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a b s t r a c t

This study proposes a finite-impulse-response (FIR) prediction model to analyze the unpredictable

intra-QRS potentials (UIQP) for identifying ventricular tachycardia patients with high-risk ventricular

arrhythmias. The simulation study shows that a QRS complex including abnormal intra-QRS potentials

(AIQP) has a higher UIQP and UIQP-to-QRS ratio in comparison with one without AIQP. The clinical

results demonstrate that the mean UIQP-to-QRS ratios of VT patients in leads X, Y and Z were

significantly larger than those of the normal subjects, and the linear and logical combination of

UIQP-to-QRS ratios and ventricular late potential parameters can enhance diagnosis performance for VT

patients.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, the signal-averaged electrocardiogram
(SAECG) has become an important non-invasive tool for the risk
stratification of ventricular arrhythmias to prevent sudden cardiac
death [1–4]. Time-domain ventricular late potentials (VLP)
analysis has established the clinical value for stratifying the risk
of development of sustained ventricular arrhythmias in patients
recovering from myocardial infarction, and for the identification
of patients with ischemic heart disease and unexplained syncope
[4]. Recently, the VLP parameters have also been applied to
assess the risk of ventricular arrhythmias for symptomatic and
asymptomatic patients with Brugada syndrome [5], Chagas
disease patients [6] and patients with arrhythmogenic right
ventricular cardiomyopathy [7].

However the main limitations of VLP analysis are an
incomplete characterization of reentrant activity [8] and have a
low positive predictive accuracy [4]. The reentrant activity
excitation produced by the arrhythmic substrate is not always
accompanied by VLP; it may be completely contained within the
normal QRS period [9,10]. Gomis et al. [11] have proposed an
autoregressive moving average (ARMA) model to quantify the
abnormal intra-QRS potentials (AIQP), which are considered as
low-amplitude notches and slurs with sudden changes in slope.
Several studies have demonstrated that the estimated AIQP is a
ll rights reserved.
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potential index for evaluating the risk of ventricular arrhythmias
[11–14]. AIQP analysis has also been applied to noninvasively
identify the mechanisms of premature ventricular beats [15] and
to detect acute transmural myocardial ischemia [16].

However, it is not an easy job to accurately extract the AIQP
when there is an extremely poor signal-noise-ratio (a low-
amplitude AIQP compared with a large QRS wave). One of
the main limitations of the ARMA modeling technique is that
the true model order is unknown. A model order higher or lower
than the true one would cause the estimated AIQP to be
underestimated or involved with part of the normal QRS complex.
The selected model order in the study of Gomis et al. [11] was
dependent on clinical data. Although the cross correlation method
[13] provides a basis for model order selection, it cannot confirm
that the chosen model order is accurate. Another limitation is the
estimation error of AIQP caused by the overlap between the
normal QRS and the broad-band AIQP. The simulation results of
our previous study [14] showed that the overlap between the
normal QRS complex and AIQP in the low-frequency discrete
cosine transform (DCT) coefficients caused a high estimation
error, even when the selected model order was accurate.
Furthermore, if the normal QRS complex also included dominant
high-frequency components, especially caused by an abrupt R

wave, the estimated AIQP would also include part of the normal
QRS, and no model order can accurately separate AIQP.

Because of the difficulties in the extraction of AIQP, this study
attempts to develop a new method to extract other useful signals
within the QRS complex which can be applied to identify the
ventricular tachycardia (VT) patients with high-risk ventricular
arrhythmias. The basic idea of this study is to extend the detection
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of AIQP to all of the unpredictable components within the QRS
complex which originate from the signals with sudden slope
changes, including the sharp QRS wave and the transient AIQP.
This study proposes a finite-impulse-response (FIR) prediction
model to analyze the unpredictable intra-QRS potentials (UIQP).
The FIR prediction technique has been widely applied in
various studies; for example, QRS feature extraction [17], the
enhancement of signal averaging in ventricular late potentials
detection [18], the adaptive enhancement of multiple sinusoids in
uncorrelated noise [19], the reduction of the interference in the
secondary path modeling of active noise control systems [20], and
so on. The aim of this study is to determine whether the UIQP
detected by the prediction error of an FIR prediction model can be
applied to diagnose patients with sustained VT and to improve the
diagnostic performance of SAECG.
2. Methods

