various values of the
vibrational amplitude, Z, are non-symmetrical, i.e. the tip exhibits a nonlinear dynamic
response. Fig. 2(a–h) reveals that the tip orbit is regular at low values of vibrational
amplitude, i.e. Z=1.344 and 1.377, but becomes irregular when the vibrational amplitude
Table 2

Comparison of tip displacement and velocity values calculated using DT and RK methods, respectively.

Vibrational amplitude Time-step numerical

method

Tip displacement X1 Tip velocity X2

H=0.001 H=0.01 H=0.001 H=0.01

DT Z=1.0 �0.3334158965 �0.3334159441 0.4364918561 0.4364917483

RK �0.3330029331 �0.3334228944 0.4361927663 0.4364337922

DT Z=1.2 �0.3550410095 �0.3550411778 0.6575847688 0.6575849077

RK �0.3552401285 �0.3550409900 0.6532117827 0.6575834245

DT Z=1.8 �0.3976903894 �0.3976904010 1.2893464872 1.2893465263

RK �0.3988125150 �0.3976324033 1.2876564921 1.2893414772

DT Z=2.1 �0.4233235901 �0.4233237384 1.5976025975 1.5976016639

RK �0.4256219173 �0.4233265923 1.5903005645 1.5976025729

Table 3

Comparison of Poincar�e maps of tip displacement and velocity at different values of time step, H via DT method.

Z=2.3 Z=2.48

H X1(nT) X2(nT) H X1(nT) X2(nT)

p/200 �0.4436110921 1.8014718981 p/200 �0.4642972668 1.9840682627

p/400 �0.4436196085 1.8014721059 p/400 �0.4642911344 1.9840617022

p/800 �0.4436194437 1.8014782723 p/800 �0.4642975571 1.9840627282



Fig. 2. Phase portraits of microcantilever tip at Z=1.344, 1.377, 2.172, 2.183, 2.198, 2.48, 3.185, and 4.36.
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is increased to Z=2.172. However, when the vibrational amplitude is increased further to
Z=2.183, 2.198, and 2.48, the tip orbit exhibits regular and symmetric motions. Then, the
tip orbit performs a complex, non-periodic motion at Z=3.183 and 4.36.

3.3. Power spectra

Figs. 3(a–h) and 4(a–h) show the dynamic displacement and velocity responses of the
microcantilever tip, respectively. At vibrational amplitudes of Z=1.344 and 1.377,
respectively, the power spectra show that the microcantilever tip performs 3T-subharmonic
and 6T-subharmonic motions, respectively. However, when the vibrational amplitude is
increased to Z=2.172, it can be seen that the tip exhibits chaotic motion. But, the chaos
behavior changes to subharmonic motions at Z=2.183, 2.198, and 2.48. Finally, at
vibrational amplitudes of Z=3.183 and 4.36, respectively, the tip has a chaotic behavior.

3.4. Maximum Lyapunov exponent

The maximum Lyapunov exponent can also be used to identify the dynamic behavior of
the AFM tip. Fig. 5(a, b, and d–f), corresponding to vibrational amplitudes of Z=1.344,
1.377, 2.183, and 2.198, respectively, shows that the maximum Lyapunov exponent has a
value of approximately zero, which indicates that the microcantilever tip has a periodic
response. However, at Z=2.172, 3.183, and 4.36, as shown in Fig. 5(c, g, and h),
respectively, the maximum Lyapunov exponent is positive, and hence it can be inferred
that the system has a chaotic response.



Fig. 4. Power spectra of velocity (X2) of microcantilever tip at Z=1.344, 1.377, 2.172, 2.183, 2.198, 2.48, 3.185,

and 4.36.

Fig. 3. Power spectra of displacement (X1) of microcantilever tip at Z=1.344, 1.377, 2.172, 2.183, 2.198, 2.48,

3.185, and 4.36.
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Fig. 5. Maximum Lyapunov exponents of microcantilever tip at different values of vibrational amplitude Z:

(a) 1.344, (b) 1.377, (c) 2.172, (d) 2.183, (e)2.198, (f) 2.48, (g) 3.185, and (h) 4.36.
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3.5. Bifurcation diagrams and Poincar �e maps

In general, bifurcation diagrams and Poincar�e maps summarize the essential dynamics of a
system, and are therefore useful tools for observing nonlinear dynamic behavior. In the current
study, Figs. 6 and 7 plot the bifurcation diagrams of the tip displacement and the tip velocity,
respectively, taking the vibrational amplitude (Z) of the cantilever tip as the bifurcation
parameter. Finally, Fig. 8(f) presents the Poincar�e maps of the microcantilever tip trajectory at
Z=1.344, 1.377, 2.172, 2.183, 2.198, 2.48, 3.185, and 4.36, respectively.

