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To study the behavior of the high speed spindle air bearing (HSSAB) system, we conduct
the research by means of a hybrid numerical method which combines the differential
transformation method and the finite difference method in this paper. According to the
results of the research, the flexible rotor center is found to include a complex dynamic
behavior that comprises periodic, sub-harmonic and quasi-periodic responses. In addition,
as the rotor mass and the bearing number are increased, there will be some changes taking
place in the dynamic behavior of the bearing system. The results are proven to have no con-
flict with those of the other numerical methods, which enables an effective means in gain-
ing insights into the nonlinear dynamics of HSSAB systems.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Aerodynamic bearings are characterized by low noise under rotation and by their low frictional losses. As a result, they
are frequently employed within precision instruments, where they yield zero friction when the instruments are used as null
devices, and within high-speed electrical motors. In 1963, Ausman [1] solved the linearized Reynolds equation of self-acting
bearings to investigate the stability of the static equilibrium position of the shaft. Botman [2] observed non-synchronous
vibrations at speeds in excess of twice the system critical speed on a high-speed rigid rotor-damper system. Nikolajsen
and Holmes [3] observed non-synchronous vibrations in a flexible, symmetric rotor on two identical plain journal bearings
supported by centralized squeeze film dampers. Li and Taylor [4] also observed sub-harmonic motion in rotor-bearing sys-
tems, and at around the same time, Ehrich [5] published his observations of 8th and 9th sub-harmonic vibration in a
turbomachine.

In 1985, Gero and Ettles [6] evaluated the relative precision of the FDM and FEM approaches when applied to a steady,
isoviscous, incompressible lubrication problem. In their study, it was assumed that the solution of a complicated coupled
problem could be derived by solving a sequential series of simple, uncoupled, steady problems. The results for two-dimen-
sional bearings demonstrated that the relative errors of the FDM solutions were smaller than those associated with the FEM
approach. Furthermore, it was shown that the FDM approach was more rapid than the FEM technique, with an average CPU
time of 0.15 s as compared to 0.17 s for the FEM method.

In 1994, Malik and Bert [7] considered the Differential Quadrature Method (DQM), and applied it for the first time to the
solution of steady state oil and air lubrication problems in self-acting hydrodynamic bearings. The quadrature solutions of
the Reynolds equation for the case of incompressible lubrication were compared with the exact solutions of finite-length
bearings. Furthermore, the quadrature solutions of the compressible Reynolds equation for finite-length plain journal bear-
. All rights reserved.
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ings were compared with those obtained using the FED and FEM approaches. From 2007 to 2009, Wang and co-workers [8–
11] provide a series of further understanding of gas film rotor-bearing systems and show the dynamic behavior of system
with respect to rotor mass and bearing number.

The remainder of this study is organized as follows. Section 2 develops a mathematical model describing the time-depen-
dent motions of the rotor center of HSSAB. Due to the nonlinearity of the air film pressure in this bearing system, determin-
ing the Reynolds equation solutions is very difficult. Accordingly, Sections 2.2 and 2.3 develop a hybrid method combining
the finite difference method (FDM) and the differential transformation method (DTM) to obtain the required solutions. The
solutions are then compared with those obtained using the SOR (Successive Over Relation) method. Section 3 presents the
simulation results obtained using the proposed hybrid method for the vibrations of the rotor center for various rotor masses.
Finally, Section 4 draws some brief conclusions.

2. Mathematical modeling

2.1. Modified Reynolds equation and rotor dynamics

The aerostatic bearings model incorporates the following design assumptions:

(a) Air lubricating films are very nearly isothermal because the ability of the bearing materials to conduct away heat is
greater than the heat generating capacity of the air film. Thus, the flow is assumed isothermal.

(b) As gas viscosity is somewhat insensitive to changes in pressure, and the temperature is virtually constant, we may
assume the gas viscosity to be constant.

(c) The mass flow inside and outside of the gas bearing element is equal to the mass flow into the orifice.
(d) The flow of gas in and out of the sides of the bearing (side flow) is neglected.

