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The hybrid squeeze-film damper bearing with active control is proposed in this paper and
the lubricating with couple stress fluid is also taken into consideration. The pressure distri-
bution and the dynamics of a rigid rotor supported by such bearing are studied. A PD (pro-
portional-plus-derivative) controller is used to stabilize the rotor-bearing system.
Numerical results show that, due to the nonlinear factors of oil film force, the trajectory
of the rotor demonstrates a complex dynamics with rotational speed ratio s. Poincaré
maps, bifurcation diagrams, and power spectra are used to analyze the behavior of the
rotor trajectory in the horizontal and vertical directions under different operating condi-
tions. The maximum Lyapunov exponent and fractal dimension concepts are used to deter-
mine if the system is in a state of chaotic motion. Numerical results show that the
maximum Lyapunov exponent of this system is positive and the dimension of the rotor tra-
jectory is fractal at the non-dimensional speed ratio s = 3.0, which indicate that the rotor
trajectory is chaotic under such operation condition. In order to avoid the nonsynchronous
chaotic vibrations, an increased proportional gain is applied to control this system. It is
shown that the rotor trajectory will leave chaotic motion to periodic motion in the steady
state under control action. Besides, the rotor dynamic responses of the system will be more
stable by using couple stress fluid.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The fluid film bearing is a mechanical component, which has a strong nonlinearity. This is particularly true of squeeze-
film damper bearings. Squeeze-film damper bearings are actually a special type of journal bearing with its journal mechan-
ically prevented from rotating but free to vibrate within the clearance space. The squeezing action produces hydrodynamic
forces in the fluid film. A squeeze-film damper bearing can be designed such that the journal can statically find its own posi-
tion with in the clearance or be held centrally within the clearance by retaining springs. If the retaining springs are not used,
the influence of contact and wear at zero speed will occur and it will add to the complexity of analysis of squeeze-film dam-
per bearing. In a squeeze-film damper bearing-rotor system, the fluid support pressure is generated entirely by the motion of
the journal and depends on the viscosity of the lubricating fluid. However, the hydrodynamic pressure around the bearing is
nonlinear. It may cause fairly large vibrations of the rotor complicating the analysis of this system.

Chen and Yau [1] made a quite comprehensive simulation and found the chaotic behavior in a flexible rotor supported by
oil film bearings with non-linear suspension. It also shows that due to non-linear factors, though the dynamic equation of the
. All rights reserved.
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Nomenclature

B bearing parameter ¼ 6lR2L2

md3xn
d viscous damping of the rotor disk
D d

mxn

e damper eccentricity = ed
fx, fy components of the fluid film force in horizontal and vertical coordinates
Fr, Ft components of the fluid film force in radial and tangential directions
h oil film thickness, h = d(1 + ecosh)
k stiffness of the retaining springs
kd proportional gain of PD controller
kp derivative gain of PD controller
L bearing length
m masses lumped at the rotor mid-point
Om center of rotor gravity
Ob, Oj geometric center of the bearing and journal
p(h) pressure distribution in the fluid film
ps pressure of supplying oil
pc,i pressure in the static pressure chamber
Qin,i the volumetric flow rate into oil chamber i (i = 1–4) from the controllable orifice
R inner radius of the bearing housing
r radius of the journal
r, t radial and tangent coordinates
s speed parameter ¼ x

xn
; xn ¼

ffiffiffi
k
m

q
U q

d
x, y, z horizontal, vertical and axial coordinates
x0, y0 damper static displacements
X, Y, X0, Y0 x/d, y/d, x0/d, y0/d
q mass eccentricity of the rotor
/ rotational angle (/ = xt)
x rotational speed of the shaft
ub angle displacement of line ObOj from the x-coordinate (see Fig. 1)
X _ub
d radial clearance = R � r
h the angular position along the oil film from line O1O3 (see Fig. 1)
l oil dynamic viscosity