Figs. 6(b, c) and 7(b, c) show that at lower values of the vibrational amplitude, i.e.
Zo2.172, the displacement (X1) and velocity (X2) of both the tips exhibits a dynamic
periodic response, including T-, 3T- and 6T-periodic motions except for the chaotic
motions at Z=1.531, 1.546, and 1.577. Fig. 8(a and b) presents the Poincar�e map
corresponding to Z=1.344 and 1.377, and the maps have three and six discrete points,
which confirm the existence of 3T- and 6T-periodic behavior as shown in the bifurcation
diagrams. As the value of the vibrational amplitude is increased from Z=2.172 to 2.34,
Figs. 6(c) and 7(c) show that both the tip displacement and the tip velocity perform 4 kinds
of motions including T-, 4T-, 8T-periodic, and chaotic motions. Fig. 8(c, d, and e) present
the Poincar�e maps at Z=2.172(chaotic), 2.183(4T), and 2.198(8T), respectively. At
Z=2.341, the T-periodic motion is replaced by chaotic motion, as shown in Figs. 6(c) and
7(c). When Z is increased over the interval 2.341rZo2.883, the tip response includes both
chaotic and T-periodic motion. Fig. 8(f) presents the Poincar�e map at Z=2.48. However,
at Z=2.883, the T-periodic motion is replaced by 6T-periodic motion. Thereafter, the



Fig. 6. Bifurcation diagrams for tip displacement using vibrational amplitude (Z) as the bifurcation parameter.
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6T-periodic motion changes its stability at Z=2.884 and is replaced by T-periodic motion.
But for vibrational amplitudes in the range 2.884rZo5, Figs. 6(d, e) and 7(d, e) show that
the tip performs both T- and chaotic motions. Fig. 8(g and h) presents the Poincar�e maps
at Z=3.185 and 4.36, respectively.



Fig. 7. Bifurcation diagrams for tip velocity using vibrational amplitude (Z) as the bifurcation parameter.
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From the discussions above, it is clear that the dynamic response of the probe tip
depends on the magnitude of the vibrational amplitude. The various motions performed by
the tip as the vibrational amplitude increases from 1.0 to 5.0 are summarized in Table 4. In
general, the results show that depending on the value of the vibrational amplitude, the tip



Fig. 8. Poincar�e maps of microcantilever tip trajectory at different values of vibrational amplitude (Z): (a) 1.344,

(b) 1.377, (c) 2.172, (d) 2.183, (e) 2.198, (f) 2.48, (g) 3.185, and (h) 4.36.

Table 4

Variation of microcantilever tip response with vibrational amplitude over interval 1.0rZ0r5.0 via DT method.

Z [1.0, 1.344] [1.344,1.578] [1.578,2.172] [2.172,2.2] [2.883] [2.2,5]

Dynamic behavior T T,3T,6T,chaos T T,4T,8T,chaos 5T T,chaos
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may exhibit periodic behavior, i.e. T-, 3T- or 6T-periodic motion or multi-periodic, or a
chaotic response. This result also indicates that a discontinuous increase takes place in the
size and form of the chaotic attractor as the vibrational amplitude is increased.
4. Conclusion

In the present paper the nonlinear dynamics of a microcantilever in the AFM system has
been studied and applied to the differential transformation method and the Runge–Kutta
method, respectively, to investigate the non-periodic behaviors and nonlinear equations.
Phase trajectories, Poincar�e maps, maximum Lyapunov exponent plots, and bifurcation
diagrams have been used to characterize the dynamic response of the microcantilever as a
function of the tip’s vibrational amplitude and to detect the occurrence of chaotic motion.
In general, the results have shown that as the vibrational amplitude is increased from 1.0 to
5.0, the microcantilever tip motion changes initially from T-periodic to 3T-periodic, and
then from 6T-periodic to multi-periodic, and finally to chaotic motion with windows of
periodic motion.
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