2.1. Data acquisition

This study followed the principles that (1) informed consent was
obtained from each patient and (2) the Ethics Committee of Taipei
Jen-Chi General Hospital had approved the study. The study subjects
were divided into two groups, and were identical with our previous
study [14]. Group I (normal group) comprised 42 normal Taiwanese
(20 men and 22 women, aged 58714 years). Group II (VT group)
consisted of 30 patients (15 men and 15 women, aged 63716
years). The VT patients were suffering from chronic ischemic heart
disease after surviving clinically documented myocardial infarction
(MI). The methods of recording high-resolution electrocardiograms
have been described elsewhere [13]. The time unit was 0.5 ms per
sample as a result of using a 2 kHz sampling rate. Three standardized
time-domain SAECG parameters [4], namely filtered total QRS
duration (fQRSD), RMS voltage of the last QRS 40 ms (RMS40) and
duration of the low amplitude signals below 40 mV (LAS40), were
performed to detect VLP.

2.2. Development of an FIR prediction model for estimating the

unpredictable intra-QRS potentials

Fig. 1 is a block diagram of an FIR prediction model for
estimating the UIQP, where D is the time-delay length or
prediction depth and W(z) denotes the z-transform system
function of an FIR Wiener filter. The design of a Wiener filter is
to produce the minimum mean-square estimate d̂ðnÞ of a given
desired input d(n) by filtering a set of observations of a related
reference input x(n). The desired input d(n) is the input QRS
signal, and the input reference signal x(n) is the delayed version of
the input QRS, x(n)¼d(n�D); hence the FIR Wiener filter acts as a
predictor that linearly combines the past values of the input QRS
before D time units to predict the current value. The prediction
Fig. 1. Block diagram of an FIR prediction model for estimating the UIQP. FIR,

finite-impulse-response; UIQP, unpredictable intra-QRS potentials.
output of the FIR filter with order M�1 has the form

d̂ðnÞ ¼ xðnÞ �wðnÞ ¼
XM�1

i ¼ 0

wðiÞxðn�iÞ ð1Þ

where � denotes the operation of convolution sum and w(i) for
i¼0, y, M�1 are the filter coefficients. The Wiener filter design
problem needs to find the filter coefficients w(i) that minimize the
mean-square value of the prediction error e(n)¼d(n)�(n) defined
as follows:

x¼ EfjeðnÞj2g ¼ EfjdðnÞ�d̂ðnÞj2g ð2Þ

The necessary and sufficient condition for a set of filter
coefficients to minimize x is that the derivative of x with respect
to w*(k) must be equal to zero for k¼0, 1,y, M�1 (* denotes a
complex conjugate operation). Assuming x(n) and d(n) are jointly
wide sense stationary, then E{x(n� i)x*(n�k)}¼rx(k� i) and
E{d(n)x*(n�k)}¼rdx(k) and the well-known Wiener-Hopf equa-
tions can be derived as follows [21]:

XM�1

i ¼ 0

wðiÞrxðk�iÞ ¼ rdxðkÞ, k¼ 0, 1, . . . , M�1 ð3Þ

which is a set of M linear equations in the M unknowns w(i),
i¼0, 1,y, M�1.

The matrix form of the Wiener-Hopf equations can be written as

rxð0Þ r�x ð1Þ � � � r�x ðM�1Þ

rxð1Þ rxð0Þ � � � r�x ðM�2Þ

rxð2Þ rxð1Þ � � � r�x ðM�3Þ

^ ^ ^

rxðM�1Þ rxðM�2Þ � � � rxð0Þ

2
6666664

3
7777775

wð0Þ

wð1Þ

wð2Þ

^

wðM�1Þ

2
6666664

3
7777775
¼

rdxð0Þ

rdxð1Þ

rdxð2Þ

^

rdxðM�1Þ

2
6666664

3
7777775

ð4Þ

and

Rxwo ¼ rdx ð5Þ

where Rx is an M�M autocorrelation matrix of the reference input
x(n), wo is an M�1 vector of the optimal filter coefficients, and rdx is
an M�1 vector of the cross-correlations between the desired input
d(n) and the reference input x(n). This study introduces General
Levinson Recursion [21] to recursively solve the Wiener-Hopf
equations which are a set of Hermitian Toeplitz equations of the
form given in Eq. (5).

