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This paper employs the energy minimum to enhance drug docking efficiency in a computer aided drug

design (CADD) system. The energy minimum application is used to enhance CADD docking

performance. The proposed method is discussed in three aspects, adaptive genetic algorithms (AGA),

Lyapunov stability theorem and molecular force field. As in previous researches, docking is the crucial

component in drug development. The number of docking sites affects the drug docking speed. Reducing

the scope of the geometric search is the key task. This paper proposes AGA to improve geometric

molecular docking search efficiency. The Lyapunov stability theorem forwards the stability state

identification. Protein folding intention generally finds the most appropriate stability state when the

thermodynamic and molecular mechanical free energy has reached the lowest point. The AMBER force

field simulation is used to discover the molecular statistical mechanics in a drug-ligand. AGA was found

better in terms of processing the geometric graphic search operation. The AGA and Lyapunov

algorithms were utilized to sieve out the global energy minimum approach from the numerous, raw

docking sites.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Virtual screening is a significant step before any new drug can
established. The objective of this work is to improve virtual
screening using computer technologies. Experiments on existing
drugs and compounds are conducted. The simulation results are
compared with previously published studies [1,2]. Because a high
throughput screening is required and the number of ligand types
in the compound library is large, CADD technologies are necessary
to improve drug design. Maggio et al. performed CADD simula-
tions on 10 targets [3,4]. The hit ratio was 2%–24% higher than
that from the conventional strategy hit ratio, which was 0.01%–
0.001%. In silico virtual screening, CADD is divided into direct
(receptor-based) and indirect (ligand-based, quantitative struc-
ture-activity relationship (QSAR), pharmacophore) drug design
depending on whether the target structure is known or unknown.
Owing to rapid advances in structural biology and computer
technology, structure-based CADD using docking techniques,
virtual screening and library design, along with the target
structure focusing combinatorial chemistry, have become power-
ful tools in the multi-step drug discovery process. This investiga-
tion adopts the energy minimum theorem to explore CADD and
accelerate the molecular docking process. This solution is
ll rights reserved.
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categorized as a direct method via docking virtual screening and
in silico de Novo Ligand design. This study first employs an
improved AGA to optimize the geometric search for many
receptor binding sites and discover docking sites near the global
energy minimum. The docking scope is restricted because binding
sites are judged according to their stability in terms of Lyapunov
heavy loading. The improved AGA is utilized to narrow the scope
of the geometric search. The Lyapunov rule is used to determine
docking sites that are stable and approach the global energy
minimum. This study successfully solves the docking problem
with various computer graphic technologies, system controls and
bioinformatics. Computer graphics is a vital technology in modern
medicinal chemistry. Previous published studies apply the
WebDeGrator system to establish molecular computer modeling
for the docking process [5–7].
2. Adaptive GA

The genetic algorithm is a representative of a class of methods
based on heuristic random search techniques. It was proposed by
John H. Holland in the early seventies and has since found
application in a number of practical problems [8]. The genetic
algorithm requires a considerable amount of computational time.
The adaptive GA (AGA) is an attempt to speed up the algorithm
via visual docking sites. In this study, the multi-threading
technique is recognized as an efficient tool for transforming the
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genetic algorithm into a non-random form in initial populations.
The key to obtaining high performance in geometric search
computing is to reduce the protein cave search in the energy
minimum states. According to our previous searches, we
succeeded in using the Intuitive GA (IGA) to enhance docking
process efficiency [1]. The strength of the IGA lies in its’ ability to
locate the global optimum in a multi-modal surrounding.
Unfortunately, regardless how robust and efficient a genetic
algorithm, the solution it provides always bears a certain measure
of unreliability. The IGA can locate the global optimum with only
a certain probability of success. Considerable attention has been
paid to efforts to increase that probability.

Many attempts to improve the search performance of genetic
algorithms have been made since the GA’s first appearance in
1975. These methods or mechanisms include non-binary coding,
fitness scaling, elitist strategy, extinction and immigration
strategy. Various alternative ways for reproduction, crossover
and mutation have greatly improved the performance of genetic
algorithms, enhancing the convergence speed to prevent pre-
mature convergence.