The pressure distribution in the gas film between the shaft and the bushing is modeled by the Reynolds equation as
follows:
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The dimensionless form of the Reynolds equation is given by:
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where Kx and Ky are the bearing numbers in the x- and y-directions, respectively, and Kt is bearing number corresponding
with rotational speed of rotor. eQ is the mass flow factor of the orifice. It is noted that di = 1 at the orifice entrance, and that
di = 0 at the orifice exit.
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Adopting the assumptions of an adiabatic process and a non-viscous flow, it can be shown that the mass flow rate is given
by:
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where A is the cross-sectional area of the orifice, k is the ratio of the specific heat, p0 is the supplied pressure, / is the coef-

ficient of the mass flow rate through the orifice, and bk ¼ pc
p0
¼ 2

kþ1

� �k=ðk�1Þ
.

Fig. 1 presents the gas journal bearing configuration considered in the present study. It is observed that two sets of eight
orifices are arranged evenly around the circumference of the bearing at quarter-station positions.

The boundary conditions are shown as follows:

1. The atmosphere boundary condition: P ¼ pa
p0

.
2. The periodic boundary condition: P(Z) = P(Z + 2p).
3. The symmetric boundary condition: @P

@X ¼ 0.
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In the transient state, the equations of motion of rotor center (X,Y) can be written in Cartesian coordinate form as
mr
d2X

dt2 þ KpðX � X�Þ ¼ mrqx2 cos xt; ð5Þ

mr
d2Y

dt2 þ KpðY � Y�Þ ¼ mrqx2 cos xt; ð6Þ
where (X*,Y*) is journal center, q is the mass eccentricity of the rotor, KP is the stiffness of the shaft, and x is the rotational
speed of the shaft. The resultant forces acting on the journal center in the horizontal and vertical directions are balancing
forces. They can be shown that the forces applied to journal center are given by
F�gfx ¼ KpðX � X�Þ=2; ð7Þ

F�gfy ¼ KpðY � Y�Þ=2: ð8Þ
Computing the motions of the rotor center and journal center is an iterative procedure which first determines the accel-
eration, then the velocity, and finally the displacement, step-by-step over time. The computation procedure begins by spec-
ifying an initial static equilibrium state. The initial displacement of the rotor (Xo,Yo) corresponds to the static equilibrium
position and defines the gap H between the shaft and the journal bearing. The initial velocity of the rotor is assumed to
be zero.

2.2. Hybrid method integrating SOR method and finite difference method (SOR&FDM)

In solving the Reynolds’ equation, Eq. (2) is discretized using the central-difference scheme in the x- and y-directions and
the implicit-back-difference scheme in time s. For simplicity, a uniform mesh size is used. If Eq. (2) is to be solved directly,
there will be five unknowns. Accordingly, the SOR (Successive Over Relation) method [8] is employed in the present com-
putations since its use reduces the number of unknowns from five to three. The pressure distribution at each time step is
obtained using an iterative calculation process. Thus, there will be three unknowns (I, I � 1, and I + 1) in the x-direction
at each incremental time interval. The other two unknowns (J + 1 and J � 1) in the y-direction are substituted for the last
iterative values. Finally, all of the equations are substituted into a tri-diagonal matrix and solved using a process of Gauss
elimination.

2.3. Hybrid method integrating differential transformation method and finite difference method (DTM&FDM)

Differential transformation is one of the most widely used techniques for solving differential equations due to its rapid
convergence rate and minimal calculation error. A further advantage of this method over the integral transformation ap-
proach is its ability to solve nonlinear differential equations.

In solving the Reynolds equation for the current micro gas bearing system, the differential transformation method is used
for taking transformation with respect to the time domain s, and hence Eq. (2) becomes
@P
@X
� J � @P

@X
þ P � @J

@X
� @P
@X
þ P � J � @

2P

@X2 þ
@P
@Y
� J � @P

@Y
þ P � @J

@Y
� @P
@Y
þ P � J � @

2P

@Y2 þ eQ di

¼ Kt
@P
@s
� H þKt

@H
@s
� P þKx

@P
@X
� H þKx

@H
@X
� P þKy

@P
@Y
� H þKy

@H
@Y
� P; ð9Þ
x

y

Fig. 1. Journal bearing configuration.



C.-C. Wang, H.-T. Yau / Applied Mathematics and Computation 217 (2010) 2084–2096 2087
where
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and ‘‘�” denotes the convolution operation in the K domain. If zðtÞ ¼ f ðtÞgðtÞ; f ðtÞ ¼ D�1½FðkÞ�; and gðtÞ ¼ D�1½GðkÞ�;
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The finite difference method is then used to discretize Eq. (9) with respect to the x- and y-directions. Note that Eq. (9) is
discretized using the second-order accurate central-difference scheme for both the first and the second derivatives.

