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Abstract

In this study, a modified version of differential evolution (DE) is used to solve dynamic optimization prob-
lems (DOPs). To promote the efficiency of the basic DE, the local replacement (LR) strategy is introduced to
intensify the search in the neighborhood of the current best solution. To solve by the proposed method, the DOP
is converted a nonlinear programming (NLP) problem via control vector parametrization (CVP). The final results
from two cases of DOP show that such modification is simple and effective in the promotion of convergent rate

and numerical accuracy.
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1. Introduction

In general, most engineering optimization prob-
lems can be formulated as nonlinear programming
(NLP) problems as follows

i 1
min J (1)
subject to
L<d<U
h(®)=0 2)
g(®) <0
where 7 is the objective function; ®T = [p1, -+ , @y

denote decision vector, L and U € R" respectively
denote the decision vector, the lower bound and the
upper bound. h and g respectively denote the equality
and inequality constraints on ®. Thus, the above NLP
problem represented is cast as finding the global opti-
mal solution ®* that minimizes the objective function
J and simultaneously satisfying Eq. (2).

* Author to whom all correspondence should be addressed.
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To solve the above problems, gradient-base meth-
ods and direct search methods are commonly used. Us-
ing the information derived from the first or second
derivatives, the gradient-based methods, such as suc-
cessive quadratic programming (SQP), may converge
the problem very rapidly, especially when the initial
guess is closed to the optimum. However, for the
systems with highly nonlinear and/or multimodal na-
ture, to acquire a global optimum might become very
difficult. Based on whether the objective function is
improved, the direct search methods directly update
the decision vectors. However, even the direct search
methods may approach the global solution, they often
require very large objective function evaluations. In
recent, it is very popular to use meta-heuristics algo-
rithms, such as simulated annealing (SA), genetic al-
gorithm (GA) and differential evolution (DE), in the
solution of engineering optimization problems. Even
the convergent rate is unable to be proved via strict
mathematical procedure, these methods still demon-
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rithms, such as simulated annealing (SA), genetic al-
gorithm (GA) and differential evolution (DE), in the
solution of engineering optimization problems. Even
the convergent rate is unable to be proved via strict
mathematical procedure, these methods still demon-
strate very nice convergence.

We now integrate local replacement (LR) strategy
into DE to optimize dynamic chemical systems. The
results show that the strategy of intensifying the search
in the neighborhood of the current best solution is ef-
fective in promoting the convergent rate of DE. In the
following sequel, Section 2 presents the principle of
the basic DE. Section 3 introduces the local replace-
ment strategy. The formulation and parametrization
of dynamic optimization problems (DOPs) is shown
in Section 4. The numerical examples and the related
discussions are provided in Section 5. The conclusion
is cast in the final section, Section 6.

2. The Basic DE

Derived from the concept of evolution in biology,
the basic DE [1] is proposed in 1996 to tackle diffi-
cult optimization. Without using any information from
the derivative of the objective function, the method is
still effective in solving non-differentiable systems. In
general, four primary operations are included in the ba-
sic DE such initialization, mutation, crossover and se-
lection. The details of the operations are shown below.

Initialization

Randomly generate N,(> 4) decision vectors
from the lower and upper bounds, the j-th component
in ®; is produced by

(pfj:Lj—i—rand()-(Uj—Lj), j=1--- n
to form the first generation (g = 1) of target vectors
set

7'9: {@17¢27”' 7¢Np} (3)

where rand() € [0,1] denotes an uniform random
number.
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Mutation

Generate the mutation vector set

Mg:{vlvv27"' aVNp} (4)

by the three different vectors randomly chosen from
79 with the following relation

vi=®p + F - (Pr2 — Py3),
i=1,---,Np

)

where F' is the mutation factor with the value in the
range of [0,2].
Crossover

For each ®; and v;, use the following relation to
execute the following operation

vij if (randb(i) < CR)
e or i = rnbr(j)
Y ) ¢i; otherwise
j = 17 27 e n

for the formation of the trial vector set

CY = {Cl7c2>"' 7CNP}

where ¢; = [¢;1, - -+, ¢in) denotes the i-th trial vector,
randb(i) is the uniform random number ranging from
0 to 1, rnbr(j) is the randomly-chosen number from
the index set of {1, 2, ..., n}, C'R means the crossover
constant ranging from 0 to 1.