Crossover and mutation play important roles in making genetic
algorithms a powerful search technique, but improper selection of
crossover and mutation rates may lead to premature convergence
and local optimal solutions. Even if these parameter settings are
optimal in the earlier search stages, they will often become
inefficient in the later stages. Hence, adaptive probabilities for
crossover and mutation were proposed to overcome these draw-
backs. In Adaptive genetic algorithms (AGA), the adaptive cross-
over and mutation rates vary depending on the fitness of each
chromosome and do not need to be specified before running the
AGA. The AGA has been proven better than the traditional GA in
most cases. The AGA can converge to global optimum in far fewer
generations than the traditional GA [9].

The AGA is good at the optimizing function with many local
optimal points and has no restriction on the form of the fitness
functions. The AGA is population oriented, stores a sample replica
of the function profile being optimized and provides important
clues about the global structure of that function. The AGA is
parallel and also global. The fitness information calculated using
the fitness function from different members relies on various
genetic operators, especially through selection, crossover and
mutation mechanisms. In the evaluation step, the users perform
decisions using the physical condition in the protein conforma-
tion. The AGA can be implemented using several threads. The
main benefits that arise from multi-threading are: better program
structure and efficient use of multiple processors [10] (Fig. 1).
Initial
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Fig. 1. The Difference between GA and AGA [11].
3. Employed AGA and Lyapunov theorem for system practice

Conventional or well-known modern GA all combine random
computation with a random selection process, such as population
and mutation selection processes. Therefore, traditional GA often
generate incorrect results, requiring verification by selecting the
average value of the time calculation product. In mutation and
crossbreeding, the computation method is non-directional, re-
sulting in an unstable product that reaches equilibrium slowly.
The classical GA is frequently trapped in local optimal solutions.
Another good thing obtained from adapting the genetic algorithm
is that we can bypass the task of defining the parameter values,
which is in most cases is left to the user. Those values are known
to significantly affect the algorithm’s performance. Poorly chosen
parameters can cause the algorithm to not produce any relevant
solutions at all. Moreover, the optimal parameter configuration is
often problem dependent. This can create difficulty for the
inexperienced GA user.

The AGA is therefore proposed to enhance the efficiency of the
conventional GA by combining it with the uniform design concept
and numerical analysis. The AGA and classical GA are different in
due to the hybridization and mutation algorithms. The AGA
employs all of the population in a complete group to calculate the
result, whereas the traditional GA only employs a portion of the
population via one possibility. The AGA’s mutation is regulative
[12]. A promising solution to this challenge is to employ the
Lyapunov function to the docking that observes the binding site
points. Through the direct Lyapunov method, the global minimum
energy site is extracted from various binding sites. This approach
is quite reasonable in a drug molecule in which the molecule’s
motion is derived from the applied energy and control theory. An
alternative is to solve the eigenvalue l of the drug docking
dynamic system and determine whether l is less than the
convergence value e from the initial state to an infinitely long
time. If the docking system conforms to this condition, the system
is then stable. If the convergence rate of the eigenvalue l is
directly proportional to the Lyapunov exponential function, the
docking system is then Lyapunov asymptotically stable. This
scheme is termed the ‘‘indirect Lyapunov method’’ [13].

In the Lyapunov stability theorem, the stability concept of
differential equation is described first.

dXi

dt
¼ fiðX1;X2; . . . ;XnÞ ði¼ 1;2; . . . ;nÞ ð1Þ

Suppose that in the initial condition Xiðt0Þ ¼ X0
i , Eq. (1) has a

solution XiðtÞ. When the initial condition yields a small perturba-
tion motion Zi, the initial condition then becomes Xi

0 ðt0Þ ¼ X0
i þZi

and Eq. (1) has a new result Xiðt; fZigÞ. The stability definition
follows.