Substituting Eq. (10) into Eq. (9) yields
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From Eq. (11), Pi,j(k) is obtained for each time interval, where i and j indicate the node position and k indicates the kth
term.

Computing the motions of the rotor center is an iterative procedure which first determines the acceleration, then the
velocity, and finally the displacement, step-by-step over time. The computation procedure begins by specifying an initial sta-
tic equilibrium state. The initial displacement of the rotor (Xo,Yo) corresponds to the static equilibrium position and defines
the gap Hi,j(k) between the shaft and the journal bearing. The initial velocity of the rotor is assumed to be zero.

The iterative computation procedure can be summarized as follows:

Step 1: Following a time increment Ds, the new values of the rotor acceleration, velocity, and displacement are calculated to
obtain.
ison of numerical results of rotor center orbits calculated by SOR&FDM and DTM&FDM methods, respectively (for T-periodic motion).

itions Displacement

X (nT) Y (nT)

Time step = 0.001 Time step = 0.01 Time step = 0.001 Time step = 0.01

FDM mr = 1.3 kg �0.3315343711 �0.3315131879 �0.6217047214 �0.621754232
&FDM Kt = 1.27 �0.3315562023 �0.3315321144 �0.6217134332 �0.621732771

FDM mr = 3.46 kg �0.2681450512 �0.2681524783 �0.261236245 �0.267044675
&FDM Kt = 1.27 �0.2681911341 �0.2681010143 �0.268101956 �0.268140132

FDM Kt = 2.38 0.2618134124 0.2619497941 0.7031651104 0.7032671983
&FDM mr = 2.5 kg 0.2621720747 0.2621772397 0.7037471446 0.7037436364

FDM Kt = 3.52 �0.51201081123 �0.51831609801 0.25021083144 0.25195381540
&FDM mr = 2.5 kg �0.51187525198 �0.51184543216 0.25081519298 0.25084166217



Fig. 3. Phase trajectories of rotor center at mr = 1.1, 1.3, 1.9, 1.93, 3.16 and 3.46 kg.

Fig. 2. Dynamic orbits of rotor center at mr = 1.1, 1.3, 1.9, 1.93, 3.16 and 3.46 kg.
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Step 2: The displacements of the rotor center obtained from Step 1 can then be determined and the corresponding change in
the value of the gap (H) can be calculated. Substituting the new value of H into Eq. (10) gives the new pressure dis-
tribution in the gap between the shaft and the journal.

Step 3: The pressure distribution obtained from Step 2 is integrated to estimate the internal force.



Fig. 4. Power spectra of rotor displacement in horizontal direction at mr = 1.1, 1.3, 1.9, 1.93, 3.16 and 3.46 kg.

Fig. 5. Power spectra of rotor displacement in vertical direction at mr = 1.1, 1.3, 1.9, 1.93, 3.16 and 3.46 kg.
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Step 4: The displacement and velocity values computed in Step 1, the pressure distribution calculated in Step 2, and the
internal force obtained in Step 3 are taken as the new initial conditions. Using this new set of conditions, the calcu-
lation procedure returns to Step 1 to compute the changes in the micro gas bearing system during the time interval
Ds ? 2Ds.



Fig. 6. Bifurcation diagrams versus rotor mass: (a) X (nT) and (b) Y (nT).
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Fig. 7. Poincaré maps of rotor center trajectories at mr = 1.1, 1.3, 1.9, 1.93, 3.16 and 3.46 kg.



Fig. 8. Dynamic orbits of rotor center at Kt = 1.2, 2.4, 2.42, 3.21, 3.58 and 4.3.

Fig. 9. Phase trajectories of rotor center at Kt = 1.2, 2.4, 2.42, 3.21, 3.58 and 4.3.

Table 2
Variation of rotor center response with rotor mass over interval 1.0 6mr 6 4.0 kg.

Rotor mass [1.0, 1.25) [1.25,1.9) [1.9,1.93) [1.93,3.16) [3.16,3.46) [3.46,4.0]

Dynamic behavior Quasi T 2T T Quasi T
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Note that in this study, the time-series data of the first 1000 revolutions are excluded from the dynamic behavior inves-
tigation so as to ensure that the analyzed data correspond to steady state conditions. The data include the orbital paths and
velocity of the rotor center. These data are used to generate power spectra, Poincaré maps and bifurcation diagrams.

