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a b s t r a c t

The nonlinear behavior analysis and chaos suppression control for a rod-type plasma torch system was
discussed in the paper. The scenarios for the possible non-linear behavior in the plasma torch dynamics
were also obtained with respect to the variation of system parameter l via the numerical simulations,
which might provide a guide for finding non-linear phenomena in the practical application of the plasma
torch. From the bifurcation diagram, it shows that the plasma torch dynamics exit undesired chaotic
behavior. In order to suppress the irregular chaotic motion, a fuzzy logic controller (FLC) that combines
a sliding mode controller (SMC) and a state feedback controller (SFC) with guaranteed closed loop stabil-
ity is designed. Each rule in this FLC has an SMC or an SFC in the consequent part. The role of the FLC is to
schedule the final control under different antecedents. It is guaranteed that under the proposed control
law, the rod-type plasma system with undesired chaotic motion can asymptotically stabilize to the unsta-
ble equilibrium point i.e. zero state. More importantly, the controller thus design can keep the advantages
and remove the disadvantage of the two conventional controllers. Numerical simulations show the high
performance of this method for chaos elimination in rod-type plasma torch system.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In the past 20 years, the study of thermal plasma technology
have attracted increasing attention due to its potential applications
to plasma spraying, plasma chemical vapor deposition (CVD), arc
plasma welding, plasma waste destruction, plasma synthesis of ad-
vanced ceramics, etc. (Boulos, Fauchais, & Pfender, 1994; Nicholson,
1983; Sturrock, 1994). One of the major issues concerned the effec-
tiveness of these processes is the properties of the plasma-generat-
ing devices, in particular, the plasma fluctuations always associated
with such devices. The fluctuating behavior of the plasma jet is
identified as one of the most important characteristics, which is
correlated with the underlying physical phenomena of the plasma
source and determines the performance of the plasma processing.
In the plasma spray process, the arc instabilities and jet fluctuations
may lead to a non-uniform heating and transport of the injected
powder particles and, consequently, affect the coating qualities.
Moreover, the electrode erosion, low thermal efficiency, and unre-
liable performance of the plasma devices, directly or indirectly
attributed to the lack of control on these fluctuations, have been
the main challenge for the further development of thermal plasma
technology and have inhibited its more potential industrial applica-
ll rights reserved.

@ncut.edu.tw (H.-T. Yau).
tions. Whatever from the point of view of academic research or of
engineering application, a better understanding of the fundamental
mechanisms and processes involved in the plasma source and its
application is still necessary and indispensable (Ghorui & Das,
2004; Ghorui, Sahasrabudhe, Muryt, & Das, 2004).

Recently, a schematic of plasma torch has been proposed to
study the existence of fluctuation in the practical experiments.
The earlier concept indicated that the possibly observed fluctua-
tion is a random behavior so that it is unpredictable. However,
from dynamical analysis and experimental results, Ghorui et al.
claimed that the inherent fluctuation appearing in plasma devices
is a chaotic dynamical behavior (Ghorui, Sahasrabudhe, Muryt,
Das, & Venkatramani, 2000). The study of chaotic systems has re-
cently attracted lots of attention (Bagheri & Moghaddam, 2009;
Chen, Chang, Yan, & Liao, 2008). Chaos is a more exotic form of
steady-state response. Thus, chaotic behavior is unpredictable
since chaotic system is more sensitive and its behavior strongly de-
pends on system’s initial values.

Recently, controlling this kind of complex dynamical systems
has attracted considerable attention within the engineering soci-
ety. Nowadays, many methods and techniques have been devel-
oped in chaos control (Yau, 2004). Among these methods, sliding
mode control is often to be used because of its better robust char-
acter. Sliding-mode control (SMC) (Utkin, 1997) provides an effec-
tive alternative to deal with uncertain chaotic systems, and has
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Fig. 1. The bifurcation diagrams of system states x1,x2 and x3 versus l.
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been successfully applied in controlling chaos (Yan, 2004; Yang,
Chen, & Yau, 2002). In the traditional SMC, it is assumed that the
control can be switched from one value to another infinite fast,
and this is impossible due to finite time delays and limitations in
practical system. This non-ideal switching result in an undesirable
phenomenon called chattering. The boundary layer approach is
introduced to eliminate chattering around the switching surface
and the control discontinuity within this thin boundary layer is
smoothed out. If systems uncertainties are large, the sliding-mode
controller would require a high switching gain with a thicker
boundary layer to eliminate the higher chattering effect resulting.
However, if we continuously increase the boundary layer thick-
ness, we are actually reducing the feedback system to a system
without sliding mode. To tackle these difficulties, a simple but
more general methodology of fuzzy logic control is applied to deal
with the chattering phenomenon in SMC.