The solution Xi(t) of system equation (1) is stable if for each
positive e40 a positive number d40 exists such that the
condition |Zi|rd is satisfied, for all tZt0 invariably:

jXiðt; fZigÞ�XiðtÞjoe ði¼ 1;2; . . . ;nÞ ð2Þ

Conversely, the system is unstable under when this condition
does not correspond.

If Xi(t) is stable and the following is satisfied:

lim
t-1
jXiðt; fZigÞ�XiðtÞj ¼ 0 ði¼ 1;2; . . . ;nÞ ð3Þ

The function Xi(t) is termed ‘‘asymptotic stability’’ or ‘‘Lyapunov
stability’’. The above system stability definition can also be
described simply: If the initial condition is Xðt0Þ ¼ X0, then the
system solution is X(t). When the initial condition is a finite
change (d), the system solution equation is still sited in the finite
field (e) with the solution X(t) of original initial condition,
meaning that X(t) is stable. When the initial condition indicates
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Fig. 2. Three equilibrium state and representative trajectory (|X–Xi|/e,8tS0):

(a) marginally stable, (b) asymptotically stable and (c) unstable.
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a finite change, the system solution is near X(t) and the solution
comes back to X(t) after a long time, and X(t) is asymptotically
stable [14] (Fig. 2).
Fig. 3. The extinction and immigration strategy for this study.
4. AGA approach based on crossover and mutation of adaptive
probabilities

An AGA with diversity-guided mutation, which combines the
adaptive probabilities of crossover and mutation as proposed by
Spears [15] Using homogeneous finite Markov chains, it is proven
that an AGA with diversity-guided mutation and a genetic
algorithm with diversity-guided mutation converge to the global
optimum if they maintain the best solutions. The convergence of
adaptive genetic algorithms with adaptive probabilities for
crossover and mutation is studied [16].

As mentioned above, the crossover rate pc and mutation rate
pm selection determines the AGA performance. In the conven-
tional crossover and mutation mechanism, pc and pm are held as
constants. Srinivas proposed to adaptively adjust the pc, pm and
fitness value for an effective AGA process [17]. While a higher
crossover rate can increase the generation of new individuals in
the search process, it may also increase the probability for
destroying superior individuals, hence leading to local optima. In
order to prevent converging to local optima, the mutation rate
cannot be too small, but a higher mutation rate may result in a
random geometric search. Therefore, this study adaptively
changes the crossover and mutation rate according to the fitness
of each chromosome and the current evolution situation for
approaching the global minimum energy position in binding site.

When the increase in maximum fitness in each generation
slows down and the best individual is still far from excellent, the
proposed approach increases the crossover and mutation rate to
accelerate the convergence speed and prevent local optima. From
past research, when the evolution is slack, the difference between
maximum fitness and average fitness in a generation becomes
small and almost held as a constant. Thus, the adaptive crossover
and mutation rate can be defined according to this property as
follows:

PC ¼

k1ðf max�f 0Þ

fmax�f
; f 0Z f

k3; f 0Z f

8><
>:

ð4Þ

Pm ¼

k2ðf max��f Þ

fmax�f
; f Z f

k4; f o f

8><
>:

ð5Þ

where fmax is the maximum fitness in the population, f is the
average fitness of the population, f0 is the greater fitness among
parents in the crossover process, f is the fitness of the individual in
the mutation process, k1 and k3 are crossover probabilities adjust
parameters, k2 and k4 are mutation probabilities adjust para-
meters.

In Eqs. (4) and (5), the parents or individuals with higher
fitness have a higher crossover or mutation rate. When the
evolution slows down, (fmax� f) will become relatively small,
hence the equations will increase the crossover and mutation rate
to accelerate the convergence speed and avoid local optima.
Furthermore, pc (pm) will be zero when f0= fmax, thus the individual
with the highest fitness will not be destroyed through the
crossover and mutation process. When f0o f, reset pc=k1 to
prevent pc or pm higher than 1.In this paper, the k1=k3=1.0,
k2=k4=0.5 would get the best solution.

