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Instead of extracting the abnormal intra-QRS potentials (AIQP) waveform, this study proposes the analysis
of the unpredictable intra-QRS potentials (UIQP) based on an autoregressive moving average (ARMA)
prediction model to detect the signals with sudden slope change within the QRS complex for the diagnosis
of high-risk patients with ventricular tachycardia (VT). The UIQP is detected as the slope changes at slope
discontinuities by the prediction error of the ARMA prediction model. Because of the linearity of the
ARMA prediction model, the UIQP is also proportional to the amplitude of the QRS complex if the input
ignal-averaged electrocardiogram
npredictable intra-QRS potentials
bnormal intra-QRS potentials
entricular tachycardia
utoregressive moving average prediction
odel

QRS waves have the same shapes. Hence this study further defines the UIQP-to-QRS ratio to normalize
the UIQP by the root-mean-square (RMS) value of the QRS complex. The study subjects were composed of
42 normal Taiwanese and 30 patients with sustained VT. The clinical results show that the UIQP-to-QRS
ratios of the VT patients in leads X, Y and Z were significantly higher than those of the normal subjects.
The logical combination of any 4 of the UIQP-to-QRS ratios and conventional time-domain parameters
can increase the diagnosis performance of VT patients to 92.9% specificity, 93.3% sensitivity and 93.1%

.
total prediction accuracy

. Introduction

Ventricular late potentials (VLP) in signal-averaged electrocar-
iograms (SAECG) which outlast the normal QRS interval have
een an important and non-invasive marker for the risk stratifi-
ation of ventricular arrhythmias to prevent sudden cardiac death
1–4]. According to the recommendations of an ACC Expert Con-
ensus Document [4] for the use of SAECG, the established clinical
alues are for the stratification of the risk of development of sus-
ained ventricular arrhythmias in patients who are recovering from

yocardial infarction, and for the identification of patients with
schemic heart disease and unexplained syncope. Several recent
tudies further applied time-domain VLP analysis to evaluate the
isk of ventricular arrhythmias for symptomatic and asymptomatic
atients with Brugada syndrome [5], Chagas disease patients [6],
halassemia patients [7] and patients with arrhythmogenic right
entricular cardiomyopathy [8].

However, the weakness of VLP analysis is the low positive

redictive accuracy [4] and the incomplete characterization of
eentrant activity [9]. The VLP may be completely contained within
he normal QRS complex and not prolong the normal QRS inter-
al [10,11]. In recent years, several studies [12–15] have also been
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focused on the analysis of the abnormal intra-QRS potentials (AIQP)
which are considered as low-amplitude notches and slurs with sud-
den changes in slope, to enhance the diagnostic performance of
SAECG. The AIQP analysis has also been applied to noninvasively
identify the mechanisms of premature ventricular beats (PVBs) [16]
and to detect acute transmural myocardial ischemia [17].

The current autoregressive moving average (ARMA) modeling
technique in the discrete cosine transform (DCT) domain [12] for
extracting the AIQP can use a low model order to estimate the nor-
mal QRS complex and then separate out the AIQP. However, the
true model order is unknown. Although our previous study [14]
proposed a cross correlation method to automatically determine
the model order, it cannot verify if the determined order is cor-
rect. The estimated AIQP may also contain a high estimation error
due to the overlap between the normal QRS complex and the AIQP
in the DCT domain [15]. Hence it is not an easy job to accurately
extract the AIQP waveform, particularly with an extremely poor
signal–noise-ratio (low-amplitude AIQP compared with a large QRS
wave).

Instead of extracting the AIQP waveform, this study proposes
the analysis of unpredictable intra-QRS potentials (UIQP) based on
an autoregressive moving average prediction model to detect the

signals with sudden slope change, which originate from the sharp
QRS wave and the AIQP, for the diagnosis of high-risk patients with
ventricular tachycardia (VT). The VT patients are expected to have
higher UIQP because the presence of AIQP would bring more com-
ponents with sudden changes in slope within the QRS complex. The

d.
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Because H(q) = H̄k(q) + q−kH̃k(q) and the polynomial division of
ig. 1. Block diagrams of (a) a single-output ARMA model of the QRS complex and
b) an ARMA prediction model for the extraction of UIQP.

im of this study is to determine whether the UIQP detected as the
lope changes at slope discontinuities by the prediction error of an
RMA prediction model can be applied to diagnose the VT patients
nd to improve the diagnostic performance of SAECG.