In this paper, we will combine a sliding mode controller (SMC)
and a state feedback controller (SFC) into a signal FLC to control the
rod-type plasma torch system under undesired chaotic motion.
The resulting closed-loop system has fast response, due to the
SMC. Still, when the states are near the sliding plane, the FLC will
gradually be dominated by the SFC to avoid chattering. As a result,
the advantage of two conventional controllers can be kept by this
combined controller. Finally, we present the numerical simulation
results to illustrate the effectiveness of the proposed control
scheme to stabilize the chaotic rod-type plasma torch system to
the unstable equilibrium point.

The paper is organized as follows. The nonlinear dynamics of a
rod-type plasma torch system is studied in Section 2. In Section 3,
the FLC that combines a sliding mode controller (SMC) and a state
feedback controller (SFC) with guaranteed closed loop stability is
designed. Numerical analysis is carried on in Section 4 to verify
the analytical results. Concluding remarks are given in Section 5
to summarize the major results.

2. System description and problem formulation

In the paper, we consider a class of the third-order nonlinear
systems which was motivated by the amplitude equation being ap-
plied to the detection of possible occurrences of bifurcation phe-
nomena in the thermal plasma (Ghorui et al., 2000). According to
the theory of triple convection, the thermal arc plasma equation
was proposed as follows:

F
...

þX2
€F þX1

_F þX0F ¼ �F3: ð1Þ

The coefficients of Eq. (1) are known to depend on thermo-physical
properties such as arc current, flow velocity of plasma gas, and the
plasma torch device. To focus on the study of dynamical behavior in
plasma torch, we adopt the parameter values of system (8) from the
work by Ghorui et al. (Ghorui et al., 2000) and rewrite system (8) as
given in the following equation:

F
...

þX2
€F þX1

_F þX0F ¼ �F3; ð2Þ

with X0 = l,X1 = 50, and X2 = 1, where l denotes the bifurcation
parameter. Here, we only discuss the case of �F3 appearing on the
right hand side of (9). It is not difficult to extend the study to the
other case of + F3 appearing on the right hand side of (9). Details
are not given.

The system (2) can then be rewritten state space equations as
given by

_x1 ¼ x2;

_x2 ¼ x3;

_x3 ¼ �lx1 � 50x2 � x3 � x3
1:

ð3Þ
The equilibrium points computed from (3) are obtained as
(x1,x2,x3) = (0,0,0) and ðx1; x2; x3Þ ¼ �

ffiffiffiffiffiffiffi�lp
; 0;0

� �
for l 6 0. Now,

we consider the stability of system (3) at the system equilibrium.
Denote ðxe

1;0;0Þ the system equilibrium. Here, we have xe
1 ¼ 0 or

xe
1 ¼ �

ffiffiffiffiffiffiffi�lp
. It is not difficult to have the Jacobian matrix at the

equilibrium point ðxe
1;0; 0Þ of system (3) as

J ¼
0 1 0
0 0 1

�3 xe
1

� �2 � l �50 �1

0
B@

1
CA: ð4Þ

This gives the corresponding characteristic equation as

k3 þ k2 þ 50kþ lþ 3ðxe
1Þ

2 ¼ 0: ð5Þ

By using Routh–Hurwitz stability criteria, we then have the stability
results for system (3) are as: (i) The origin of the system (3) is
asymptotically stable for 0 < l < 50, and (ii) The equilibrium point
ð� ffiffiffiffilp ; 0;0Þ for l < 0 of system (3) is asymptotically stable for
�25 < l < 0.

In order to understand the rich behaviors of rod-type plasma
torch system relative to parameter l, the bifurcation diagrams of
system states versus l are shown in Fig. 1. As indicated by the
map in Fig. 1, with the decrease of l, the rod-type plasma torch
system undergoes single-periodic, multi-periodic and aperiodic
motions. When l = �130, the system time responses and phase
plane trajectory of (x1,x2,x3) are shown in Fig. 2. It shows that
the dynamics of rod-type plasma torch system displaced a very
complex behavior at this condition. The maximum Lyapunov expo-
nent is computed on purpose to identify if the system is in a state



Fig. 3. The maximum Lyapunov exponent of uncontrolled system state x1.
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of chaotic motion. Fig. 3 reports the diagram of the maximum
Lyapunov exponent. It can be seen that the steady-state value of
the maximum Lyapunov exponent is positive, which confirms the
chaotic nature of the motion at this operation condition.