3. Results and discussions

3.1. Numerical analysis

Table 1 presents the Poincaré maps obtained by the SOR&FDM and DTM&FDM methods for the T-periodic orbits of the
rotor center. It is observed that a good agreement by SOR&FDM and DTM&FDM exists between the two sets of results at dif-
ferent rotor mass and bearing number values for time step eH ¼ 0:01. It also compares with different values of the time step,eH, for different rotor mass and bearing number values. It can be seen that the numerical results for time steps eH ¼ 0:001
obtained by DTM&FDM are more precisely and even accurately to approximately four decimal places than those by
SOR&FDM method. So, the DTM&FDM proposed in Section 2 are suitable for calculating the following results of rotor center
and will obtain accurate data.

3.2. Dynamic analysis

The current dynamic analysis is considered two different situations: (1) the bearing number is maintained as a constant
and the effect of increasing the rotor mass is examined and (2) the rotor mass is maintained as a constant and the effect of
increasing the bearing number is investigated.

3.2.1. Situation 1
The gas journal bearing is loaded with a constant bearing number of Kt = 1.27 and the rotor mass mr is specified as the

bifurcation parameter.

3.2.1.1. Dynamic orbits and phase trajectories. Fig. 2 shows that the orbits of the rotor center are irregular at low values of the
rotor mass (mr = 1.1 kg), but become regular at rotor mass values of mr = 1.3, 1.9, and 1.93 kg. For rotor mass value of
mr = 3.16 kg, the orbits exhibit non-symmetric and non-periodic motion. Finally, the rotor becomes regular at rotor mass val-
ues of mr = 3.46 kg.
Fig. 10. Power spectra of rotor displacement in horizontal direction at Kt = 1.2, 2.4, 2.42, 3.21, 3.58 and 4.3.
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Fig. 3 shows the phase trajectories of the rotor center at different values of the rotor mass. It is observed that the phase
trajectories are regular at mr = 1.3, 1.9, 1.93 and 3.46 kg, but become non-symmetric and irregular at rotor mass values of
mr = 1.1 and 3.16 kg.

3.2.1.2. Power spectra. Figs. 4 and 5 show the dynamic responses of the rotor center in the vertical and horizontal directions.
It is seen that the rotor center exhibits quasi-periodic motion at rotor mass values of mr = 1.1 kg. However, as the rotor mass
is increased to mr = 1.3, 1.93 and 3.46 kg, the power spectra (Figs. 4(b), (d), (f) and 5(b), (d), (f)) show that the orbits of the
rotor center in the horizontal and vertical directions become periodic motion. For rotor mass value of mr = 1.9 kg, the orbits
exhibit sub-harmonic motion with a period of 2T. Finally, at rotor mass value of mr = 3.16 kg, the orbits of the rotor center
perform quasi-periodic motion in the horizontal and vertical directions.

3.2.1.3. Bifurcation diagrams. A bifurcation diagram summarizes the essential dynamics of a HSSAB system, and is therefore a
useful tool for observing nonlinear dynamic behavior. The bifurcation diagrams presented in Fig. 6 plot the rotor center dis-
placement against the rotor mass mr. Qualitatively different behavior is observed at different values of mr within the range
1.0–4.0 kg. Fig. 7(a)–(f) presents the Poincaré maps at mr = 1.1, 1.3, 1.9, 1.93, 3.16 and 3.46 kg, respectively. Figs. 6(a), (b) and
7(a) show that the dynamic motion of the rotor center is quasi-periodic in both the x- and y-directions at lower values of the
rotor mass, i.e. mr < 1.25 kg. However, the quasi-periodic motion loses its stability at mr = 1.25 kg and is replaced by periodic
motion proof and shown in Fig. 7(b). As the mass is increased to mr = 1.9 kg, the T-periodic motion is replaced by a 2T-peri-
odic motion in the x- and y-directions shown in Fig. 7(c). Fig. 6 shows that this 2T-periodic motion is maintained over the
interval 1.9 6mr < 1.93 kg. The 2T-periodic motion changes its motion at a rotor mass of 1.93 kg and is replaced by a T-peri-
odic motion as shown in Fig. 7(d). Then, T-periodic motion is transferred to quasi-periodic motion at mr = 3.16 kg (Fig. 7(e)).
Finally, the rotor center changes its behavior as the rotor mass is increased to mr = 3.46 kg and transits to T-periodic motion.
It can be seen that there is a discrete point in the Poincaré map at mr = 1.3, 1.93 and 3.46 kg, two discrete points at
mr = 1.93 kg and a closed curve at mr = 1.1 and 3.16 kg. From the discussions above, it is evident that the behavior of the rotor
center is dependent on the rotor mass. Table 2 summarizes the motions performed by the rotor center for rotor mass values
in the range 1.0 6mr 6 4.0 kg.
Fig. 11. Power spectra of rotor displacement in vertical direction at Kt = 1.2, 2.4, 2.42, 3.21, 3.58 and 4.3.