. Methods

.1. Data acquisition

This work followed the principles that (1) informed consent was
btained from each patient and (2) the Ethics Committee of Taipei
en-Chi General Hospital had approved the study. The study sub-
ects recruited were 42 normal Taiwanese (20 men and 22 women,
ged 58 ± 14 years) and 30 patients with sustained VT (15 men
nd 15 women, aged 63 ± 16 years). The VT patients were suffer-
ng from chronic ischemic heart disease after surviving clinically
ocumented myocardial infarction (MI). These study subjects were

dentical with the previous study [15].
The high-resolution ECGs were recorded at rest in a supine

osition using a commercially available Simens-Elema Megacart®

achine and a bipolar, orthogonal X-, Y- and Z-lead system, and
ere digitized with a 2 kHz sampling rate and 12-bit resolution.

he time unit was 0.5 ms per sample. The signal averaging tech-
ique was used to lower the effects of the random noise. According
o the standards of SAECG analysis recommended by the 1991 ESC,
HA and ACC Task Force [3], the final noise level measured with a
0–250 Hz bidirectional Butterworth filter was reduced to less than
.7 �V in this study. The onset and offset of the signal-averaged QRS
ave were obtained from vector magnitude analysis. Three stan-
ardized time-domain VLP parameters, namely filtered total QRS
uration (fQRSD), RMS voltage of the last QRS 40 ms (RMS40), and
uration of the low-amplitude signals below 40 mV (LAS40), were
nalyzed [3,4].

.2. Development of the ARMA prediction modeling technique

The proposed ARMA prediction model is derived from the opti-

ization of a single-output ARMA model. The single-output ARMA
odel shown in Fig. 1(a) can be expressed as [18]

(q)y(n) = B(q)e(n) (1)
Physics 32 (2010) 136–144 137

where y(n) is the output and also the QRS complex, and e(n) is the
unmeasured disturbance. The system model, A(q), and the noise
model, B(q) are polynomials in q−1 given by

A(q) = 1 + a1q−1 + . . . + anaq−na (2)

B(q) = 1 + b1q−1 + . . . + bnbq−nb (3)

where the backward shift operator, q−1, shifts time backward by
one sample, i.e., q−1w(n) = w(n − 1). One way to evaluate how well
the model fits the QRS complex is to analyze the prediction ability
of the model. If we express the output y(n) as

y(n) = H(q)e(n) =
∞∑

l=0

h(l)e(n − l) = e(n) +
∞∑

l=1

h(l)e(n − l) (4)

where

H(q) = B(q)
A(q)

=
∞∑

l=0

h(l)q−l and h(0) = 1, (5)

a one-step-ahead predictor using the observations of y(s) and e(s)
for s ≤ n − 1 to predict y(n) can be defined by

ŷ(n) =
∞∑

l=1

h(l)e(n − l) = [H(q) − 1]e(n)

= [1 − H−1(q)]y(n) =
[

1 − A(q)
B(q)

]
y(n) (6)

Given a specific set of model order (na, nb), the coefficients
of the polynomials A(q) and B(q) can be estimated using itera-
tive optimization methods for minimizing the prediction error
(ε(n) = y(n) − ŷ(n)) in the least-square sense, with the nonlinear
criterion function

V(�) = 1
N

N∑
n=1

1
2

ε2(n) = 1
N

N∑
n=1

1
2

[
A(q−1)
B(q−1)

y(n)

]2

(7)

This study used a Gauss–Newton algorithm, based on the gradi-
ent and Hessian of the criterion function to search for the optimal
parameters iteratively [18].