The following section of simulation results demonstrates that
the minimized prediction error e(n) can be used to detect the
slope changes at the slope discontinuities of the input QRS signal.
To compare the prediction errors and the slope changes at the
slope discontinuities, this study particularly defines a slope
function as the amplitude changes per D time units,

sðnÞ ¼ dðnÞ�dðn�DÞ ð6Þ

and a slope change function as the slope changes per D time units,

aðnÞ ¼ sðnÞ�sðn�DÞ ð7Þ

2.3. Definition of UIQP parameters

This study introduces the prediction error of the FIR prediction
model to analyze the UIQP for the diagnosis of VT patients. A root-
mean-square (RMS) value of the prediction error within the entire
QRS duration was defined to quantify the UIQP as follows:

UIQP_lðDÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

fQRSD

Xn2

n ¼ n1

e2ðnÞ

vuut ð8Þ

where l denotes lead X, Y or Z, D is the prediction depth, n1 and n2 are
the onset and offset of the QRS complex, respectively, and e(n) is the
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prediction error. The study further defined a UIQP-to-QRS ratio
(UQR) to normalize the UIQP by the RMS value of the QRS complex
as follows:

UQR_l¼
UIQP_lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
fQRSD

Pn2
n ¼ n1

d2ðnÞ
q ð9Þ

where l denotes lead X, Y or Z, and d(n) is the input QRS complex.

2.4. Classification of the normal and VT groups using Fisher’s linear

discriminant method

This study used Fisher’s linear discriminant method [22] to
combine the time-domain VLP and UIQP parameters and
to classify the normal and VT groups. Assume x1, x2, . . . , xN1

are
N1 observations from VT patients and xN1þ1, xN1þ2, . . . , xN1þN2

are
N2 observations from normal groups. Each observation xi, i¼1, 2,
y, N1+N2 is a p�1 vector consisting of UIQP and time-domain
VLP parameters. The linear discriminant function is defined to
transform each p�1 observation xi to a single value gi as follows:

giðxiÞ ¼xT xi, i¼ 1, 2, . . . , N1þN2 ð10Þ

where xi denotes a p�1 vector; xT
i ¼ ½

xi1 xi2, . . . , xip �, x is a
p�1 weight vector; xT ¼ ½o1 o2, . . . , op �. The classical Fish-
er’s discriminant method was applied to find the optimized weight
vector which can maximize the separation function jSðxÞj defined as
follows:

SðxÞ ¼
G1�G2

Sg
ð11Þ

where G1 and G2 are the mean values of the transformed
observations of VT and normal groups, respectively;

G1 ¼ ð1=n1Þ
PN1

i ¼ 1 gi and G2 ¼ ð1=N2Þ
PN1þN2

i ¼ N1þ1 gi, and Sg is the

standard deviation of the transform observations defined as follows:

Sg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN1

i ¼ 1 ðgi�G
,

1Þ
2
þ
PN1þN2

i ¼ N1þ1 ðgi�G2Þ
2

N1þN2�2

vuut
ð12Þ

The separation function measures the difference between the
transformed means G1�G2 expressed in standard deviation units.
The optimized weight vector can be found by solving the first
derivative of the separation function ð@SðxÞ=x¼ 0Þ and can be
further simplified as follows:

x̂ ¼ S�1
pooledðX1�X2Þ ð13Þ

where X1 and X2 are the mean vectors of the observations from

the VT and normal groups, respectively; X1 ¼ ð1=N1Þ
PN1

i ¼ 1 xi and

X2 ¼ 1=N2
PN1þN2

i ¼ N1þ1 xi, and the matrix Spooled is the weighted

average of the sample covariance matrices S1 and S2 of the VT and
normal groups given by

Spooled ¼
ðN1�1ÞS1þðN2�1ÞS2

N1þN2�2
ð14Þ

where S1 ¼

PN1
i ¼ 1
ðxi�X1Þðxi�X1Þ

T

N1�1 and S2 ¼

PN1 þN2
i ¼ N1 þ 1

ðxi�X2Þðxi�X2Þ
T

N1�1 .