The adaptive crossover and mutation rate in equations (4) and
(5) can adjust pc and pm according to the fitness of the
chromosome, and when the evolution slows down, pc and pm

will increase to accelerate the convergence speed and avoid local
optima. The proposed approach has better performance than the
traditional GA which keeps pc and pm as constants.
5. The operation and strategy in AGA

When two parents are identical, the offspring produced by
them through crossover will be still the same. When the
chromosomes gradually become alike or even the same after
many generations of evolution, the crossover operation will
gradually lose its ability to generate new chromosomes, and the
evolution will stagnate. If all of the chromosomes in the
population are the same, the crossover operation is then useless
and the only way left to generate better chromosomes is
mutation. However, mutation is not efficient enough to overcome
the stagnate situation, especially for long chromosomes. There-
fore, the extinction and immigration strategy has been proposed
to address this difficulty.

In Fig. 3, the excellent strategy operates before the main
operations of genetic algorithms, i.e. reproduction, crossover, and
mutation operation, in every generation.

This process keeps the best p% individuals and takes them
directly into the next generation without joining those operations.
The new generation is formed with the surviving individuals and
the new generated offspring, thus good performing individuals
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will not be destroyed by the evolution process. This excellent
strategy ensures that the maximum fitness will increase con-
tinuously in each generation.

Extinction eliminates a certain number of the worst chromo-
somes and new chromosomes are generated randomly to fill out
the population. The role of extinction and immigration is similar
to mutation, while it has a more dramatic effect. Extinction and
immigration is applied when all chromosomes in the population
are the same or the maximum fitness values remain unchanged
over a certain number generations.
6. The AGA flow chart

Combining the AGA operators and strategies mentioned above
with the basic structure of simple genetic algorithms, this study
obtained an AGA with an excellent extinction and immigration
strategy. According to the above discussions, this paper employed
the operators and strategies in our study as shown in Fig. 4. After
Fig. 4. Flow chart of AGA.
each adjustment this study makes sure that the crossover and
mutation operations have the chance to work continuously. For
this reason, this paper employed minimum crossover and
mutation rates of 0.03. If the crossover or mutation rate is
r0.005, the adjustment operation stops decreasing the
probability. The refined genetic algorithm incorporating this
adaptation approach is described in Fig. 4.
7. Docking accuracy and efficiency

The docking accuracy, ranking accuracy and algorithm effi-
ciency of the docking algorithms were evaluated. A solution pose
was treated as accurate if the root–mean–square–distance
(RMSD) of the pose and the reference (experimentally deter-
mined) pose was below 2 Å. The docking accuracy requires one of
the top 30 scored poses to be accurate, while the ranking accuracy
requires the top scored pose to be accurate. For a docking
algorithm to be valuable, it needs to be efficient and achieve high
docking accuracy. A comparative study of eight popular docking
programs was recently undertaken on a 100-complex benchmark
[18].

Besides the search algorithm, the scoring function is also
critical to the accuracy of the docking algorithm. The ideal scoring
function would determine the binding affinities between the
ligand and the receptor, which include factors such as the Van der
Waals interaction, H-bonding, hydrophobicity and electrostatics.
However, the degree of contribution of each factor to the scoring
is well understood. Three main approaches exist for studying the
scoring function, namely force-field-based, empirical-based, and
knowledge-based methods. The force-field-based method approx-
imates the score with non-bond energy terms from the well-
studied force field, such as AMBER or CHARMM. The Empirical-
based system applies a set of protein–ligand complexes with
experimentally determined binding affinities to train the para-
meters in the scoring function. The knowledge-based scheme
adopts the Boltzmann hypothesis with known structural database
to compute the score. However, despite extensive research, no
scoring function comes close to the ideal, and consensus-scoring
functions are sometimes used. Significantly, most docking algo-
rithms are capable of handling different (additive) scoring
functions by interpolating the score through a grid, which can
be precomputed and stored. An accurate and efficient protein-
small-molecule docking algorithm is fundamental to structure-
based drug design. During the drug design process, once the 3D
structure of a target protein (which is believed to be responsible
for the disease) is determined, new drug candidates can be
identified by virtually screening a database of known compounds
through small-molecule docking.