The ARMA prediction model with various prediction depths can
be further derived using the optimized polynomials of A(q) and B(q).
If we express the QRS complex as

y(n) =
k−1∑
l=0

h(l)e(n − l) +
∞∑

l=k

h(l)e(n − l) (8)

and use the notations

H̄k(q) =
k−1∑
l=0

h(l)q−l and H̃k(q) =
∞∑

l=k

h(l)q−l+k, (9)

a k-step-ahead predictor can be defined by

ŷ(n) =
∞∑

l=k

h(l)e(n − l) = H̃k(q)e(n − k) = H̃k(q)H−1(q)y(n − k). (10)
B(q)/A(q) can be expressed as

B(q)
A(q)

= H̄k(q) + q−kR(q)
A(q)

(11)
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ig. 2. Prediction results for the input of a positive sinusoidal wave adding a low-am
a = 10, nb = 1 and prediction depth k = 4: (a) the input signal (solid line) and the pr
he input signal; (d) the slope changes at slope discontinuities (solid line) and the p

here H̄k(q) is the quotient polynomial of order k − 1, and q−kR(q)
s the remainder polynomial given by

(q) =
k+na+1∑

l=k

r(l)q−l+k, (12)

e can obtain

˜ k(q) = R(q)
A(q)

. (13)

By substituting Eq. (13) into Eq. (10), the k-step-ahead predictor
an be simplified as

ˆ(n) = R(q)
B(q)

y(n − k) (14)

Hence if the optimal coefficients of the polynomials A(q) and B(q)
re determined, the use of Eqs. (11) and (14) can provide a conve-
ient way to calculate the prediction output for various prediction
epths. Fig. 1(b) shows the block diagram of an ARMA prediction
odel with the prediction depth k. The prediction error is used for

he analysis of UIQP and can be obtained by

k(n) = y(n) − ŷ(n) (15)

To demonstrate that the minimized prediction error can be used
o detect the slope changes at the slope discontinuities of the input
ignal, this study particularly defined a slope function as the ampli-
ude changes per k time units,
(n) = y(n) − y(n − k), (16)

nd a slope change function as the slope changes per k time units,

(n) = s(n) − s(n − k). (17)
de triangle wave located at time 150 ms using an ARMA prediction model of order
on output (dotted line); (b) the slope function and (c) the slope change function of
ion error (dotted line).

2.3. Definition of UIQP parameters

This study introduced the prediction error of the ARMA predic-
tion model with various prediction depths to analyze the UIQP for
the diagnosis of VT patients. A root-mean-square value (RMS) of
the prediction error within the entire QRS duration, UIOP l, and
a UIQP-to-QRS ratio, UQR l, were defined to quantify the UIQP as
follows,

UIQP l =

√√√√ 1
fQRSD

n2∑
n=n1

ε2
k
(n) (18)

and

UQR l = UIQP l√
(1/fQRSD)

∑n2
n=n1

y2(n)
(19)

where l denotes lead X, Y or Z, n1 and n2 are the onset and offset
of the QRS complex respectively, εk(n) is the prediction error using
the prediction depth k, and y(n) is the input QRS complex.

2.4. Statistical methods

This study applied Fisher’s linear discriminant analysis to com-
bine the time-domain VLP and UIQP parameters and to classify the

normal and VT groups [19]. Pearson’s product moment correlation
coefficient � was employed to measure the level of linear cor-
relation. Three clinical performance indices including specificity,
sensitivity and total prediction accuracy (TPA) [20] were calculated
to evaluate the accuracy of the diagnosis of the VT patients.
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Fig. 3. Comparisons of the UIQPs for a normal QRS complex adding and not adding
the simulated AIQP: (a) a Z lead QRS complex of a normal subject simulating the
normal QRS complex and a normally distributed white noise with zero mean sim-
ulating the AIQP; (b) the UIQPs estimated by an ARMA prediction model of order
na = 10, nb = 1 and the prediction depths k = 4 for the QRS complex adding (dashed
line) and not adding (solid line) AIQP.

Fig. 4. Comparisons of the QRS waves and UIQPs for a normal subject and a VT patient in
and (d) the UIQP of a VT patient. The UIQPs were estimated by an ARMA prediction mode
Physics 32 (2010) 136–144 139