The critical value with minimum expected cost of misclassi-
fication for separating the VT and normal groups can be derived as
follows [22]:

m̂ ¼
G1þG2

2
ð15Þ

Three clinical performance indices including specificity (SP),
sensitivity (SE) and total prediction accuracy (TPA) [23] were then
calculated to evaluate the local performance of the diagnosis of
the VT patients from the normal subjects.
3. Results

3.1. Simulation studies of the FIR prediction modeling technique

The first simulation study adopted a positive triangular wave
(900mV peak value, 90 ms duration) to simulate a sharp R wave, and
a low-amplitude, transient positive triangular wave (30mV peak
value, 2.5 ms duration, located at 130 ms) to simulate the AIQP. The
slopes m1 and m2 (mV/ms) of straight lines L1 and L2 were 30 and
�15, respectively. Fig. 2(a) also shows the prediction output (dotted
line) using a second-order FIR prediction model with a prediction
depth D of 4 (2 ms). The prediction errors can be found at the slope
discontinuities of time 70, 100, 130 and 160 ms, respectively.
Fig. 2(b) particularly shows the prediction results around time
100 ms. The main prediction errors starting from the time 100 ms
were close to �22.5, �45, �67.5 and �90mV. From the simulation
results it can be observed that there were D data points exhibiting
obvious prediction errors at each slope discontinuity, and the
prediction error at the Dth data point was close to (D/2)� (m2�m1)
if the slope was suddenly changed from m1 to m2. Fig. 2(c) plots the
slope function defined in Eq. (6). Fig. 2(d) further compares the slope
changes (solid line) defined in Eq. (7) and the prediction error
(dashed line). It can be found that the prediction error can be applied
to detect the slope changes at the slope discontinuities, if the
prediction output can accurately estimate the smoothed part of the
input signal. It is also worth noting that the low-amplitude, transient
triangular wave also induced a large slope change because of its
sudden change in slope.

The second simulation study used an X lead QRS complex from
the normal group to simulate the normal QRS complex, and a
normally distributed white noise with zero mean and RMS value of
5mV to simulate the low-amplitude AIQP, as shown in Fig. 3(a). The
display of the white noise was enlarged 5 times to clearly show
the waveform of the simulated AIQP. Fig. 3(b) compares the UIQPs of
the normal QRS complex adding (dashed line) and not adding (solid
line) AIQP. The UIQP was detected by the prediction error of a
10th-order FIR prediction model with the prediction depth D¼4.
Both the RMS values of the normal QRS complex with and without
AIQP were adjusted to be equal to 500mV. The QRS complex adding
AIQP showed a higher RMS value of UIQP in comparison with one
not adding AIQP, 23.4mV vs. 17.5mV, respectively. However, if the
RMS value of the normal QRS complex was amplified 2 times to
1000mV; that of the UIQP was proportionally increased to 35.0mV
because of the linearity of the FIR prediction model. To reduce the
effect of the magnitude of the QRS complex, this study defined the
UQR parameter to normalize the UIQP parameter by the RMS value
of the QRS complex. Both the UQRs of the normal QRS complex with
RMS values of 500mV and 1000mV were 3.5%, which is lower than
the 4.68% of the QRS complex including AIQP.
3.2. Clinical results

The model order and the prediction depth are the critical
parameters of the FIR prediction modeling technique. This study
performed the UIQP analyses using various model orders
and prediction depths to determine the most suitable of each.
Fig. 4(a–c), show the curves of mean UQR vs. the model order for
the normal and VT groups in leads X, Y and Z, respectively. The
prediction depth D was fixed at 4. The decreases of the mean
UQR both in the normal and VT groups are very small, and the
difference between the normal and the VT groups does not change
significantly when the order is higher than 10. This is because the
signals with sudden slope changes cannot be predicted, even if an
order higher than the sufficient one is used. Hence a model order
of 10 is sufficient for the analysis of UIQP.



Fig. 2. Prediction results of a second-order FIR prediction model with a prediction depth of D¼4 for the input of a large positive triangular wave adding a low-amplitude,

transient triangular wave located at time 130 ms: (a) the prediction output (dotted line) and the input triangular wave (solid line); (b) the prediction output (dotted line

with squares) and the input triangular wave (solid line with points) around time 100 ms; (c) the slope function of the input signal; and (d) the slope changes at slope

discontinuities (solid line), and the prediction error (dotted line). 1 time unit¼0.5 ms.