Fig. 12. Bifurcation diagrams versus bearing number: (a) X (nT) and (b) Y (nT).

Fig. 13. Poincaré maps of rotor center trajectories at Kt = 1.2, 2.4, 2.42, 3.21, 3.58 and 4.3.
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Table 3
Variation of rotor center response with bearing number over interval 1.0 6Kt 6 5.0.

Bearing number [1.0, 2.42) [2.42,3.58) [3.58,5]

Dynamic behavior T Quasi T
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3.2.2. Situation 2
The gas journal bearing is loaded with a constant rotor mass of mr = 2.5 kg and the bearing number Kt is specified as the

bifurcation parameter.

3.2.2.1. Dynamic orbits and phase trajectories. Fig. 8 shows that the orbits of the rotor center are regular and symmetry at low
values of the bearing number (Kt=1.2 and 2.4), but become irregular at bearing number values of Kt=2.42 and 3.21. For bear-
ing number value of Kt = 3.58 and 4.3, the orbits exhibit symmetric and periodic motion.

Fig. 9 shows the phase trajectories of the rotor center at different values of the bearing number. It is observed that the
phase trajectories are regular at Kt = 1.2, 2.4, 3.58 and 4.3, but become non-symmetric and irregular at rotor bearing number
of Kt = 2.42 and 3.21.

3.2.2.2. Power spectra. Figs. 10 and 11 show the dynamic responses of the rotor center in the vertical and horizontal direc-
tions. It is seen that the rotor center exhibits periodic motion at bearing number values of Kt = 1.2 and 2.4. However, as
the bearing number is increased to Kt = 2.42 and 3.21, the power spectra (Figs. 10(c), (d) and 11(c), (d)) show that the
orbits of the rotor center in the horizontal and vertical directions become quasi-periodic motion. Finally, at bearing num-
ber values of Kt = 3.58 and 4.3, the orbits of the rotor center perform periodic motion in the horizontal and vertical
directions.

3.2.2.3. Bifurcation diagrams. The bifurcation diagrams presented in Fig. 12 plot the rotor center displacement against the
bearing number Kt. Qualitatively different behavior is observed at different values of Kt within the range 1.0–5.0.
Fig. 13(a)–(f) presents the Poincaré maps at Kt = 1.2, 2.4, 2.42, 3.21, 3.58 and 4.3, respectively. Figs. 12(a), (b) and
13(a), (b) show that the dynamic motion of the rotor center is T-periodic in both the x- and y-directions at lower values
of the bearing number, i.e. Kt < 2.42. However, the T-periodic motion loses its stability at Kt = 2.42 and is replaced by qua-
si-periodic motion proof and shown in Fig. 13(c). Figs. 12 and 13(d) show that this quasi-periodic motion is maintained
over the interval 2.42 6Kt < 3.58. The quasi-periodic motion changes its motion at a bearing number of 3.58 and is re-
placed by a T-periodic motion as shown in Fig. 13(e). Finally, the rotor center persists T-periodic motion over the interval
3.58 6Kt 6 5. It can be seen that there is a discrete point in the Poincaré map at Kt = 1.2, 2.4, 3.58 and 4.3 and a closed
curve at Kt = 2.42 and 3.21. From the discussions above, it is evident that the behavior of the rotor center is also depen-
dent on the bearing number. Table 3 summarizes the motions performed by the rotor center for bearing number values in
the range 1.0 6Kt 6 5.0.

