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a b s t r a c t

This study attempts to apply a back-propagation network (BPN) for multi-sensors data fusion in a wire-
less sensor networks (WSNs) system with a node-sink mobile network structure. This investigate is to
finish the factory monitoring at environment monitoring services (EMS). These practice wireless sensor
network circuits include temperature, humidity, ultraviolet, and illumination four variable measurement
components. These data fields of each sensor nodes contain the properties and specifications of that sig-
nal process rules, the remote engineers can manage the multi-sensors data fusion using the browser, and
the WSNs system then classification the data fusion database via the Internet and mobile network. More-
over, The BPN training approach is significant that improves data fusion system in accuracy and classifi-
cation with parallel computing for data fusion efficiency. The final phase of the classification fusion
system applies parallel BPN technology to process data fusion, and can solve the problem of various sig-
nals states. This study is considered implemented on the Yang-Fen Automation Electrical Engineering
Company as a case study. The experiment is continued for six months, and engineers are also used to
operating the web-based classification fusion system. Therefore, the cooperative plan described above
is analyzed and discussed here. Finally, these papers propose the tradition methods compare with the
innovative BPN methods.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Wireless sensor networks have emerged as a new information-
gathering paradigm based on the collaborative effort of a large
number of sensing nodes. This paper describes the application of
BPN technology in the problem domain of sensor data fusion. A
sensor network consists of many spatially distributed sensors
called nodes, these nodes are used to monitor or detect various
kinds of changes in vibration, pressure, movement or pollutant lev-
els. In this investigation, we design four various sensors in the
experiment circuit boards include temperature, humidity, illumi-
nation, and ultraviolet measurements for EMS. These nodes are
usually small and inexpensive in order to allow them to be de-
ployed on a large scale. These are sensors usually have a wireless
link which can be used to extract the information captured by
the sensor.

A sensor node has a small microcontroller, and an energy
source, usually a battery. In order to meet the objective of these
sensors being small and low-cost, resources in terms of energy,
memory, computational speed and bandwidth are severely con-
strained. The sensors use each other to transport data to a monitor-
ll rights reserved.
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ing entity. Because each sensor has a limited energy supply,
sensors must conserve their energy if the network is to last a long
time. Wireless, database technology such as queries, and
networking technology especially, multi-hop routing protocols to
communicate with other nodes is crucial technologies. Wireless
technology is used in a type of network, a wireless sensor network.
ZigBee is a wireless protocol used by IEEE 802.15.4 association and
ZigBee alliance. In this study, the networks need be able to self-
organize via ZigBee wireless protocol. The same type of aggregate
data with variances needs to be grouped and fused into a single da-
tum for intelligent interpretation. Major limitations included lim-
ited storage and power. A special node which connects to a
computer and outside the network is called the gateway node.This
paper describes the application of BPN technology in the recogni-
tion and classification of multi-sensors data fusion. The first sec-
tion of this paper introduces and reviews the problem presented
by sensor fusion. The second section provides the background on
BPN and sensor data fusion. The subsequent section discusses the
domains where neural-network is applied for sensor data fusion
varying as wide as intelligent waste-water management to military
surveillance. We provide a model for wide-area surveillance using
BPN based multi-sensors data fusion. Finally, we also discuss how
precise modifications to BPN can improve the classification level of
sensor fusion.

http://dx.doi.org/10.1016/j.eswa.2009.07.062
mailto:songchen@ncut.edu.tw
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


Fig. 1. The system architecture for EMS based on WSNs.
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2. Related literatures

WSNs are composed of a large number of nodes with sensing
capability (Akyildiz, 2002). The applicability of such networks in-
cludes several areas such as environmental, medical, industrial,
and military applications. Usually, WSNs have strong constraints
regarding energy resources and computational capacity. In addi-
tion, these networks demand self-organizing features to autono-
mously adapt themselves to eventual changes resulting from
external interventions, reaction to a detected event, or requests
performed by an external entity (Franceschini, 2007). In general,
WSNs are deployed in environments where sensors can be exposed
to conditions that might interfere with the sensor readings or even
destroy the sensor nodes. As a result, sensor measurements may be
more imprecise than expected, and the sensing coverage may be
reduced. A natural solution to overcome failures and imprecise
measurements is to use redundant nodes that cooperate with each
other to monitor the environment. However, multi-sensors data
fusion comprises theories, algorithms, and tools used to process
several sources of information generating an output that is, in
some sense, better than the individual sources (Aquino et al.,
2007).