e0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

0 þ Y2
0

q
b distribution angle of static pressure region
(�), (0) derivatives with respect to t and /
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bearing center and the rotor center are coupled, the trajectory of the rotor center demonstrates steady-state symmetric mo-
tion even when the trajectory of the bearing center is in a state of disorder. Nikolajsent and Holmes [2] reported their obser-
vation of nonsynchronous vibrations in a test rig of a flexible, symmetric rotor on two identical plain journal bearings
supported by centralized squeeze-film dampers. Zhao et al. [3] discussed the subharmonic and quasi-periodic motions of
an eccentric squeeze-film damper-mounted rigid rotor system. Chang-Jian and Chen [4–8] presented a series of papers dis-
cussing about flexible rotor supported by journal bearings under nonlinear suspension and also combined with rub-impact
effect, turbulent effect and micropolar lubricant into consideration. They found very bountiful non-periodic responses occur-
ring in rotor-bearing systems and the studies would help engineers or scientists escape undesired motions in either design-
ing or operating rotor-bearing systems.

Many kinds of lubricants are non-Newtonian fluids in the scientific and engineering application. It can make the viscosity
of the lubricant to be independent of the temperature. With the development of modern machine elements the increasing
use of complex fluids as lubricants has been emphasized. There were also many significant studies the performance of non-
Newtonian fluids. Oliver [9] had found that the presence of dissolved polymer in the lubricant could increase the load
carrying capacity and decrease the friction. Spikes [10] showed that the base oil blending with additives could reduce the
friction and the surface damage in elastohydrodynamic contacts. Because of the behavior of the complex fluids violates
the linear shear stress-rate relationship, it fails to describe the rheological behavior of the non-Newtonian fluid. Therefore
a different micro-continuum theory has been developed to better describe the rheological behavior of the non-Newtonian
fluid. Stokes [11] proposed a simplest theory called the Stokes micro-continuum theory and which could be used for the



Fig. 1. Cross section of a rigid rotor supported by a hybrid squeeze film damper.
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couple stress fluid. This kind of couple stress model is intended to take account of the particle-size effects, and it is also very
useful in the applications of science and engineering. Thus there are more and more researches focusing on it and analyzing
its performance. Ramanaiah [12] applied the couple-stress fluid model to analyze the long slider bearing. Gupta and Sharma
[13] also used the couple-stress fluid model to carry out on hydrostatic thrust bearings. Shehawey and Mekheimer [14] ap-
plied the couple stress model to analyze the peristalsis problem for its relative mathematical simplicity. Das [15] proposed
the analysis of elastohydrodynamic theory of line contacts. Das [16] studied the slider bearing lubricated with couple stress
fluids in magnetic field and observed that both the values of the maximum load capacity and the corresponding inlet-outlet
film ratio depend on couple stress, magnetic parameters and the shape of bearings. Lin [17] investigated the squeeze film
characteristics of long partial journal bearings lubricated with couple stress fluid using the Stokes microcontinuum theory.
Meanwhile Lin [18] also studied the static and dynamic behaviour of pure squeeze films in short journal bearings lubricated
with the couple stress fluid, and the results showed that the effect of the couple stress could improve the dynamic stiffness
and damping characteristics, and reduce the pumping power due to the decrease of the flow rate. Lin [19,20] performed
investigations on externally pressurized circular step thrust bearings and linear stability analysis of rotor-bearing system
lubricated with couple stress fluids. According to his research results, it was found that the rotor-bearing system with the
couple stress fluid is more stable than the usage of the conventional Newtonian lubricant. Naduvinamani et al. [21] also pre-
sented the theoretical investigations of the rheological effects of the couple stress fluids on the static and dynamic behaviors
of the pure squeeze films in the porous journal bearings.

The present paper analyzes a hybrid squeeze-film damper-mounted rigid rotor lubricated with couple stress fluid. The
nonlinear dynamic equations are solved using the fourth order Runge-Kutta method. The dynamic trajectories, power spec-
trum, Poincaré maps, bifurcation diagrams, fractal dimension and the maximum Lyapunov exponent are applied to analyze
the dynamic of the whole system.