3. Results

3.1. Simulation analyses

To demonstrate the signals that can and cannot be predicted
by an ARMA prediction model, this study used a positive sinu-
soidal wave of 900 �V peak value and 100 ms duration to simulate
a smoothed R wave, and a low-amplitude, transient positive tri-
angular wave of 30 �V peak value and 2.5 ms duration to simulate
the AIQP. The simulated AIQP was located at time 150 ms. Fig. 2(a)
shows the synthesized input signal (solid line) and the prediction
output (dashed line) of an ARMA prediction model of order na = 10,
nb = 1 and prediction depth k = 4. Fig. 2(b) and (c) plots the slope and
slope change functions of the input signal defined in Eqs. (15) and
(16), respectively. It can be found that the main prediction error
points were located at slope discontinuities including the starting
and end points of the positive sinusoidal wave, and the simulated
AIQP. Fig. 2(d) compares the prediction error (solid line) with the
slope change at slope discontinuities (dashed line). If the smoothed
part of the input signal can be accurately predicted by the ARMA
prediction model, the prediction error can be applied to detect the
slope changes at the slope discontinuities. It can also be observed
that there are k data points exhibiting prediction errors at each
slope discontinuity, and the prediction error at the kth data point is
close to (k/2) × (m2 − m1) if the slope is suddenly changed from m1
to m2. Hence a larger prediction depth produces larger prediction
errors and more error points at each slope discontinuity.

This study further used a Z lead QRS complex with an RMS value
of 600 �V from the normal subjects to simulate the normal QRS

complex. Because the true waveform and randomness of AIQP are
unknown, this study introduces a normally distributed white noise
with zero mean and RMS value of 3 �V to simulate the AIQP. Fig. 3(a)
shows the simulated QRS complex and AIQP. Fig. 3(b) compares the

lead Z: (a) the QRS wave and (b) the UIQP of a normal subject, and (c) the QRS wave
l of order na = 10, nb = 1 and the prediction depths k = 4.
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ig. 5. Analysis of the model order na vs. (a)–(c) mean UIQP-to-QRS ratios and (d)–
f 1 are fixed.

IQPs for the QRS complex adding (dashed line) and not adding
solid line) AIQP, using an ARMA prediction model of order na = 10,
b = 1 and the prediction depth k = 4. The RMS values of the input
RS complex were adjusted to be equal to 600 �V, and the QRS
omplex with AIQP revealed a higher RMS value of UIQP in com-
arison with one without AIQP, 27.2 �V vs. 18.8 �V, respectively.
owever if the input QRS complexes have the same shapes, the
IQPs are proportional to the amplitude of the input QRS com-
lexes because of the linearity of the ARMA prediction model. For
xample, if the RMS value of the normal QRS complex in Fig. 3(a) is
mplified 2 times to 1200 �V, the RMS value of UIQP is increased
o 37.6 �V. If we only compare the RMS values of UIQP, the normal
RS complex with RMS value of 1200 �V would be misclassified
s being in the VT group. This study further defined a UIQP-to-QRS

atio in Eq. (18) to normalize the UIQP parameters. The UIQP-to-QRS
atio after adding the simulated AIQP was 4.5%, which is higher than
he 3.1% of the normal QRS complex.

Fig. 4 compares the QRS waves and UIQPs for a normal subject
nd a VT patient in lead Z. The UIQP was estimated by an ARMA
nical performance in leads X, Y and Z. The prediction depth k of 6 and the order nb

prediction model of order na = 10, nb = 1 and prediction depths k = 4.
Fig. 4(a) and (c) plots the Z lead QRS waves of a normal subject and
a VT patient, and the RMS values of the QRS wave were 704 �V
and 354 �V, respectively. Although the VT patient was expected to
have a higher UIQP in comparison with the normal subject due to
the existence of the AIQP, the RMS value of the UIQP for this VT
patient (Fig. 4(b)) was 20.9 �V which was not higher than that of
the normal subject, 25.5 �V (Fig. 4(d)). Hence this VT patient cannot
obtain a correct diagnosis from the UIQP parameter. However if
the UIQP parameter was normalized by the RMS value of the QRS
wave, this VT patient showed a higher UIQP-to-QRS ratio of 5.9% in
comparison with 3.6% of the normal subject.