In general, the docking problem has two components: a
scoring or evaluation function that can accurately discriminate
(i.e., experimentally observed) docking solutions from incorrect
solutions, and a search algorithm that searches the configura-
tional and conformational space for the candidate poses measured
with the scoring function. The docking problem is challenging
because the scoring function, which measures the binding affinity
between ligand and receptor, is not completely understood, and
the search space is high-dimensional-besides six degrees of
freedom (DOF) in the configuration space—both molecules are
flexible and might undergo conformational changes upon binding,
resulting in hundreds or thousands of DOFs in the conformational
space. Performing exhaustive conformational searches during
docking is thus computationally infeasible. The current most
commonly utilized approach in modeling protein–small-molecule
docking is to address only the conformational space of the ligand,
assuming that the protein receptor is rigid. This approach is
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Fig. 5. Dock the drug (ACT: C2 H3 O2
–) to into the 1mt8 HIV protease.
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known as the rigid-receptor–flexible-ligand docking model. This
study employed the AGA based on energy minimum theorem to
optimize the docking process, and adopted the Lyapunov model to
lower the number of docking sites and thus shorten the docking
time.

Many docking algorithms have been presented in the last 20
years. These algorithms can broadly be classified into three
categories, namely stochastic search, incremental construction,
and multi-conformer docking algorithms. Stochastic search algo-
rithms include AutoDock, ICM and GOLD [19]. These algorithms
are based on genetic algorithms and/or Monte Carlo-simulated
annealing. The incremental construction algorithms first dissect
each molecule into a set of rigid fragments based on rotatable
bonds, and then incrementally assemble the fragments around
the binding pocket. Some examples of this class are DOCK, FlexX
and Surflex [20]. Unlike the incremental construction, multi-
conformer docking algorithms separately generate a set of low-
energy conformers, and then perform rigid docking for every
conformer. Multi-conformer docking algorithms include FLOG
and FRED (from OpenEye Scientific Software). A brief description
of FRED can be found in [21]. The most efficient existing
algorithms are FRED, DOCK and FlexX.
8. AGA computer simulation

Example: An integrated simulation in HIV protease inhibitors
docking with HEX Software (1mt8)

As described in the above chapter, the Human Immunodeficiency
Virus (HIV) protease is responsible for cleaving the polypeptide
expressed by viral DNA after an HIV infection. Since this process is a
step in the maturation of a virus, a reasonable drug design strategy
would involve the discovery of a compound that irreversibly binds
with the protease to eliminate its functionality. Such a drug would
not cure the disease, since the offending DNA is still operative in the
infected cells, but it does decrease the spread of the virions generated
by the infected cell. This strategy can be further investigated because
the protease is designed to bind with a particular peptide sequence, a
drug could be designed that ‘‘looks like’’ that peptide sequence but
does not behave like it. This strategy is ‘‘bait and trap’’: the protease
tries but fails to cleave the drug. Furthermore, the drug binds so
tightly with the protease that it cannot be released. In designing such
a drug, the medicinal chemist could employ wet lab techniques to
generate several compounds that are all drug candidates. They would
then test these compounds in an assay experiment with the purpose
of evaluating the affinity of the compounds for the protease.
However, this process is expensive and should be undertaken only
for compounds that exhibit some predicted high level of affinity.
Bioinformatics is helpful in this case. Software can be utilized to
evaluate hundreds or even thousands of ‘‘virtual compounds’’ stored
in a database. In this evaluation, the compounds are described in
terms of data structures, such as a list of coordinates of the atoms in a
molecule and the list of connections between the atoms. If the
protease receptor site is known; i.e. a data structure representation
for the receptor is available, then the following steps can be applied:
1.
 Adopt an algorithm that performs a docking of the candidate
compound with the protease receptor.
2.
 Utilize another algorithm to predict the binding affinity for the
receptor/compound association.
3.
 Sort the results to determine which compounds give the
highest affinity to observe the consistent features of the most
active compounds.
4.
 Employ this information to design a more focussed set of
compounds and repeat these steps.
Inhibitors of this viral protease can be used to fight the HIV
infection. Protease inhibitors interfere with continued infection
by blocking the ability of the protease to cleave the viral
polypeptide into functional enzymes. Mutations enable HIV to
withstand treatments involving only one drug, resulting in the
growing use of multiple-drug therapies combining a protease
inhibitor with a reverse transcript inhibitor (Fig. 5).