(6)

Selection

Using the following relation, either x; or u; having
the better objective value is selected to form 79F!
u; if J(w) < J(x)
X; = (7
x; otherwise
The following diagram illustrated the above pro-
cedure.
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Figure 1: Schematic of DE

3. Local Replacement Strategy

In most evolutionary algorithm, to diverse the trial
vectors and to intensify the search in the region the the
current best solution are two primary policies for pro-
moting the convergent efficiency. Although the basic
DE may approach global optimum by the diversified
trial vectors, it is well known that its convergent rate
is very slow. In this study, we propose the use of in-
tegrating the local replacement strategy into the basic
DE to improvement the convergence. The so-called
LR~strategy is to replace some worse target vectors
in 797! by the same numbers of the vectors from the
neighborhood of the current best solution to intensify
the refinement of the solutions [2]. The detail steps are
shown as follows

Ordering
The target vectors in T9+1 are sorted in ascend-

ing order for minimization problems according to the
associated objective values.
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Generate new trial vectors

Using the best target vector ®* as the center, Ny,

new vectors ® are randomly chosen
‘i’g:i:—FR(ﬁ—i), {=1,---,Np

from the neighborhood with the new lower and upper
bounds ,L and U

~ ~x U-L 1
- & —
U=+ x5
- 9-L 1
2 N,

where R is a diagonal matrix whose diagonal entries
with value ranging from 0 to 1.

Replacement

The newly generated vectors with the smaller ob-
jective values replace the last IV, target vectors (the
worse solutions)

Xy
PN, N
(=1, ,Np

if 7 (x¢) < T(®N,—N,+0)

XN _ = .
Np—Np+t { otherwise

4. The Formulation of DOPs

The dynamic optimization problems are in general
described as

ﬁgjﬁﬂ ®)
subject to

d
o =0 u(t),0) ©)
x(0) = xg (10)
he(x,ut) =0 (k=1,--,K) (1)
L<ut)<U (12)
t € [0,tf] (13)

where x denote an (n x 1) state vector. In chemical
system, Eq. (9) acquired by the mass and/or energy
balance are a set of ordinary differential equations with
the initial conditions, Eq. (10). u(¢) means continuous
control input from ¢ = 0 to ¢t = t; restricted by the
lower bounds L and upper bounds U. Eq. (11) repre-
sents the K physical or chemical constraints.
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Parametrization of DOP

In order to apply the proposed modification of
DE to optimize dynamic systems. The above DOP
is needed to be discretized into P sequential sub-
problems along the time horizon from¢ = O to ¢ = ¢y,
i.e.

utg"lzl? 7P\7(tf) (14)
subject to
dx
i f(x,u;,t) (15)
x(0) = xg (16)
L <wi(t) <U (18)
VtE[ti,ti+1] 1=0,---,P—1 (19)

In the duration [¢; ¢;11], the control input is interpo-
lated by linear function

Uj41 — uz(

uz(t) = t— ti) + u; (20)

tit1 — 1

Besides top = 0 and ¢y, the PP — 2 time grides are also
considered as the decision variables. Thus, the original
DOP with infinite dimension is parametrized as NLP
problem with 2P dimensions.

5. Numerical Examples

In this study, the local replacement strategy is in-
tegrated with the basic DE and the modified DE [3].
Two typical examples are respectively solved by the
basic DE, MDE, DE plus LR and MDE plus LR to
compare the numerical efficiency. All these methods
are programmed by MATLAB with absolute error are
1 x 1076, The values for F, CR and P are set as 0.3,
0.99, 5. Each example is iteratively solved 100 runs by
these methods. In each run, the average objective vale
(Aobyj), standard deviation (SD) are recorded after 100
generations.
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5.1. A batch reactor with consecutive chemical

reaction

The model is described by the differential equa-
tions

dCy

2 =k 0F 21
A~ hCy @1
dC
=B~ k% — kyCp (22)
dt
with the initial conditions
[Ca Cp]=[1 0]
where
k1 = 4000exp(—2500/T) (23)
ko = 620000exp(—5000/T) (24)
The input variable 7" is bounded by
298K <T < 398K (25)