3.2. Determination of model order and prediction depth
The model orders na and nb, and prediction depth k are the major
parameters of the ARMA prediction model. The model order must
be sufficient to accurately predict the smoothed components of the
QRS complex. Figs. 5 and 6 use various orders na and nb to compare



C.-C. Lin / Medical Engineering & Physics 32 (2010) 136–144 141

F (f) cli
o

t
i
n
U
k
T
o
Q
t
b
g
c
n
s

1
d
d

ig. 6. Analysis of the model order nb vs. (a)–(c) mean UIQP-to-QRS ratios and (d)–
f 10 are fixed.

he mean UIQP-to-QRS ratios and the clinical performance indices,
ncluding specificity, sensitivity and TPA in leads X, Y and Z for the
ormal and VT groups. Fig. 5(a)–(c) plots the curves of the mean
IQP-to-QRS ratios vs. the order na using a fixed prediction depth
of 6 and a fixed order nb of 1 in leads X, Y and Z, respectively.

he increase of the order na can increase the prediction accuracy
f the QRS complex and hence decrease the UIQP and the UIQP-to-
RS ratio. However, if the order na is sufficient (higher than 10),

he decrease in the UIQP-to-QRS ratios is slow, and the differences
etween the mean UIQP-to-QRS ratios of the VT and the normal
roups do not change further. Fig. 5(d)–(f) shows the curves of the
linical performance vs. the order na in leads X, Y and Z. If the order
a is higher than 10, the changes in the clinical performance are

mall.

Fig. 6 adopts a fixed prediction depth k of 6 and a fixed na of
0, but various orders nb from 1 to 10. Fig. 6(a)–(c) shows that the
ecreases in the UIQP-to-QRS ratio are slow, and the changes in the
ifference between the mean UIQP-to-QRS ratios of the VT and the
nical performance in leads X, Y and Z. The prediction depth k of 6 and the order na

normal groups are small when the order nb is increased from 1 to
10. Fig. 6(d)–(f) shows that the changes in the clinical performance
are also small. The analytical results of Figs. 5 and 6 suggest that
the orders na = 10 and nb = 1 are sufficient for the analysis of UIQP.

Fig. 7(a)–(c) plots the performance curves of the prediction
depth k vs. the clinical performance indices in leads X, Y and Z.
The maximum TPA in leads X, Y and Z was 81.9%, 76.4% and 83.3%
using the prediction depths of 6, 6 and 4, respectively. Too low or
too high a prediction depth decreased the diagnostic performance
of the VT patients.

3.3. Diagnostic performance of VT patients
Table 1 summarizes the time-domain VLP parameters, UIQP
parameters and UIQP-to-QRS ratios, where the UIQPs in leads X,
Y and Z were detected using an ARMA prediction model with the
prediction depths of 6, 6 and 4, respectively. The results of the
time-domain VLP parameters are consistent with previous stud-
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Table 1
Summary of time-domain, QRS, UIQP, and UQR parameters.

Normal VT

Time-domain parameters
fQRSD (ms) 90.3 ± 10.2 96.5 ± 7.7**

RMS40 (�V) 43.7 ± 25.0 20.1 ± 9.6**

LAS40 (ms) 29.0 ± 5.7 37.2 ± 6.7**

QRS parameters
QRS X (�V) 537.7 ± 170.4 513.2 ± 299.9NS

QRS Y (�V) 625.6 ± 236.5 432.0 ± 239.8**

QRS Z (�V) 677.8 ± 245.2 540.5 ± 253.4*

UIQP parameters
UIQP X (�V) 33.8 ± 9.8 33.3 ± 12.8NS

UIQP Y (�V) 51.6 ± 19.0 37.7 ± 16.7*

UIQP Z (�V) 23.3 ± 10.0 21.1 ± 5.1NS

UIQP-to-QRS ratios
UQR X (%) 6.5 ± 1.5 7.6 ± 2.4**

UQR Y (%) 8.4 ± 1.4 9.9 ± 3.2**

UQR Z (%) 3.4 ± 0.7 4.5 ± 1.5**

The UIQP of leads X, Y and Z were detected using an ARMA prediction model of order
na = 10, nb = 1 with the prediction depth k = 6, 6 and 4, respectively. QRS l, UIQP l,
and UQR l are the root-mean-square value of QRS complex, unpredictable intra-QRS
potentials and UIQP to QRS ratio in lead l (l is lead X, Y or Z), respectively. Student’s

However, no significant correlations were found between the UIQP
ig. 7. Performance curves of the prediction depth k vs. the clinical performance
ndices in leads (a) X, (b) Y and (c) Z. The model order na = 10 and nb = 1 are fixed.