2. Mathematical modeling

Fig. 1 shows a rigid rotor supported on a hybrid squeeze-film damper (HSFD) in parallel with retaining springs. The bear-
ing consists of four hydrostatic chambers and four hydrodynamic regions. The oil film supporting force is dependent on the
integrated action of hydrodynamic pressure and hydrostatic pressure of HSFD. The structure of this kind bearing should be
popularized to consist of 2N (N = 2, 3, 4,. . .) hydrostatic chambers and 2N hydrodynamic regions. In this study, oil pressure
distribution model in the HSFD is proposed to integrate the pressure distribution of dynamic pressure region and static pres-
sure region as described in Section 2.2.

2.1. Rotor dynamics equation

The equations of rotor motion in the Cartesian coordinates can be written as
m€xþ d _xþ kx ¼ mqx2 cos xt þ fx þ kx0; ð1Þ

m€yþ d _yþ ky ¼ mqx2 sinxt þ fy þ ky0: ð2Þ
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The origin of the o-xyz-coordinate system is taken to be the bearing center Ob. Dividing these two equations by mcx2 and
defining a non-dimensional time / = xt and a speed parameter s ¼ x

xn
, one obtains the following non-dimensionalized equa-

tions of motion:
X00 þ D
s

X 0 þ 1
s2 X ¼ U cos /þ B

s
XFr � YFs

e

� �
þ X0

s2 ; ð3Þ

Y 00 þ D
s

Y 0 þ 1
s2 Y ¼ U sin /þ B

s
YFr þ XFs

e

� �
þ Y0

s2 : ð4Þ
2.2. Solution of instant pressure distribution

The non-Newtonian Reynolds-type equation can be performed as follows [12]
@

@x
gðh; lÞ @p

@x

� �
þ @

@z
gðh; lÞ @p

@z

� �
¼ 6lU

@h
@x
þ 12l @h

@t
; ð5Þ
Fig. 3. Bifurcation diagram of X(nT) (a) and Y(nT) (b) versus rotor speed s (l* = 0.0).

Fig. 2. The pressure distribution of HSFD in axis direction and rotational direction (�a 6 z 6 a) respectively.
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Fig. 4. The trajectory of rotor at s = 2.7, 2.8, 2.82, 4.0 (4.1(a)–4.4(a)); Poincaré section projected onto the X(nT)–Y(nT) plane (4.1(b)–4.4(b)); displacement
power in X and Y directions (4.1(c)–4.4(c) and 4.1(d)–4.4(d)).
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where gðh; lÞ ¼ h3 � 12l2hþ 24l3 tanh h
2l

� �
; @h
@x ¼ � ce

R sin h; @h
@t ¼ c _e cos hþ ce _u sin h; x ¼ Rh;U ¼ Rx; e ¼ e

c and h = c(1 + ecos

(c � u(t))) = c(1 + ecosh). Thus, g(h,l) can also be expressed as gðh; lÞ¼ c3ð1þecoshÞ3�12l2cð1þecoshÞþ24l3 tanh cð1þecoshÞ
2l

� �
,
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Fig. 5. Aperiodic motion of bearing center at s = 3.0; (a) rotor trajectory; (b) and (c) displacements power spectrum; (d) and (e) time series of rotor
trajectory; (f)–(h) Poincare’ maps.
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where l ¼ g
l

� �1=2
, in which l is the classical viscosity parameter and g is a new material constant peculiar to fluids with cou-

ple stresses. The Reynolds equation can then be rewritten as
@

R@h
gðh; lÞ @p

R@h

� �
þ @

@z
gðh; lÞ @p

@z

� �
¼ �6lxce sin hþ 12lðc _e cos hþ ce _u sin hÞ: ð6Þ
Applying the short-bearing approximation (i.e.L
D < 0:25 and @p