This investigation implements a BPN in multi-sensors data fu-
sion for recognition and classification. The type of recurrent neural
network used is known as the multilayer feed-forward network.
The BPN provides the basis for nonlinear associative memory. Sig-
nificantly, the BPN is very effective in data fusion for recognition
and classification (Brouwer, 2000a, 2000b). Supervised learning is
achieved through the error back-propagation algorithm. In the lit-
erature (Hu, Lin, & Wu, 2008), the authors described multi-source
data fusion and management for virtual wind Tunnels and physical
wind tunnels, the system always adopts the latest data fusion and
database conceptions via BPN. In Loskiewicz et al. researches (Los-
kiewicz-Buczak & Uhrig, 1993), a diagnostic system design which
performs evidence aggregation from many sensors in order to
automate the interpretation of vibration spectra. The decision sys-
tem proposed is an active system which its module is a BPN sys-
tem. The method proposed is very general and can be used for
any problem involving aggregation of decisions for the purpose
of classification. According to above-mentioned, the data fusion
employed BPN is better than traditions methods in recognition
and classification based on WSNs (Jayasimha, Iyengar, & Kashyap,
1991; Kumar et al., 2003; Qi, Iyengar, & Chakrabarty, 2001; Shar-
ples, Callaghan, & Clarke, 1999; Varshney, 1997; Varshney & Mo-
han, 2005; Zhao, Liu, Liu, Guibas, & Reich, 2003).
3. Systematic architecture for EMS

WSNs combining the mobile computing, telecommunication
and sensing equipments can operate automatically with least
power consumption. The WSNs applications include the monitor-
ing of wild animals, environment monitoring/forecast and health
monitoring. This paper intends to use Motes wireless sensor net-
works, which enable data collection covering soil and air humidity,
air temperature, light and ultraviolet. All data from every sensor
can be transmitted via ZigBee network transmission protocol, thus
forming a mobile WSNs. The EMS data are sent back to the rear
database via wireless network and mobile telecom network, there-
by contributing to real-time and continuous monitoring of
drought. The EMS model decision system automatically analyses
the environmental drought data and the results are sent to the
end users in real-time. This reduces human error for a more accu-
rate EMS. In Fig. 1, sensor node is capable of detecting and collect-
ing the environmental data. Sensor node processes the collected
data and transmits them to the sink node. Sink node is a gateway
node, which is responsible for receiving the sensor data and re-
transmitting these data to the manager node via Internet or mobile
networks. Manager node is responsible for processing and display-
ing the sensor data.

Fig. 2 depicted our WSN nodes device that comprises the sens-
ing units, processing units, transceiver units and power units. The
functionality of the units is described as follows:

(1) Sensing unit. A sensing unit comprises the sensor and the
analog-to-digital converter. The sensor is responsible for
detecting and collecting the environmental data, which rep-
resent with the analog signals. The analog-to-digital con-
verter converts the analog signals into the digital data and
sends the data to the processing unit. Sensing Unit include
temperature, humidity, ultraviolet, and illumination.

(2) Processing unit. Processing unit comprises the processor and
the storage unit. Storage unit stores the collected environ-
mental data. Processor processes the data according to the
pre-defined program codes.

(3) Transceiver unit. Transceiver unit is responsible for the com-
munications between the sensor devices.