Fig. 3. Comparisons of the UIQPs of a normal QRS complex adding and not adding

the simulated AIQP: (a) an X lead QRS complex of a normal subject simulating the

normal QRS complex and a normally distributed white noise with zero mean

simulating the AIQP; (b) the detected UIQPs of the QRS complex with (dashed line)

and without (solid line) AIQP using a 10th-order FIR prediction model with the

prediction depth D¼4.
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Fig. 5(a) plots the curves of TPA vs. the prediction depth using a
10th-order FIR prediction model in leads X, Y and Z, respectively.
A medium prediction depth of 4 has the maximum mean value 75.0%
of TPA of leads X, Y and Z. Fig. 5(b) further plots the curves of mean
signal-to-noise ratio (SNR) vs. the prediction depth, including all study
subjects in leads X, Y and Z. A 40 ms segment in which the RMS value
of the prediction error was the minimum in the ST segment was
defined to evaluate the background noise level. The SNR was then
defined as the ratio between the UIQP and background noise level.
It can be found that a larger prediction depth can increase the SNR.

Table 1 lists the results of the UIQP and time-domain VLP
parameters, where the UIQP parameters in leads X, Y and Z were
detected using a 10th-order FIR prediction model with the
prediction depth D¼4. The results of the time-domain VLP
parameters are consistent with previous studies [15,16]. Both
the mean RMS values of the UIQP and the QRS complex of the VT
patients in leads Y and Z were significantly lower than those of the
normal subjects (po0.05). The mean UQRs of the VT patients in
leads X, Y and Z were all significantly higher than those of the
normal subjects (po0.05).

Table 2 demonstrates the clinical performance of UQR and
time-domain VLP parameters for the diagnosis of the VT patients.
The best TPA using individual UQR parameters was 79.2% of
UQR_X, which is superior to 68.1% of fQRSD, 75.0% of RMS40 and
70.8 of LAS40. The linear combination of UQR parameters of leads
X, Y and Z gives a small increase in TPA to 80.6%. The linear
combination of UQR and time-domain VLP parameters can further
increase the TPA to 84.7% (specificity 81.0% and sensitivity 90.0%).
The logical combination of any 2 of the UQR parameters also gives
an increase in TPA to 83.3%. The logical combination of any 4 of
the UQR and time-domain VLP parameters can further increase
the TPA to 87.5% (specificity 88.1% and sensitivity 86.7%)
4. Discussion

4.1. Technical aspects of the FIR prediction modeling technique for

detecting the unpredictable intra-QRS potentials

This study has presented the FIR prediction modeling techni-
que to detect the UIQP for the diagnosis of VT patients with high-
risk ventricular arrhythmias instead of the extraction of the AIQP.



Fig. 4. Curves of mean UQR vs. the model order in leads (a) X, (b) and (c) Z. The

prediction depth D was fixed at 4.

Fig. 5. Curves of (a) TPA and (b) SNR mean value vs. the prediction depth using a

10th-order FIR prediction model.

Table 1
UIQP and time-domain VLP parameters for the normal and VT groups.

Normal VT

Time domain VLP parameters

fQRSD (ms) 90.3710.2 96.577.7nn

RMS40 (mV) 43.7725.0 20.179.6nn

LAS40 (ms) 29.075.7 37.276.7nn

UIQP parameters

UIQP_X (mV) 23.476.6 24.079.9NS

UIQP_Y (mV) 37.2711.5 28.9712.1nn

UIQP_Z (mV) 37.8714.5 31.9710.6n

RMS values of the QRS complex

QRS_X (mV) 537.77170.4 513.27299.9NS

QRS_Y (mV) 625.67236.5 432.07239.8nn

QRS_Z (mV) 677.87245.2 540.57253.4n

UIQP-to-QRS ratios

UQR_X (%) 4.470.7 5.571.9nn

UQR_Y (%) 6.371.3 7.973.4nn

UQR_Z (%) 5.671.1 6.371.4n

The UIQP of leads X, Y and Z were detected using a 10th-order FIR prediction model

with a prediction depth D¼4.UIQP_l, QRS_l and UQR_l are the unpredictable intra-

QRS potentials, root-mean-square value of QRS complex, and UIQP to QRS ratio in

lead l, where l¼X, Y, Z, respectively.Student’s two-tailed t-test was performed to

compare the means of the two independent variables.