@h�
@p
@z),

@p
@h can be neglected with respect to @p

@z so as to simplify
the Reynolds differential equation. The following equation can then be introduced:
@2p
@z2 ¼

�6lxce sin hþ 12lðc _e cos hþ ce _u sin hÞ
gðh; lÞ ; ð7Þ
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Fig. 7. The maximum Lyapunov exponent plotted as a function of the number of drive cycles at s = 3.0.
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Fig. 9. Bifurcation diagram of X(nT) (a) and Y(nT) (b) versus rotor speed s (l* = 0.1).
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The supporting region of HSFD should be divided into three regions: static pressure region, rotating direction dynamic
pressure region and axial direction dynamic pressure region, as shown in Fig. 2. In the part of HSFD with �a 6 z 6 a, the long
bearing theory is assumed and Reynolds equation is solved with the boundary condition of static pressure region pc,i acquir-
ing the pressure distribution p0(h). In the part of HSFD with a 6j z j L

2, the short-bearing theory is assumed and solves the
Reynolds equation with the boundary condition of p(z,h) jz=±a = p0(h) and p(z, h)jz=±L/2 = 0, yielding the pressure distribution
in axis direction dynamic pressure region p(z,h). Finally, a formula of pressure distribution in whole supporting region is
obtained.

According to the above conditions, the instant oil film pressure distribution is as follows.
The instant pressure in rotational direction within the range of �a 6 z 6 a is(
p0ðhÞ ¼
pc;i;

p
2 ði� 1Þ � b

2�ub 6 h 6 p
2 ði� 1Þ þ b

2�ub

piðhÞ; p
2 ði� 1Þ þ b

2�ub 6 h 6 p
2 i� b

2�ub

; i ¼ 1;2;3;4: ð8Þ
where
piðhÞ ¼ pc;i þ
6lR2

gðh; lÞd2

_e
e

1

ð1þ e cos hÞ2
� 1

ð1þ e cos hi1Þ2

" #

þ c1

Z h

hi1

1

gðh; lÞd3ð1þ e cos hÞ3
dh�

Z h

hi1

12 _ubldeR2 cos h

gðh; lÞd3ð1þ e cos hÞ3
dh; i ¼ 1;2;3;4 ð9Þ

c1 ¼
pc;iþ1 � pc;i � 6lR2

gðh;lÞd2
_e
e

1
ð1þe cos hi2Þ2

� 1
ð1þe cos hi1Þ2

h i
þ
R hi2

hi1

12 _ubldeR2 cos h

gðh;lÞdð1þe cos hÞ3
dhR hi2

hi1

1
gðh;lÞd3ð1þe cos hÞ3

dh
;

Fig. 10. Bifurcation diagram of X(nT) (a) and Y(nT) (b) versus rotor speed s (l* = 0.3).

Fig. 11. Bifurcation diagram of X(nT) (a) and Y(nT) (b) versus rotor speed s (l* = 0.5).
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hi1 ¼ ði� 1Þp
2
þ b

2
�ub; hi2 ¼ i

p
2
� b

2
�ub; i ¼ 1;2;3;4:
The instant pressure in the axis direction within the range of a 6j z j6 L
2 is
pðh; zÞ ¼ L
2
� jzj

� �
A1ðhÞ _ubeþ A2ðhÞ _e½ �ða� jzjÞ þ p0ðhÞ

1
L=2� a

	 

: ð10Þ
where
A1ðhÞ ¼
6ld sin h

gðh; lÞd3ð1þ e cos hÞ3
; A2ðhÞ ¼

6ld cos h

gðh; lÞd3ð1þ e cos hÞ3
:

2.3. Solution of the instant oil film supporting force

The instant oil film forces of the different elements are determined by integrating Eqs. (8) and (10) over the area of the
journal sleeve. In the static pressure region, the forces are
Frs ¼
X4

i¼1

pci2aR sin
p
2
ði� 1Þ þ b

2
�ub

� �
� sin

p
2
ði� 1Þ � b

2
�ub

� �� �
; ð11Þ
Fss ¼
X4

i¼1

pci2aR cos
p
2
ði� 1Þ � b

2
�ub

� �
� cos

p
2
ði� 1Þ þ b

2
�ub

� �� �
: ð12Þ
In the rotational direction dynamics pressure region, the forces are
Frc ¼
X4

i¼1

Z hi2

hi1

piðhÞR2a cos hdh; ð13Þ
Fsc ¼
X4

i¼1

Z hi2

hi1

piðhÞR2a sin hdh: ð14Þ
In the axial direction dynamic pressure region, the forces are
Fra ¼
Z �a

�L=2
dz
Z 2p

0
pðh; zÞR cos hdhþ

Z a

L=2
dz
Z 2p

0
pðh; zÞR cos hdh; ð15Þ
Fsa ¼
Z �a

�L=2
dz
Z 2p

0
pðh; zÞR sin hdhþ

Z a

L=2
dz
Z 2p

0
pðh; zÞR sin hdh: ð16Þ
The resulting damper forces in the radial and tangential directions are determined by summing the above supporting
forces. It is as follows
Fr ¼ Frs þ Frc þ Fra; ð17Þ
Fs ¼ Fss þ Fsc þ Fsa: ð18Þ
2.4. PD controller design

In order to control the hybrid squeeze-film damper bearing, two pairs of PD controllers are applied in the hydrostatic
chambers to stabilize the hybrid squeeze-film damper bearing-rotor system. Assume that the pressure difference of hydro-
static chambers 1 and 3 is Dp1 ¼ kpxþ kd _x and the pressure difference of hydrostatic chambers 2 and 4 is Dp2 ¼ kpyþ kd _y.
The controllable pressure distributions in the hydrostatic chambers are
pc;1 ¼ ps � Dp1; pc;2 ¼ ps � Dp2; pc;3 ¼ ps þ Dp1 and pc;4 ¼ ps þ Dp2: ð19Þ
Substituting the pressure distributions in the hydrostatic chambers (19) into Eqs. (8)–(18), the resulting damper forces in
the radial and tangential directions can be obtained.
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3. Numerical studies

The numerical analysis is carried out by using the 4th order Runge-Kutta method. In this study, the time step for direct
numerical integration is specified as p/300. Note that the time series data of the first 800 revolutions of the rotor are delib-
erately excluded from the dynamic behavior investigation to ensure that the data used corresponds to the steady state. These
data are then used to generate the Poincaré map and bifurcation diagram.

In this study, 30,000 data points from the time series of the horizontal displacement of bearing center are used to con-
struct the attractors in embedding space. The optimum delay time was found by autocorrelation function to be about one
third of a revolution of the rotor. The fractal dimension of the system can be determined using the plot of (log c(r)) versus
(log r), where c(r) is the correlation function and r is the radius of an N-dimensional hyper-sphere. The number of points is
chosen under a compromise between computation time and accuracy of the results. Following the method of Smith, the
number of points used to estimate the dimension in this paper is less than 42M, where M is the greatest integer less than
the fractal dimension of the attracting set.
4. Results and discussion

4.1. Without couple stress fluid lubrication

In this section, the following values for the parameters are used:
U = 0.5, B = 0.3, D = 0.005, kp = 50,000, kd = 100, ps = 1,000,000, e0 = 0.68 (X0 = 0.0, Y0 = �0.68) [22].
Fig. 3 is the bifurcation diagrams for an increased static misalignment of e0 = 0.68 (X0 = 0.0, Y0 = �0.68) at values of s with-

in the range of 0.1–5.0. It can be seen that the T-periodic motion in both X and Y directions drop to a lower spatial displace-
ment mode at the speed s = 2.18. The T-periodic motion loses its stability at s = 2.54 and a 2T-periodic motion occurs. The
0.5-subharmonic motion at 2.7 is shown in Fig. 4.1. It can be seen that there are two discrete points in the Poincaré map
and peaks at 0.5 in the power spectrum. At speed s = 2.72, the 2T-periodic motion disappears and the 4T-periodic motion
is generated. The two double loops of rotor trajectory, Poincaré map and power spectrums in X and Y directions at s = 2.8
are shown in Fig. 4.2(a)–(d). It can be seen that there are four return points in the Poincaré map and peaks at 0.25 in the
Fig. 12.1. Trajectory and Poincaré maps of bearing center and rotor center at s = 4.9 (l* = 0.3).