(4) Power unit. Power unit provides the electric power and is
the most important unit of a WSN device.
4. BPN algorithm for data fusion in recognition and
classification

The acquired data is first subjected to preprocessing step in a
sensor node with various sensor components. Besides filtering for
noise removal, this step also processes the signal for achieving
invariance to selected inspection parameters. For instance, in the
case of inspection data fusion at different inspection frequencies
the signals are first transformed to an equivalent signal at a refer-
ence value of the inspection frequency parameter. Similarly, the
overall classification performance of the system can be rendered
invariant to other selected parameters (Polikar, Udpa, Udpa, & Tay-
lor, 1998). In the second step, discriminatory features in the signal
are extracted. Feature extraction serves to reduce the length of the
data vector by eliminating redundancy in the signal and compress-
ing the relevant information into a feature vector of significantly
lower dimension. The Discrete Wavelet Transform (DWT) is partic-
ularly effective at extracting features at multiple resolution levels
in ultrasonic signals which are inherently non-stationary in nature
(Polikar, Udpa, Udpa, & Spanner, 1998). A second set of features
based on Principal Component Analysis (PCA) also calculates the
statistical properties of a set of neighboring A-scans (Bae, Udpa,
Udpa, & Taylor, 1997).
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Fig. 2. These devices of sensor node in EMS are built via our researches.
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Neural networks are perhaps the most commonly used algo-
rithm in automated classification of signals (Bae et al., 1997). These
networks have proved to be extremely effective in learning subtle
differences in signals from various classes (indications) as shown
in Fig. 3. A neural network classifier with the error back-propaga-
tion training algorithm is used in the signal classification system
developed in this study. The objectives of the paper were focused
on demonstrating the four different signals classification system
on TI CC2430 Chip. The demonstrations were conducted using
BPN procedure qualification test but on a smaller scale. The final
phase of this work will focus on the development of a commercial
quality windows-based software package for automated EMS data
fusion. This paper utilizes the most prevailing BPN algorithm to
analyze the potential degrees for EMS measurements. The BPN
algorithm is a typical supervised learning network (Ye, 2004),
which is to learn the internal reflection and regulations between
inputs and outputs. The regulations are the synaptic weights of
Input 

ik

Output 

Wjk j Wij 

Hidden

Neurons

Synaptic Weights

Fig. 3. Neural network general neuron and classification model.
network neurons. For analyzing any new cases, the input values
or independent variables are inputted into the neural network
and get the inferential related output values quickly. BPN have
three system layers and described as follows:

(1) Input Layer comprises the inputs of the BPN and represents
the initial values of decision.

(2) Hidden Layer comprises the neurons, which are responsible
for adjusting the synaptic weights of neuron linkages and
determining the suitable synaptic weights. To have accuracy
results, the hidden layer is composed of several sub-layers to
learn the internal reflection and regulations between inputs
and outputs.

(3) Output Layer comprises the outputs of the BPN and repre-
sents the final decision results at this training operation.

The control procedure of the EMS based on BPN algorithm di-
vides into the following operation steps:

(1) Set up the network parameters.
(2) Set up weighted matrixes, i.e., W_xh and W_hy, and the ini-

tial values of bias vector, i.e., h h and h y, by uniformly ran-
dom numbers.

(3) Calculate the output quantity of the hidden layer.
(4) Set up the tolerant difference quantity between the output

layer and the hidden layer.
(5) Calculate the difference quantity, i.e., d, between the output

layer and the hidden layer.
(6) Determine whether the difference quantity between the

output layer and the hidden layer is greater than the tolerant
difference quantity U. If the difference quantity d is smaller
than the tolerant difference quantity U, the optimal regres-
sion model is obtained.

(7) If the difference quantity d is greater than the tolerant differ-
ence quantity U, the weighted matrixes W_xh and W_hy, and
the corrections of bias values h h and h y in the output layer
and the hidden layer have to be computed.

(8) Revise the weighted matrixes and the bias values in the out-
put layer and the hidden layer, and repeat steps (3)–(7) until
the difference quantity lies within the range of the tolerant
difference quantity.

(9) Finally, compare the correlation of sensitivity correction to
find out the optimal regression model.
5. Error back-propagation algorithm for WSNs

We consider a multilayer perceptron with three layers (input,
hidden, output) as shown in Fig. 3. The connection weights be-
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tween the jth neuron in the hidden layer and the kth neuron in the
input layer is denoted by wjk. Similarly the connection weights be-
tween the ith neuron in the output layer and the jth neuron in the
hidden layer is denoted by Wjk. The sigmoidal response function
used is

fBðuÞ ¼
1

1þ expð�2buÞ ð1Þ

Our network receives a 1 � 24 input vector
X ¼ fxkg; k ¼ 1;2; . . . ;24 representing a 16 � 16 pixel array of a
handwritten digit.