es [15]. The RMS values of the QRS complex of VT patients were
ignificantly lower than those of the normal group in leads Y and

(p < 0.05), but not in lead X. The mean UIQP parameter of VT
atients was also significantly lower than that of the normal group

n lead Y (p < 0.01), but not in leads X and Z. All of the mean UIQP-
o-QRS ratios of VT patients in leads X, Y and Z were significantly
igher than those of the normal group (p < 0.01). The correlation
nalysis demonstrated significant correlations (p < 0.01) between
RS X and UIQP X (� = 0.73), QRS Y and UIQP Y (� = 0.8), and QRS Z
nd UIQP Z (� = 0.83) in the normal group, but no significant cor-
elations (p > 0.05) between QRS X and UIQP X (� = 0.36), QRS Y
nd UIQP Y (� = 0.37), and QRS Z and UIQP Z (� = −0.34) in the VT
atients. No significant correlation was shown between the UIQP
arameters and gender or age (p > 0.05).

Table 2 lists the clinical performance indices of the time-domain
LP, the UIQP-to-QRS ratio and the synthesized parameters. The
est TPAs of the individual parameters were 75.0% of RMS40 and

6.0% of UQR Z in the time-domain VLP and UQR parameters,
espectively. The linear combination of the time-domain parame-
ers or the UQR parameters did not further increase the diagnostic
erformance. However the logical combination of any 4 of the UQR
two-tailed t-test was performed to compare the means of the two independent
variables. NS, non-significant (p > 0.05).

* p < 0.05 compared to the normal group.
** p < 0.01 compared to the normal group.

and time-domain parameters further increased specificity to 92.9%,
sensitivity to 93.3% and TPA to 93.1%.

4. Discussion

This study has demonstrated that the proposed ARMA pre-
diction model can estimate the smoothed part of the input QRS
complex, and the prediction error can be used to analyze the UIQP
for the diagnosis of high-risk patients with VT. The simulation study
in Fig. 2 showed that the prediction error can detect the signals with
sudden slope changes as the slope changes at slope discontinu-
ities. Although both the AIQP and the sharp QRS wave can produce
sudden slope changes and cannot be further separated, the simu-
lation results in Fig. 3 show that the presence of AIQP can increase
the UIQP. Because of their abnormal myocardial conduction, the
VT patients were expected to have a higher UIQP in comparison
with the normal group. However the clinical results show that the
mean UIQP of the VT patients was significantly lower than that of
the normal group in lead Y, and no significant differences could be
found in leads X and Z. This unexpected result may be caused by the
amplitude variations among the study subjects, because the clini-
cal results show the RMS values of the QRS complex in the normal
and VT groups both had a wide range, from 200 �V to 1400 �V in
leads X, Y and Z, and the mean RMS values of the QRS complex of
the VT patients were significantly lower than those of the normal
group in leads Y and Z. Moreover, because of the linearity of the
ARMA prediction model, the estimated UIQPs are positively pro-
portional to the amplitude of the input QRS complexes if the input
QRS complexes have the same shapes. Hence the UIQP is not only
dominated by the sharpness of the QRS wave and the AIQP, but also
by the amplitude of the QRS wave.

The correlation analyses also revealed that the RMS values of
the QRS complex are highly correlated with the UIQP parameters
in the normal group. This may be because the sharpness of the QRS
complex is similar and the AIQP is absent in the normal subjects.
and the RMS value of the QRS complex in the VT patients. This may
be because the estimated UIQP in the VT patients further included
AIQP which was not proportional to the amplitude of the QRS wave.
In view of the above, it cannot be determined that a higher UIQP
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Table 2
The clinical performance indices of time-domain, UQR and synthesized parameters.