Fig. 12.2. Trajectory and Poincaré maps of bearing center and rotor center at s = 5.1 (l* = 0.3).
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power spectrum. At s = 2.81, the 4T-periodic motion loses its stability and an 8T-periodic motion is built. The dynamics of
rotor trajectory at s = 2.82 is shown in Fig. 4.3(a)–(d). It can be seen that there are eight return points in the Poincaré
map and peaks at 0.125 in the power spectrum. When s is increased to 2.835, aperiodic motion disappears. At s = 3.0, the
rotor trajectory, power spectrum, time series and Poincaré maps are shown in Fig. 5. It can be seen that the rotor trajectory
is disordered and the power spectra in the X and Y directions are rich and broad. The time series in X and Y directions are
irregular and the Poincaré maps for 1000 revolutions indicate possible strange attractors. The pressure distributions in
the four oil chambers are shown in Fig. 6. It can be seen that the variations of pressure distributions are aperiodic. Fig. 7 re-
ports the diagram of the maximum Lyapunov exponent. It can be seen that the steady-state value of the maximum Lyapunov
exponent is 0.07, which confirms the chaotic nature of the motion at this operation condition. Fig. 8(a) shows the plot of (log
c(r)) versus (log r) for different embedding dimensions at s = 3.0. It is clear that as the embedding dimension is increased, the
linear part of the slope approaches a constant value. This is indicated in Fig. 8(b) where the steady-state value of these curves
is the optimum estimated dimension of the rotor trajectory in the Y direction. It is found that the approximate dimension is
about 1.2 at s = 3.0. A fractal dimension of this order for the rotor trajectory indicates that the dynamics exists on a finite low
dimensional attractor. A positive maximum Lyapunov exponent and a fractal value of dimension both are the typical result
for chaotic flow in this system. As the speed is further increased, the aperiodic motion disappears and a T-periodic motion
suddenly appears at s = 3.56. The rotor trajectory, Poincaré map and power spectrums at s = 4.0 are shown in Fig. 4.4(a)–(d).
It can be seen that only one point exists in the Poincaré map.
4.2. With couple stress fluid lubrication

Figs. 9–11 are bifurcation diagrams for different dimensionless parameters l* in the horizontal and vertical directions. Com-
paring with the simulation results of l* = 0.0 (i.e. Newtonian fluid) show that the dynamic responses of couple stress lubricat-
ing system will more stable than usage of Newtonian fluid. It presents that the dynamic motions will be periodic or sub-
harmonic motions before operating in very high rotating speed. It demonstrated that the usage of couple stress fluid may im-
prove or escape undesired vibration conditions. The simulation results can evidence that dynamic response is chaotic motion
at high speed ratio (s = 4.9, 5.1 and 6.0) from the bifurcation diagrams, dynamic trajectories, power spectrum, Poincaré



Fig. 12.3. Trajectory and Poincaré maps of bearing center and rotor center at s = 6.0 (l* = 0.3).