The activation uj of the jth neuron in the hidden layer is

uj ¼
Xk

k¼1

wjkxk ð2Þ

The output hj of the jth neuron in the hidden layer is

hf ¼ fBðujÞ ¼
1

1þ expð�2bujÞ
ð3Þ

Similarly the activation v i of the ith neuron in the output layer is

v i ¼
XJ

j¼1

Wijhj ð4Þ

and the output Oi of the ith neuron in the output layer is

Oi ¼ fBðv iÞ ¼
1

1þ expð�2bv iÞ
ð5Þ

The error between the actual output O and the desired output Y is
calculated as follows:

EðwÞ ¼ 1
2

X
a;j

yðaÞi � oðaÞi

� �2
ð6Þ

We train the network to minimize the error E over the training set
of 100 examples. Next, we perform the error back propagation algo-
rithm as follows:

(I) Start with random weights.
(II) A training vector is applied to the input. The state of the hid-

den neurons is determined and then propagated to the out-
put layer where the states O are determined.

(III) We calculate the error from between the actual output and
the desired output and modify the weight matrices as
follows:
DWij ¼ �g
@E
@Wij

¼ gðyi � oiÞf 0i ðv iÞhj ð7Þ

Dwij ¼ �gf 0j ðujÞxk

X
q

dqWqj ¼ gf 0j ðujÞxk

X
q

yq � oqf 0qðvqÞwqj

� �

ð8Þ
(IV) Another training vector X2 is applied to the network and
steps II–III are repeated.

(V) Steps II–IV are repeated for all training vectors.
(VI) Steps II–V are repeated until the total error E is below a cho-

sen threshold.

The resulting output node with the highest activation is inter-
preted as the perceived digit. Error back-propagation was used to
train the neural network on a training set of 100 digits. The trained
network was then tested on a separate set of 20 digits. Some of the
parameters explored in the neural network implementation were
learning rate, momentum parameter, and training iterations.
6. Parallel data fusion network in recognition and classification

Depending on the sensor network topology, it may be more use-
ful to implement the distributed detection or estimation using a
tree structure. Tsistsiklis (1993) shows that the optimal decision
rules are still in the form of threshold tests. Tang, Pattipati, and
Kleinman (1993) consider the case where the local decisions made
at a number of sensors are communicated to multiple root nodes
for data fusion. In the cases discussed above, the information flows
in one direction from the sensors to either the single fusion center
or to a number of root nodes. Even in the decentralized market
topology, where numerous sensors report to multiple intermediate
nodes, the graph of the network is still acyclic. If the communica-
tion network is able to handle the increased load, performance can
be improved through the use of decision feedback (Alhakeem &
Varshney, 1996; Pados, Halford, Kazakos, & Papantoni-Kazakos,
1995). Pados et al. (1995) examine two distributed structures:
(1) a network where the fusion center provides decision feedback
connections to each of the sensor nodes, and (2) a set of sensors
that are fully interconnected via decision feedback. The perfor-
mance of the fully connected network is quantifiably better, but
their initial system was non-robust to variations in the statistical
descriptions of the two hypotheses. Robust testing functions are
able to overcome this problem, and they show that robust net-
works tend to reject the feedback when operating with contami-
nated data. Alhakeem and Varshney (1996) study a distributed
detection system with feedback and memory. That is, each sensor
not only uses its present input and the previous fed-back decision
from the fusion center, but it also uses its own previous inputs.
They derive the optimal fusion rule and local decision rules, and
they show that the probability of error in a Bayesian formulation
goes to zero asymptotically. Additionally, they address the com-
munication requirements by developing two data transmission
protocols that reduce the number of messages sent among the
nodes.