In the above discussions, it is known that (0,0,0) is an unstable
equilibrium point under l < 0. In the following, the control tech-
nique is considered to stabilize the rod-type plasma torch system
(3) to the unstable equilibrium point (0,0,0) when the system (3)
is in a state of undesired chaotic motion with l < 0. It means that
the undesired chaotic motion will be suppressed. In order to reach
this object, a control input u is added in Eq. (3). Therefore, the con-
trolled rod-type plasma torch system is shown in the follows:

_x1 ¼ x2;

_x2 ¼ x3;

_x3 ¼ �lx1 � 50x2 � x3 � x3
1 þ uðtÞ:

ð6Þ

The goal of this paper is that for any given chaotic rod-type plasma
torch system, such as (6), a controller is designed such that the
asymptotic stability of the resulting system (6) can be achieved in
the sense that

k½x1 x2 x3�k ! 0 as t !1;

where k�k is the Euclidean norm of a vector.
3. Fuzzy Logic controller design

In this section, a sliding mode controller (SMC) and a state feed-
back controller (SFC) will be combined into a signal FLC by apply-
ing the proposed designed approach. This FLC will be used to
stabilize system (3) to the unstable equilibrium point (0,0,0) when
the system (3) is in a state of undesired chaotic motion. When the
states are far from the origin of the state plane, the SMC will take a
major part of control to give a fast transient response. However,
when the states are approaching the equilibrium value (the origin
of the state plane), the SMC will gradually be replaced by SFC, in
order to avoid chattering.
Fig. 2. Time responses of the rod-type plasma torch system states (a) x1, (b) x2, (c
Let the control input

uðtÞ ¼ u1ðtÞ þ u2ðtÞ and u1ðtÞ ¼ x3
1; ð7Þ

then the controlled rod-type plasma torch system can be written in
the following form:

_x ¼ f ðxÞ þ bðxÞu2; ð8Þ

where

x ¼
x1

x2

x3

2
64

3
75; f ðxÞ ¼

f11 f12 f13

f21 f22 f23

f31 f32 f33

2
64

3
75x ¼

0 1 0
0 0 1
�l �50 �1

2
64

3
75x;

bðxÞ ¼
b1

b2

b3

2
64

3
75 ¼

0
0
1

2
64

3
75:
3.1. SMC

Generally speaking, using the SMC technique to control a cha-
otic system involves two major steps. The first step is to select
an appropriate switching surface which can guarantee the stability
of the equivalent dynamics in the sliding mode such that the
) x3 and phase plane trajectory (d) x1 versus x2 under the parameterl = �130.
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dynamics (8) can converge to zero. The second step is to determine
a SMC to guarantee the hitting of the switching surfaces. As men-
tioned above, we first need to design a proper switching surface to
ensure the stability of the system in the sliding mode. To reach this
goal, a switching sliding surface is defined as

s ¼ cx; ð9Þ

where c = [1 1 0.1]. It is obvious that the sliding plane is stable. An
equivalent control ueq can be obtained by considering

_s ¼ c _x ¼ 0; ð10Þ
) c½f ðxÞ þ bðxÞ � ueq� ¼ 0;

) ueq ¼ �ðcbðxÞÞ�1cf ðxÞ: ð11Þ
Fig. 4. Fuzzy levels of s and their membership functions.

Fig. 5. Time responses of x1,x2 and x3 with SFC, SMC and FLC.
The final control is realized as u2 = ueq + usw, where
usw = �(cb(x))�1k � sign(s), k is a positive constant, and

signðsÞ ¼
1; if s > 0;
0; if s ¼ 0;
�1; if s < 0:

8><
>:

Defining a Lyapunov function

V ¼ 1
2

s2: ð12Þ

We have

_V ¼ s_s ¼ s½cf ðxÞ þ cbðxÞð�ðcbðxÞÞ�1ðcf ðxÞ þ k � signðsÞÞÞ�
¼ �s � k � signðsÞ ¼ �k � jsj 6 0: ð13Þ

It confirming the presence of reaching condition ðs � _s < 0Þ, that is,
the sliding surface s = 0 is an attracting surface. It guarantees the ro-
bust stability of the SMC (Slotine & Li, 1991).

3.2. SFC

An SFC can also be employed for the system (8). Design a state
feedback control gain

Kf ðxÞ ¼ ½kf 1 kf 2 kf 3� ¼
�10� f31

b3

�11� f32

b3

�11� f33

b3

� �
;

Such that the control signal is given by
Fig. 6. The responses of the control input: (a) SFC; (b) SMC; (c) FLC.
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u2 ¼ Kf ðxÞ � x: ð14Þ

By using the same Lyapunov function V of (12), if the control law of
(14) is employed, we have