NS Non-significant (p40.05); compared to the normal group.
n po0.05; compared to the normal group.
nn po0.01 compared to the normal group.
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The UIQP originates from the signals with sudden slope changes
within the QRS complex, including the sharp QRS wave and the
AIQP. The simulation study has shown that the UIQP can be
detected as the slope changes at slope discontinuities by the
prediction error, and a QRS complex with AIQP has a larger UIQP
in comparison with one without AIQP. The UIQP is not only
dominated by the sharpness of the QRS wave and the AIQP, but
also by the magnitude of the QRS wave because of the linearity of
the FIR prediction model. Hence a UIQP-to-QRS ratio was further
defined to normalize the UIQP parameters by the RMS value of the
QRS complex.

The determinations of the model order and prediction depth
are critical in the FIR prediction modeling technique. The model
order must be sufficient to accurately predict the smoothed part
of the input QRS complex. The clinical results show that the use of
a model order higher than the sufficient one only slightly
increased the prediction accuracy of the smoothed part of the
QRS complex because the signals with sudden changes in slope
cannot be predicted. It cannot increase the difference of the mean



Table 2
Clinical performance of UQR and time-domain VLP parameters.

SP (%) SE (%) TPA (%)

Time-domain VLP parameters

fQRSD 64.3 73.3 68.1

RMS40 64.3 90.0 75.0

LAS40 71.4 70.0 70.8

UIQP-to-QRS ratios

UQR_X 78.6 80.0 79.2

UQR_Y 73.8 73.3 73.6

UQR_Z 71.4 73.3 72.2

Linear combination

�0.04�RMS40+0.14� LAS40 73.8 73.3 73.6

0.57�UQR_X+0.16�UQR_Y+0.63�UQR_Z 81.0 80.0 80.6

0.49�UQR_X+0.09�UQR_Y+0.76�UQR_Y�0.0002� fQRSD�0.04�RMS40+0.12� LAS40 81.0 90.0 84.7

Logical combination

Any 2 of time-domain VLP parameters 64.3 76.7 69.4

Any 2 of UQR parameters 85.7 80.0 83.3

Any 3 of UQR and time-domain VLP parameters 81.0 93.3 86.1

Any 4 of UQR and time-domain VLP parameters 88.1 86.7 87.5
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UQR parameters between the normal and VT groups. The clinical
results suggest that a model order of 10 is sufficient for the
analysis of UIQP. In addition, the study results show that a
medium prediction depth of 4 has the best diagnosis performance
for VT patients. It is possible that too small or too large a
prediction depth will decrease the clinical performance because a
smaller prediction depth can reduce the SNR (UIQP vs. back-
ground noise level) as shown in Fig. 5(b), and a, larger prediction
depth can produce larger prediction errors and more error points
at each slope discontinuity.
4.2. Clinical results of the UIQP analysis

Because of their abnormal myocardial conduction, the VT
patients were expected to display increased UIQP. On the
contrary, the study results show that the mean UIQPs in leads Y

and Z were significantly decreased in VT patients. This is possibly
caused by the effects of the magnitude of the QRS complex. The
simulation study shows that the UIQP is proportional to the RMS
value of the input QRS complex if the input QRS complexes have
the same shape because of the linearity of the FIR prediction
model. The clinical results further demonstrate that the RMS
values of the QRS complex in leads Y and Z were also significantly
decreased in VT patients, and the RMS values of the QRS complex
in the normal and VT groups both had a wide range from 200 to
1400mV. The reduced RMS values of the QRS complex and the
UIQP in VT patients may be related with MI. Bhargava and
Goldberger [24] and Talwar et al. [25] have shown that MI
attenuates both low and high frequency QRS potentials. From a
pathophysiological viewpoint, myocardial necrosis leads to a
general decrease in electromotive potentials.