Swaszek and Willet propose a more extensive feedback ap-
proach that they denote parleying (Swaszek & Willett, 1995). The
basic idea is that each sensor makes an initial binary decision that
is then distributed to all the other sensors. The goal is to achieve a
consensus on the given hypothesis through multiple iterations.
They develop two versions of the algorithm; the first is a greedy
approach that achieves fast convergence at the expense of perfor-
mance. The nth-root approach constrains the consensus to be opti-
mum in that it would match that of a centralized processor having
access to all the data. The main issue is the number of parleys (iter-
ations) required to reach this consensus (see Fig. 4).

We examine two particular applications of sensor networks in
the context of EMS in this paper:

1. Use of BPN to assist the optimal use of temperature, humidity,
ultraviolet, and illumination four variable measurements for
EMS.

2. Use of evolutionary algorithms to identify and classification the
parameters for a control system.

Each intelligent sensor suite consisting of multiple sensors in
the overall sensor network is capable of making some decisions
based on its own inputs. These decisions are passed on to higher-
level nodes in the control hierarchy for information assimilation
or information fusion. These decision-making problems can be for-
mulated as hypothesis testing problems in a distributed frame-
work. For optimum results, environmental conditions must be



Fig. 4. Parallel data fusion network for multi-sensors.
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optimized for each and every occupied space based on its particu-
lar environmental forcing parameters (e.g., emissions, intensity of
light, occupant loads) and the needs of its occupants. The higher
fidelity and better resolution information available from a sen-
sor-rich environment will be processed and employed for optimal
distributed control. We propose the use of neural networks and
evolutionary algorithms to address some of these problems.

6.1. Design of fusion rules

Input to the fusion center: ui; i ¼ 1;2; . . . ;n

ui ¼
0; if detector i idecides H0

1; if detector i idecides H1

�
ð9Þ

Input to the fusion center: u0

u0 ¼
0; if H0 is idecided
1; otherwise

�
ð10Þ

Fusion rule: logical function with N binary inputs and one bin-
ary output, the number of fusion rules is 22N

.
The possible fusion rules for two binary decisions based on BPN

training process. Therefore, the optimum fusion rule that mini-
mizes the probability of error is:

XN

j¼1

ui log
1� PMi

PFi
þ ð1� uiÞ log

PMi

1�Fi

� �u0 ¼ 1
>

<

u0 ¼ 0

log g ð11Þ
Fig. 5. Experiments result in EMS (estimated place: Yang-Fen Automation Electrical
Engineering Company at Taichung Factory).
7. Sensor data estimation using neural networks

This section discusses the estimation of temperature, humidity,
ultraviolet, and illumination four variable measurements in one re-
gion of a multi-zone environment using sensor readings obtained
elsewhere, with BPN trained for the estimation task. This method-
ology can be employed for sensors that measure other environ-
mental attributes for data fusion application. Example
applications of the problem considered here include:

1. Monitoring large areas using a relatively small number of
sensors.
2. Sampling sensors infrequently to save power and communica-
tion resources.

3. Being able to operate the control system effectively even when
some sensors nodes fail or lose battery power.

4. Detecting possible failures in some sensors nodes using the
readings of other sensors and coordinator.

7.1. Data collection

We used a simple experimental test, in which 24 wireless
nodes, capable of measuring the intensity of temperature, humid-
ity, ultraviolet, and illumination, were placed in each observational
point where our campus. Every node point comprises four sensors
and a network router. Among four sensors, the fusion center is
responsible for analyzing the collected sensing data. These data
from these 96 sensors were collected under varying outdoor or in-
door environmental conditions, e.g., closing the window blinds,
switching off some lights, and at various times of the day. The data
collected from the six sensors are shown in Fig. 5. As the numbers
of data points are relatively heavy, these data points were dupli-
cated and some noise added to them, to increase the robustness
of the training algorithm by BPN.

The intensity of four type sensors values in the different factory
region are different due to different window blind settings, light
status and shadowing. Moreover, these values change dynamically
with different indoor and outdoor environmental changes, e.g.,
operating a light switch, changing window blind settings, or chang-
ing outside light intensity. Since any such change in environmental
conditions affects the readings of multiple sensors, we expect that
a neural network can be trained to estimate readings at multiple
locations based on the observation of a single sensor node.