In this example, the first step is selected 1mt8 HIV protease as
the receptor. In the next step we applied AGA to the geometric
search and found eight suitable ligands which were utilized for
docking into the 1mt8 HIV protease. The eight-ligand chemical
character was searched from the NIAID, NLM, NCBI, and NIST
compound. Fig. 6 shows the DMP323 search result, and Table 1
presents the eight-ligand molecular structure.

The third step is that the ligand and receptor be regulated into
experimental components. We adopted the Hex software to dock
the drug ligand into the 1mt8 receptor. The docking operation
steps are as follows:
(1)
 Open the candidate x.pdb file without Gag with the Browse
button associated with the Receptor molecule.
(2)
 Open x.pdf file for the 3D version of the drug with the Browse
button associated with the Ligand molecule.
(3)
 Set clustering RMSD to 2.0.

(4)
 Set complex type to: Protein–small ligand.

(5)
 Leave the optional text boxes empty.

(6)
 Finished.
In this step, we plug-in the AGA and Lyapunov programs to lower
the number of binding site and repeat the geometric, energy and
activity estimation steps. These steps have a recursive relation-
ship. Table 2 indicates the different steps cause distinct results.
Round 3 is closed to the final results which permit the benchmark.

In this example Fig. 7 indicates the process has been run for
386 generations with the program defaults. When the new
generation is over 237, the best fitness is limited to 0.05, 38
scope, and the best next generation appeared. The fitness
outcome is 7.41 after generating 32 generations, which is better
than the classic GA in 189 generations. Table 3 presents that the
AGA was the best approach in this case, since it yielded a short
docking time 32% and the best fits in terms of the geometric
calculation for searching the receptor binding sites.

The final step estimates whether the ligand receptor docking
activity converges or diverges in lmax, whether it is has affinity is
an agonist to Kd,. Compared with the benchmark database does
rmsd and energy have the lowest standard value, we can obtain
the optimum drug candidate through these steps.

This example employed the following settings: energy
(kcal/mol) and RMSD (Å); 210 runs, 536 individuals, 1.0�106

energy evaluations, two-point crossover (prob.=0.3) and
non-uniform mutation (prob.=0.7); mean in 100 runs; percentage
of conformations identified by the algorithm with RMSDo0.5 Å;
percentage of conformations found by the algorithm with
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Fig. 6. Searching DMP323 and the molecular character from NIAID database.

Table 1
Molecular structure and AIDS number of the eight ligands.

Ligand AIDS Number Molecular Structure

Ritonavir
028478

L-Chicoric Acid 029768

Nelfinavir 028590

Gallein 081066

DMP323 005340

Indinavir 005824

Cefaclor 070030

Saquinavir 000640

W.-T. Sung, Y.-F. Liu / Computers in Biology and Medicine 40 (2010) 215–222220
RMSDo2 Å. Standard deviations are given in parentheses. Table 4
presents the docking results.
9. Conclusions and future work

This investigation examined the geometry, energy and activity of
cave structures for the receptor and binding sites of various ligands.
AGA was utilized to increase the docking efficiency. The vital role of
the minimum energy feature in protein folding and drug docking
was then discussed. The Lyapunov theorem was employed to solve
the energy problem. The drug–receptor interaction activity was
observed and the protein or ligand characteristics were determined
using various computer simulations [22].