4. Conclusions

This study has analyzed the influence of rotor mass and bearing number to a HSSAB system via a hybrid numerical
method and presented the nonlinear behavior of a HSSAB system. Two different hybrid numerical methods included
SOR&FDM and DTM&FDM are applied and compared to solve this system. The results show that DTM&FDM is more suit-
able for calculating the HSSAB system than SOR&FDM. So, the system state trajectories, power spectra, bifurcation dia-
grams, and Poincaré maps are solved by DTM&FDM and have revealed the presence of a complex dynamic behavior
comprising periodic, sub-harmonic, and quasi-periodic responses of the rotor center. The results of this study provide
an understanding of the nonlinear dynamic behavior of HSSAB systems with different rotor masses mr and bearing num-
bers Kt.

Specifically, the results have shown that the rotor center behaves quasi-periodic motion over two intervals
1.0 6mr < 1.25 kg and 3.16 6mr < 3.46 kg. According to these two intervals, a heavier or lighter rotor will cause irregular
and nonlinear motion. Periodic and sub-harmonic motions appear over 1.25 6mr < 3.16 kg and 3.46 6mr < 4.0 kg and be-
have regular and symmetry motions. Regarding the influence of the bearing number on the dynamic response of the bearing
system, at Kt = 1.2 and 4.3, both of the Poincaré maps contain a single discrete point. However, as the bearing number is
operated over the interval 2.42 6Kt < 3.58, the T-periodic motion of the rotor center is replaced by quasi-periodic motion.
Bearing number is relative to the rotational speed of rotor, so when design a HSSAB system, the bearing number is needed to
be considered to avoid the nonlinear behavior appear.

Acknowledgment

The financial support of this research by National Science Council of ROC, under the Project No. NSC-97-2221-E-269-022
is greatly appreciated.



2096 C.-C. Wang, H.-T. Yau / Applied Mathematics and Computation 217 (2010) 2084–2096
References

[1] J.S. Ausman, Linearized ph stability theory for translatory half-speed whirl of long self-acting gas-lubricated journal bearings, ASME J. Basic Eng. 3
(1963) 611–619.

[2] M. Botman, Experiments on oil film dampers for turbomachinery, ASME J. Eng. Power 98 (1976) 393–400.
[3] J.I. Nikolajsen, R. Holmes, Investigation of squeeze-film isolators for the vibration control of a flexible rotor, ASME J. Mech. Sci. 21 (1979) 247–252.
[4] X.H. Li, D.L. Taylor, Nonsynchronous motion of squeeze-film damper systems, ASME J. Tribol. 109 (1987) 169–176.
[5] F.F. Ehrich, High order subharmonic response of high speed rotor in bearing clearance, ASME J. Vib. Acoust. Stress Reliab. Design 110 (1988) 9–16.
[6] L.R. Gero, C.M.Mc.C. Ettles, An evaluation of finite difference and finite element methods for the solution of the Reynolds equation, ASLE Trans. 29 (2)

(1985) 166–172.
[7] M. Malik, C.W. Bert, Differential quadrature solution for steady state incompressible and compressible lubrication problems, Trans. ASME, J. Tribol. 116

(1994) 296–302.
[8] C.C. Wang, M.J. Jang, Y.L. Yeh, Bifurcation and nonlinear dynamic analysis of a flexible rotor supported by relative short gas journal bearings, Chaos

Soliton Fract. 32 (2007) 566–582.
[9] C.C. Wang, H.T. Yau, M.J. Jang, Y.L. Yeh, Theoretical analysis of the non-linear behavior of a flexible rotor supported by herringbone grooved gas journal

bearings, Tribol. Int. 40 (2007) 533–541.
[10] C.C. Wang, H.T. Yau, Application of a hybrid numerical method to the bifurcation analysis of a rigid rotor supported by a spherical gas journal bearing

system, Nonlinear Dynam. 51 (2008) 515–528.
[11] C.C. Wang, Application of a hybrid method to the nonlinear dynamic analysis of a spherical gas journal bearing system, Nonlinear Anal. – Theory

Methods Appl. 70 (2009) 2035–2053.


	Theoretical analysis of high speed spindle air bearings by a hybrid  numerical method
	Introduction
	Mathematical modeling
	Modified Reynolds equation and rotor dynamics
	Hybrid method integrating SOR method and finite difference method (SOR&FDM)
	Hybrid method integrating differential transformation method and finite difference method (DTM&FDM)

	Results and discussions
	Numerical analysis
	Dynamic analysis
	Situation 1
	Dynamic orbits and phase trajectories
	Power spectra
	Bifurcation diagrams

	Situation 2
	Dynamic orbits and phase trajectories
	Power spectra
	Bifurcation diagrams



	Conclusions
	Acknowledgment
	References