Fig. 13. The Maximum Lyapunov exponent plotted as a function of the number of drive cycles at different speed ratios. (l* = 0.3).
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section, and maximum Lyapunov exponent. From the evaluation of the five different methods, the outcome is consistent (see
Figs. 12.1–12.3, 13).
4.3. With active control

In order to avoid the system to operate in a chaotic motion at s = 3.0, a suitable proportional gain kp should be used. From
Eq. (18), it can be seen that increasing the proportional gain kp will get a larger pressure difference of hydrostatic chambers in
both vertical and horizontal directions. By integrating larger pressure differences, larger resulting damper forces in the radial



Fig. 14. Bifurcation diagram of X(nT) (a) and Y(nT) (b) versus rotor speed s with kp = 75,000.
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and tangential directions can be obtained. Increasing the resulting damper forces will increase the ability to restrain the dis-
order behavior of journal center. By suitable adjusting, an increased proportional gain kp = 75,000 is applied to control this
system in this study. The bifurcation diagrams in X and Y directions with kp = 75,000 are shown in Fig. 14(a) and (b). It can be
         (a)                       (b)                       (c) 
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seen that the rotor trajectory is T-periodic motion at s=3.0. It shows that the aperiodic motion disappears at this operating
condition with kp = 75,000. The rotor trajectory, time series in X and Y directions, and pressure distributions in the static
pressure chambers are shown in Fig. 15.
5. Conclusions

The bifurcation and chaos of the unbalanced response of a rigid rotor supported by squeeze-film damper and lubricated
with couple stress fluid under active control have been studied in this paper. The system state trajectory, the Poincaré maps,
the power spectra, and the bifurcation diagrams were used to analyze the dynamic behavior of this system. The analysis
demonstrates a complex dynamic behavior, which is manifested by an existence of periodic, subharmonic and aperiodic re-
sponse of the rotor trajectory. Couple stress fluid can improve dynamic responses of the whole system or help it escape
undesired motions. At the speed of s = 3.0, the maximum Lyapunov exponent is positive and Poincaré maps demonstrated
a fractal structure. It shows that the trajectory of the rotor is in a state of chaos at this speed. In order to avoid the system
operating in a nonsynchronous motion, an increased proportional gain kp = 75,000 is applied to control this system. It can be
seen that the rotor trajectory leave the disordered state and turns to a T-periodic motion at s=3.0 with kp = 75,000. Compared
with the results of Zhao et al. [3], it shows that the undesirable quasi-periodic motion disappears in the proposed HSFD sys-
tem with increasing proportional gain kp. It also shows that the range of 2T-periodic motions in the HSFD system is compar-
atively small.

It is known that if a rotor-bearing system operates in the state of aperiodic motion, the resulting broadband vibration
with irregularly large vibrational amplitude will enhance the probability of fatigue failure. In this study, the results showed
that the affects of undesirable non-synchronous vibrations in SFD system could reduced by the designed of HSFD system
with active control. The suitable two pairs of PD controllers in static chambers can be realized by the two pairs of electro-
hydraulic controllable orifice with actuator as shown in Fig. 16. The effect of the actuator performance could be neglected if
the response behavior of electrohydraulic orifice is fast enough.

Acknowledgment

The authors would like to thank for the help of Prof. Cha’o-Kuang Chen and reviewers’ great recommendations.



C.-W. Chang-Jian et al. / Applied Mathematical Modelling 34 (2010) 2493–2507 2507
References

[1] C.L. Chen, H.T. Yau, Chaos in the imbalance response of a flexible rotor supported be oil film bearings with non-linear suspension, Nonlinear Dynam. 16
(1998) 71–90.

[2] J.I. Nikolajsent, R. Holmes, Investigation of squeeze-film isolators for the vibration control of a flexible rotor, Trans. ASME J. Mech. Sci. 21 (4) (1979)
247–252.

[3] J.Y. Zhao, I.W. Linnett, L.J. Mclean, Subharmonic and quasi-periodic motion of an eccentric squeeze film damper-mounted rigid rotor, ASME J. Vib.
Acoust. 116 (1994) 357–363.

[4] C.W. Chang-Jian, C.K. Chen, Chaos and bifurcation of a flexible rub-impact rotor supported by oil film bearings with non-linear suspension, Mech.
Mach. Theory 42 (3) (2007) 312–333.