Parameters Normal (N = 42) Specificity (%) VT (N = 30) Sensitivity (%) Total (N = 72) TPA (%)

Individual parameters
fQRSD 64.3 73.3 68.1
RMS40 64.3 90.0 75.0
LAS40 71.4 70.0 70.8
UQR X 81.0 83.3 81.9
UQR Y 73.8 80.0 76.4
UQR Z 85.7 80.0 83.3

Linear combination
−0.04 × RMS40 + 0.14 × LAS40 73.8 73.3 73.6
0.19 × UQR X + 0.20 × UQR Y + 1.00 × UQR Z 90.5 73.3 83.3
−0.02 × RMS40 + 0.17 × LAS40 + 0.04 × UQR X + 0.19 × UQR Y + 1.04 × UQR Z 85.7 80.0 83.3

Logical combination
Any 2 of the UQR parameters 90.5 83.3 87.5

69.0
92.9
97.6

T r Z).

i
A
t
t
t
p
i
s
i
n
n
r
t

p
t
c
t
m
(
Y
p
t
u
f
p
t
A
i
t
Y
(
1
v
t
e
n
t
o
o
d
c
a
B
e
w

Any 3 of the UQR and time-domain parameters
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PA: total predictive accuracy; UQR l (D) = UIQP to QRS ratio in lead l (l is lead X, Y o

s induced from higher amplitude of the QRS complex or from the
IQP, even if the sharpness of the QRS complex is similar. To reduce

he effect of the amplitude of the QRS complex, this study defined
he UIQP-to-QRS ratio to normalize the UIQP by the RMS value of
he QRS complex. An example in Fig. 4 demonstrated that a VT
atient had a smaller UIQP, but showed a higher UIQP-to-QRS ratio

n comparison with a normal subject. The clinical results further
how that all of the mean UIQP-to-QRS ratios of the VT patients
n leads X, Y and Z were significantly higher than those of the
ormal group. Hence the UIQP-to-QRS ratio is useful for the diag-
osis of VT patients. The logical combinations of the UIQP-to-QRS
atios and the time-domain VLP parameters can further increase
he diagnostic performance of VT patients.

The main difference between the UIQP analysis using the ARMA
rediction model and the AIQP analysis using the ARMA model in
he DCT domain is that the UIQP analysis is to detect the slope
hanges induced by the AIQP, while the AIQP analysis [12–15] is
o extract the AIQP waveform. The study results suggest that the

odel order of na = 10 and nb = 1 is sufficient to analyze the UIQP
Figs. 5 and 6), and a medium prediction depth of 6 in leads X and
, and 4 in lead Z has the best diagnostic performance for the VT
atients (Fig. 7). Too small or too large a prediction depth decreases
he diagnostic performance. However, no prior information can be
sed to determine the order of the ARMA model in the DCT domain
or the AIQP analysis [12]. The estimated AIQP may also include
art of the normal QRS complex because of the overlap between
he AIQP and the normal QRS complex. The clinical results of the
IQP analysis are still inconsistent among several previous stud-

es [12–15]. The study results of Gomis et al. [12] showed that
he mean AIQP parameters of the VT patients (N = 59) in leads X,
and Z were significantly higher than those of the non-VT subjects

N = 73) (p < 0.05). Lander et al. [13] applied the same method to
6 patients with ventricular arrhythmias and 157 subjects without
entricular arrhythmias, and the clinical results demonstrated that
he mean AIQP of the arrhythmic-event group in lead X significantly
xceeded that of the non-event group (p < 0.05); however, no sig-
ificant difference of the AIQP in leads Y or Z existed between the
wo groups. Our previous study [14] showed that the mean AIQP
f VT patients (N = 23) in lead Y was significantly lower than that
f the normal subjects (N = 130) (p < 0.05), but that no significant
ifferences in leads X and Z existed between the two groups. This

linical inconsistency may also be related with the effects of the
mplitude variations of the QRS wave among the study subjects.
ecause of the linearity of the ARMA model in the DCT domain, the
stimated AIQP is also proportional to the amplitude of the QRS
ave if the input QRS complexes have the same shapes. Hence the
93.3 79.2
93.3 93.1
66.7 84.7

AIQP analysis should also consider the effects of the amplitude of
the QRS complex to reduce the clinical inconsistency.

5. Conclusions

This study has successfully demonstrated that the UIQP, defined
as the signals with sudden slope changes, can be detected as the
slope changes at the slope discontinuities using the ARMA pre-
diction modeling technique. The clinical results further show that
the UIQP-to-QRS ratios of VT patients were significantly higher
than those of the normal group in leads X, Y and Z, and the log-
ical combination of the UIQP-to-QRS ratios and the time-domain
VLP parameters can enhance the diagnostic performance of SAECG.
Hence the UIQP analysis may be a new promising method for the
diagnosis of VT patients.
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