_V ¼ s_s ¼ xT cT c _x ¼ xT cT cðf ðxÞ þ bðxÞKf ðxÞxÞ

¼ xT

1
1

0:1

2
64

3
75½1 1 0:1�

0 1 0
0 0 1

f31 f32 f33

2
64

3
75

0
B@

þ
b1

b2

b3

2
64

3
75 �10� f31

b3

�11� f32

b3

�11� f33

b3

� �1CAx

¼ �xT

1 1 0:1
1 1 0:1

0:1 0:1 0:01

2
64

3
75x 6 0: ð15Þ
3.3. FLC

Define the rules of an FLC as follows:
Fig. 7. System responses of x1,x2 and x3 for different initial conditions: Green lines
for (x1(0),x2(0),x3(0)) = (3,0,0), red lines for (x1(0),x2(0),x3(0)) = (1,0,0) and blue
lines for (x1(0),x2(0),x3(0)) = (�1,0,0). The control is activated at time t = 5. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 8. Time response of the states x1,x2,x3 for the controlled system under the
parameter value l changes from l = �130 to l = �146 at t = 30.
Rule 1 : If s is PE THEN u2 ¼ �ðcbðxÞÞ�1ðcf ðxÞ þ kÞ; ð16:aÞ
Rule 2 : If s is ZE THEN u2 ¼ Kf ðxÞ � x; ð16:bÞ
Rule 3 : If s is NE THEN u2 ¼ �ðcbðxÞÞ�1ðcf ðxÞ � kÞ: ð16:cÞ

Where PE, ZE and NE are fuzzy levels of s of which the membership
functions are shown in Fig. 4.

To prove the stability of the fuzzy-controlled chaotic rod-type
plasma torch system, we need to ensure x tend to zero for all oper-
ation conditions. Although the Lyapunov function of (12) is a func-
tion of s only, but not x, thanks to the stability of the sliding plane, x
tends to o if s = 0. Hence, from the work by Wong et al. (Wong, Leu-
ng, & Tam, 1998), the proof of system stability is reduced to prov-
ing that s tends to zero on applying each rule to the chaotic rod-
type plasma torch system. This cannot be reached immediately, be-
cause the conditions V is positive define and _V 6 0 may imply that
s tends to a finite constant instead of zero. To verify that s must fi-
nally go to zero we need to prove that _V < 0 at V – 0 for all oper-
ation conditions. This proof is given in the Appendix of the work
done by Wong et al. (Wong et al., 1998). Hence, the closed-loop
system under the control of the proposed FLC is stable.
4. Simulation results

In this section, simulation results are presented to demonstrate
and verify the performance of the present design. The parameter
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value l = �130 is selected for that (0,0,0) is an unstable equilib-
rium point. The initial state is (x1(0),x2(0),x3(0)) = (5, � 2,3) and
the value k = 10 is selected. For comparison, the responses on
applying the SMC alone and the SFC alone are also taken. The states
response of x1,x2 and x3 are shown in Fig. 5. It can be seen that the
settling time of x1 on applying the FLC is better than that on apply-
ing the SFC only. The states responses on using the FLC and the
SMC are similar, but no chattering exists in x3 if the FLC is used.
The time responses of control inputs with different control tools
are shown in Fig. 6. It can be seen that the control signal displays
a serious chattering on applying SMC, but it is chattering free on
applying FLC.

It is known that chaotic system is very sensitive to initial condi-
tions. Fig. 7 shows the system state responses under initial states
(x1(0),x2(0),x3(0)) = (3,0,0), (x1(0),x2(0),x3(0)) = (1,0,0) and
(x1(0),x2(0),x3(0)) = (�1,0,0) with l = �130. It demonstrates that
the FLC can overcome the chaotic behavior in rod-type plasma
torch system under different initial conditions after the control in-
put is activated at t = 5. To test the robustness of the FLC, simula-
tions under abrupt change of system parameter value are
conducted. The state responses of x1,x2 and x3 on applying the
FLC and the parameter value l changes from l = �130 to
l = �146 at t = 30 are shown in Fig. 8. From Fig. 8, it can be seen
that the system states of controlled system are regulated to the de-
sired zero state after the control input is activated at t = 25. No
matter how the parameter l changes, it is kept up with zero state
all the time. From these responses, we can see that the FLC de-
signed is robust to parameter variations.

5. Conclusion

In this paper we focused on the study of nonlinear behavior in
arc plasma dynamics. It is clear from this study that the chaotic
behavior occurring in the arc plasma system is induced by peri-
od-doubling bifurcation. In order to overcome the undesired cha-
otic behavior, an FLC combining an SMC and an SFC to chaos
suppression control of rod-type plasma torch system is designed.
It has been clearly shown that a good transient responses, as well
as robustness to parameter variations, can be obtained due to the
SMC. However, chattering does not take place, due to the effect
of the SFC near the equilibrium point. The combined controller
then inherits the merits of the two conventional controllers in
chaos control. The simulation results show that the proposed con-
trol enables to regulate the chaotic rod-type plasma torch system
to the unstable equilibrium point (x1,x2,x3) = (0,0,0) asymptoti-
cally in spit of parameter variation. This study provides a strategy
for controlled design to suppress the occurrence of fluctuation and
operation performance for practical design of arc plasma torch. The
main feature of this approach is that it gives the flexibility to con-
struct a control law so that the control strategy can be easily ex-
tended to any chaotic systems.
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