[5] C.W. Chang-Jian, C.K. Chen, Bifurcation and chaos of a flexible rotor supported by turbulent journal bearings with non-linear suspension, Trans. IMechE
J-J. Engrg. Tribol. 220 (2006) 549–561.

[6] C.W. Chang-Jian, C.K. Chen, Nonlinear dynamic analysis of a flexible rotor supported by micropolar fluid film journal bearings, Int. J. Engrg. Sci. 44
(2006) 1050–1070.

[7] C.W. Chang-Jian, C.K. Chen, Bifurcation and chaos analysis of a flexible rotor supported by turbulent long journal bearings, Chaos Solitons Fractals 34
(2007) 1160–1179.

[8] C.W. Chang-Jian, C.K. Chen, Nonlinear numerical analysis of a flexible rotor equipped with squeeze couple stress fluid film journal bearings, Acta Mech.
Solida Sin. 20 (4) (2007) 283–290.

[9] D.R. Oliver, Load enhancement effects due to polymer thickening in a short model journal bearings, J. Non-Newtonian Fluid Mech. 30 (1988) 185–196.
[10] H.A. Spikes, The behaviour of lubricants in contacts: current understanding and future possibilities, Proc. Instn. Mech. Engrs., J: J. Engrg. Tribol. 28

(1994) 3–15.
[11] V.K. Stokes, Couple-stresses in fluids, Phys. Fluids 9 (1996) 1709–1715.
[12] G. Ramanaiah, Slider bearings lubricated by fluids with couple stress, Wear 52 (1979) 27–36.
[13] R.S. Gupta, L.G. Sharma, Analysis of couple stress lubricant in hydrostatic thrust bearings, Wear 48 (1988) 257–269.
[14] E.F.E. Shehawey, K.S. Mekheimer, Couple-stresses in peristaltic transport of fluid, J. Phys.: D: Appl. Phys. 27 (1994) 1163–1170.
[15] N.C. Das, Elastohydrodynamic lubrication theory of line contacts: couple stress fluid model, STLE Tribol. Trans. 40 (2) (1997) 353–359.
[16] N.C. Das, A study of optimum load-bearing capacity for slider bearings lubricated with couple stress fluids in magnetic field, Tribol. Int. 31 (7) (1998)

393–400.
[17] J.R. Lin, Squeeze film characteristics of long partial journal bearings lubricated with couple stress fluids, Tribol. Int. 30 (1) (1997) 53–58.
[18] J.R. Lin, Static and dynamic behaviour of pure squeeze films in couple stress fluid-lubricated short journal bearings, Proc., Instn. Mech. Engrs., J: J.

Engrg. Tribol. 62 (1) (1997) 175–184.
[19] J.R. Lin, Static and dynamic characteristics of externally pressurized circular step thrust bearings lubricated with couple stress fluids, Tribol. Int. 32

(1999) 207–216.
[20] J.R. Lin, Linear stability analysis of rotor-bearing system: couple stress fluid model, Comput. Struct. 79 (2001) 801–809.
[21] N.B. Naduvinamani, P.S. Hiremath, G. Gurubasavaraj, Squeeze film lubrication of a short porous journal bearing with couple stress fluids, Tribol. Int. 34

(2001) 739–747.
[22] C.L. Chen, H.T. Yau, Y.H. Li, Subharmonic and chaotic motions of a hybrid squeeze-film damper-mounted rigid rotor with active control, ASME J. Vibr.

Acoust. 124 (2002) 198–208.


	Nonlinear dynamic analysis of a hybrid squeeze-film damper-mounted rigid rotor lubricated with couple stress fluid and active control
	Introduction
	Mathematical modeling
	Rotor dynamics equation
	Solution of instant pressure distribution
	Solution of the instant oil film supporting force
	PD controller design

	Numerical studies
	Results and discussion
	Without couple stress fluid lubrication
	With couple stress fluid lubrication
	With active control

	Conclusions
	Acknowledgment
	References