In view of the above, it cannot be determined that a larger
UIQP is produced by a larger magnitude of the QRS complex or
from the AIQP, even if the sharpness of the QRS complex is similar.
Hence the UIQP-to-QRS ratio is proposed in this study to reduce
the effects of the magnitude of the QRS complex. The clinical
results demonstrate that the mean UIQP-to-QRS ratios of VT
patients were significantly larger than those of the normal group
in leads X, Y and Z (po0.05). Both the linear and logical
combinations of the UIQP-to-QRS ratios and time-domain VLP
parameters can further enhance the diagnosis performance for VT
patients.
4.3. Comparisons between the analyses of UIQP and AIQP

The AIQP analysis [11–14] is concentrated on the extraction of
the low-amplitude, transient signals within the entire QRS
complex. However the extremely low SNR (AIQP vs. QRS complex)
and the overlap between the AIQP and QRS complex in the time
and frequency domains limits the accuracy of the AIQP extraction
using the ARMA model in the discrete transform domain. The
UIQP analysis proposed in this study is focused on the detection of
all the signals with sudden slope changes, possibly including the
sharp QRS wave and the transient AIQP. The study results show
that the UIQP can be detected as the slope changes at the slope
discontinuities by the prediction error of an FIR prediction model.

The significant reductions of UIQP in VT patients is consistent
with our previous studies using the ARMA modeling technique to
extract AIQP [13,14]. One previous study [13] has shown that a
higher risk of ventricular arrhythmias was associated with lower
AIQP in lead Y. The other study [14] recruiting the same subjects
as used in this study also showed that the mean high-frequency
AIQP parameters of VT patients were significantly lower than
those of the healthy group in leads Y and Z. However the
significant reductions of AIQP in VT patients may also be related
with the reductions of the RMS values of the QRS complex.
Because the extracted AIQP is also proportional to the magnitude
of the QRS complex due to the linearity of the ARMA model, this
study suggests that the AIQP analysis can further consider
normalizing the AIQP parameter by the RMS value of the QRS
complex.
5. Conclusions

This study has successfully demonstrated that the UIQP,
originating from the signals with sudden slope changes, can be
detected as the slope changes at the slope discontinuities, using
the FIR prediction modeling technique. The clinical results also
demonstrate that the VT patients had a larger UIQP-to-QRS ratio
in comparison with the normal subjects, and the linear and logical
combinations of UIQP-to-QRS ratios and time-domain VLP para-
meters can increase the diagnosis performance of SAECG. Hence
the UIQP-to-QRS ratio analyzed using the FIR prediction modeling
technique may be a new promising index for the diagnosis of VT
patients.
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6. Summary

The abnormal intra-QRS potentials (AIQP) have been proposed
as a risk evaluation index for ventricular arrhythmias. However it
is difficult to accurately extract the low-amplitude AIQP because
of the extremely low signal-to-noise ratio (AIQP vs. the QRS
complex) and the overlap between AIQP and the QRS complex.
This study proposes the analysis of unpredictable intra-QRS
potentials (UIQP) using a finite-impulse-response (FIR) prediction
model for the diagnosis of ventricular tachycardia (VT) patients
with high-risk ventricular arrhythmias, instead of the extraction
of the AIQP. The UIQP originates from the signals with sudden
slope changes within the QRS complex, including the sharp QRS
complex and the AIQP. Using the prediction error of the proposed
FIR prediction model, the UIQP can be detected as the slope
changes at slope discontinuities within the QRS complex. The
study subjects were composed of 42 normal Taiwanese and 30 VT
patients. The simulation study demonstrates that the presence of
the AIQP can increase the UIQP. Because the UIQP is proportional
to the magnitude of the QRS complex due to the linearity of the
FIR prediction model, this study defines a UIQP-to-noise ratio
(UQR) to normalize the UIQP by the root-mean-square value of
the QRS complex. The clinical results show that the mean UQRs
of the VT patients in leads X, Y and Z are significantly higher
than those of the normal subjects, and the linear and logical
combinations of UQR and time-domain ventricular late potentials
parameters can increase the diagnosis performance to a total
predictive accuracy of 84.7% (specificity 81.0% and sensitivity
90.0%) and 87.5% (specificity 88.1% and sensitivity 86.7%),
respectively.
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