A one-hidden layer feed forward neural network with sigmoidal
node transfer units is the prime candidate for experimentation,
since such networks have been frequently used in other function
approximation tasks. We also hypothesize that the hidden nodes
in such a network compute features describing environmental con-
ditions, essential to the estimation of light intensities at multiple
locations; hence the same hidden nodes can be connected to differ-
ent output nodes to estimate the readings of multiple sensors.
Hence a BPN was applied to estimate the values of three sensors
based on the readings of a single sensor (see Fig. 6).

The results obtained show that the BPN successfully estimates
the intensity of temperature, humidity, ultraviolet, and illumina-
tion at three neighboring points based on the intensity at a single
point. Estimation accuracy decreases with increasing differences
between the environmental conditions at the reference point and
at the estimated point.



Fig. 6. BPN for estimation of the intensities at neighboring points.

Fig. 7. BPN based decision data fusion model for estimation of the intensity

Fig. 8. Results using the data fusion approach: actual vs. estimated values. (Note: Nin
classification process via BPN. (Estimated time is 400 h.))
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7.2. Data fusion

Estimations made using a combination of readings from multi-
ple sensors are expected to result in increased success. For this par-
ticular application, our simulation results showed that a data
fusion model, implemented using a single monolithic BPN module
with inputs from multiple sensors, was much less successful than a
decision data fusion model in which the estimations made using
single sensors are combined using a simple fusion rule, as shown
in Fig. 7. The absolute error on the training data was 0.04 and
the average mean absolute error on the test data was 0.018 after
training for 400 h, demonstrating that decision fusion using BPN
modules can give a very good estimate of temperature, humidity,
ultraviolet, and illumination intensity values (see Fig. 8).
of light at a single point based on the intensities at neighboring points.

ety-six sensors (four type sensors) for real-time data fusion with recognition and



Fig. 9. Results of traditional data fusion methods compare with innovative BPN methods.
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7.3. Performance improvement due to fusion

The WSNs was simulated with four category data from each
node and the results for each of the different test conditions for
temperature, humidity, ultraviolet, and illumination are given in
Fig. 9a and b, respectively. Fig. 9a is non-data fusion process and
Fig. 9b indicated it have data fusion process. Traditional data fusion
methods compare with innovative BPN methods, the conspicuous
distinction is data fusion genuine acceptance rate of the initial
stage. This investigates employed BPN with training and learning
ability that has improved the data fusion efficient for EMS based
on ZigBee WSNs platform. Fig. 10 indicated ZigBee WSNs’ Packages
analysis and monitoring in this case study refer to our researches
(Sung & Chung, 2008).

8. Conclusions

Sensor networks involve technologies from three related areas:
sensing, communication, and computation (hardware, software,
and algorithm). Lately a lot of research work has been done in all
of these fields to make sensor nodes more intelligent and useful.
Wireless sensor networks have emerged as a new information-
gathering paradigm based on the collaborative effort of a large
number of sensing nodes. This study discusses the classification
and fusion approach in WSNs, which BPN based feature extraction
method is proposed. This method partitions the frequency band in
different resolution to distinguish the difference in low-frequency
band and reduces the feature dimensions greatly. The extracted fea-
ture expresses stable classification rate for different moving condi-
tion. Due to the multiresolution property of wavelet decomposition
cannot only eliminate unstable variety of frequency feature, but
also merge discrepancies. Therefore, weighted BPN classification
rule uses the distance of feature x and its nearest neighbors to de-
note the degree committing to each class. This can provide more
information of x and its neighbors than that of voting BPN rule
and keeps the merits of non-parametric and easy to use.

In this study, we design four various sensors in a circuit board
which aggregated temperature, humidity, ultraviolet, and illumi-



Fig. 10. The ZigBee network packages analysis and monitoring.
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nation measurements for EMS around at the same time. Our pri-
mary network architecture consists of 24 nodes and beacon behav-
ior in real-time mode with interval about 0.5 s. Multilayer
perceptrons BPN have been applied successfully to solve some dif-
ficult and diverse problems by training them in a supervised man-
ner with a highly popular algorithm known as the back-
propagation algorithm. This algorithm is based on the error cor-
recting learning rule. Finally, the sink nodes would process various
signal sources for data fusion in recognition and classification via
BPN technology.
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