The objective of this problem is to determine the op-
timal temperature input to maximize the intermediate
concentration C'g in the operating interval 0 < ¢ < 1,

max Cpg
T(tf:l)

Logsdon and Biegler [4] report the solution of this
problem to be 0.610767. Dadebo and Mcauley [5] and
Babu and Angira [3] both acquire the maximal Cp to
be 0.610070 and 0.610079, respectively. We solve this
problem by DE plus LR and MDE plus LR and set
Np = 180 and Ny, = 20. Compared with MDE+LR,
DE plus LR as shown in Table 1 seems to have better
and consistent results.
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Table 1: The maximum value of Cg for Casel with
P=5

Np Ny, DE MDE

200 0 0.610768 0.610727
190 10 0.610768 0.610756
180 20 0.610768 0.610762
150 50 0.610764 0.610747

The change of convergence for DE+LR with dif-
ferent Ny, are shown in Figure 2. It is obvious that
the convergent rate Ny, = 20 is the fastest. With the
increase of /Ny, the convergent rate slows down.

0.611

0.6105

0.61

= 0.6095 ‘5

0.609 [

0.6085

0.608 —L— : : : : : :
0 5 10 15 20 25 30 35 40
Generations
Figure 2: The comparison of convergent rate of DE
and DE plus LR with different N,

Table 2 illustrates the change of Aobj and SD with
the increase of Ny. It seems to imply that for DE plus
LR the average objective value and the standard devi-
ation in 100 runs shows statistically better quality of
convergence.

Table 2: Aobj and SD for Casel with P =5

DE MDE

Np

Aobj (SD)
0  0.610762 (8.38E-6)  0.610695 (3.08E-5)

10 0.610706 (5.99E-5)  0.610680 (5.22E-5)
20 0.610661 (8.12E-5)  0.610645 (7.99E-5)
50 0.610620 (1.25E-4)  0.610629 (8.65E-5)
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5.2. Nonlinear Continuous Stirred Tank Reactor
Problem

The model for this case is described by:

da:l

25
+ (x2 + 0.5)613])(:61 12)
d.%’g
= —=0.5— 27
a2 v @)
25$1
— (z2 + 0.5)exp(x1 n 2)
d
% = 22 + 22 + 0.1u2 (28)

where the x1 and x5 are the dimensionless steady-state
temperature and concentration respectively. The ini-
tial conditions are

x(0) = [0.09 0.09 0] (29)

This objective of this problem is to minimize x3(t ) at
t;=0.78,

min x3(ty)

Notably, the control input « in this case is unrestricted.
Luus [6] have proved that this problem has one local
solution 0.24425 and one global solution 0.13309.

Although the best value in Table 3, 0.13315,
comes from the basic DE, the others from DE plus LR
are still very closed. On the other hand, the objective
values from MDE plus LR are higher. Meanwhile, DE
plus LR also shows better quality in statistics in Table
4.

Table 3: The best value of xy(ty) for Case2 with
P=5

Np Ny, DE MDE

200 0 0.13315 0.13325
190 10 0.13316 0.13321
180 20 0.13316 0.13318
150 50 0.13318 0.13317
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Table 4: Aobj and SD for Case2 with P =5 are converted into NLP problems with finite dimen-

sions via control vector parametrization. The results
show that DE plus LR has better convergence than the

Np DE MDE basic DE and MDE plus LR. Because the choice of
Aobj (SD) N7, might change with different problems, the setting
0 0.13317 (1.1E-5)  0.13350(1.4E-4) of Ny, is required to further investigate.

10 0.13321 (5.0E-5) 0.13349(2.0E-4)
20 0.13325 (1.1E-4) 0.13345(2.0E-4)

50 0.13344 (3.2E-4) 0.13341(2.1E-4) 1. R. Storn and K. Price, "Differential evolution-a
simple and efficient heuristic for global optimiza-
tion over continuous spaces," J. Global Optim.,
Vol. 11, No. 4, pp. 341-359, 1997
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