The performances of the above AGA algorithms in optimizing
several unimodal and multimodal functions were compared. The
results show that for multi-modal functions the average AGA
convergence generation with diversity guided mutation is about 63
less than that of the AGA with adaptive probabilities and a genetic
algorithm with diversity-guided mutation. The AGA with diversity-
guided mutation does not lead to premature convergence. It was
also shown that better balance between overcoming premature
convergence and quickening convergence speed can be obtained.

According to the drug–receptor interaction model, eight drug
ligands were applied to dock the HIV-based protein enzymes. The
1mt8 HIV protease was used as the receptor for an Alzheimer’s
disease case study to perform docking. Example 1 (1mt8) depicted
some computer simulation results. Some drug–receptor affinity
and activity such as Kd, agonists or antagonists, hit ratio, free
energy, RMSD were observed in this simulation. Based on the
work in our above studies, docking efficiency was improved and
production speed was increased with the AGA and Lyapunov
algorithms according to energy minimum themes. This study
presented a novel systemic method based on our previous work,
‘‘Study on Molecular Docking for Computer-Aided Drug Design via
Lyapunov Equation and Minimum Energy’’. A serial literature
survey and practice in computer simulation and computations
contributed some significant themes in this investigation. Com-
puter simulation example results were employed to propose and
demonstrate some computation methods and theories. For
instance, the AGA lowered the number of docking sites, shortened
the docking time 32%, and enhanced the geometric graphic search
operation after comparing four optimal geometric search meth-
ods, along with the Pegg et al., and Camila et al. methods [23]. The
Lyapunov rule was adopted to determine the docking site
stability. We believe that this investigation succeeded in integrat-
ing biology, information technology (IT), system engineering and
chemistry into modern bioinformatics. Important research for
CADD will continue in the future.
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Fig. 7. The AGA and number database computation process.

Table 2
Indicated the different step caused the distinct results.

Ligand Round

Round 1 Round 2 Round 3 Benchmark

rmsd Energy rmsd Energy rmsd Energy Energy

Ritonavir 0.289 �106.21 0.219 �102.51 0.139 �101.11 �101.68

L-Chicoric acid 0.19 �82.9 0.12 �79.2 0.04 �77.8 �79

Nelfinavir 0.216 �89.2 0.146 �85.5 0.066 �84.1 �83.2

Gallein 0.193 �75.05 0.123 �71.35 0.043 �69.95 �70.1

DMP323 0.188 �68.48 0.118 �64.78 0.038 �63.38 �62.9

Indinavir 0.187 �58.14 0.117 �54.44 0.037 �53.04 �53.1

Cefaclor 0.202 �90.25 0.132 �86.55 0.052 �85.15 �86.2

Saquinavir 0.208 �93.38 0.138 �89.68 0.058 �88.28 �85.3

Table 3
Three optimal docking methods in practice [24].

Optimal algorithms Basic feature In this Experiment result (1mt8 HIV protease)

Number of
binding sites

Docking
time (h)

Average interaction energy
for ligand (Kcal/mole)

Traditional GA The swift calculate, global minimum 285 0.87 �128.3

IGA An improved GA with Intuition method 212 0.65 �144.0

AGA An improved GA with Adaptive method 128 0.42 �96.6

Table 4
Docking results example. (1mt8 HIV protease).

Ligand Lowest rmsd Energy of lowest Success ratio Affinity (1/Kd) With Lyapunov (%)

Ritonavir 0.09 �100.18 92 67 30

L-Chicoric Acid 0.04 �75.32 86 82 21.5

Nelfinavir 0.066 �82.18 73 74 15.6

Gallein 0.043 �68.91 89 91 18.3

DMP323 0.038 �58.37 72 54 23

Indinavir 0.037 �87.08 91 87 12

Cefaclor 0.052 �82.17 85 85 8

Saquinavir 0.058 �86.78 83 75 27

W.-T. Sung, Y.-F. Liu / Computers in Biology and Medicine 40 (2010) 215–222 221
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